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Abstract. We investigate several classes of congruences between modular
forms modulo prime powers. We apply two different algorithms to obtain new
examples of such congruences and we also generalize some results concerning
congruences between Eisenstein series and cuspidal eigenforms. A sample of
numerical data is presented.

Introduction

The aim of this paper is to present new examples of families of congruences
between modular forms modulo prime powers. In Section 1 we introduce definitions
and notations. In particular, in Section 1.3 we describe Hecke algebra acting on the
spaces of modular forms and show how to use its structure to extract congruences
between eigenforms. Main references for this part are [3], [4] and [7].

In Section 2, we first discuss a standard result of Sturm (cf. [10]) about congruences
of modular forms modulo prime ideals. Secondly, we sketch the algorithm from [11]
and a generalization of theorem of Sturm (cf. [2]). This is used in computations
done in Section 3.1.

Next we apply both techniques to study several new examples of congruences. First
we use algorithm of [11] to detect possible congruences. Then we lay out a new
algorithm (due to the author) based on the generalized Sturm’s theorem, cf. [2],
which is used to confirm the congruences between coefficients of modular forms. We
would like to point out the difference between the two approaches. Algorithms based
on [11] tend to be quick but they rely on the assumption that the congruences of
coefficients modulo prime powers (and with different Galois embeddings) agree. The
algorithm finds a congruence between two cuspforms up to the Galois conjugacy
of modular forms representing the class. Our algorithm is based on the generalized
Sturm’s theorem. It shows that in each case computed by the first algorithm we
actually get a congruence of modular forms modulo powers of explicit prime ideals.

Finally, in Section 3.1 we present a new numerical data concerning congruences
between cusp forms of weight 4 and a family of congruences between cusp forms
and Eisenstein series which is a natural generalization of Theorem 3.2. The data
were obtained in computer algebra systems Magma (cf. [1]) and SAGE (cf. [9]). In
the Appendix we collect the code descriptions of algorithms used in Section 3.1.

1. Definitions

Let H be the complex upper half-plane

H = {τ ∈ C : =τ > 0}.

This paper was prepared as a semester paper under the guidance of prof. Wojciech Gajda in
the framework of joint Ph.D. programme ŚSDNM.
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For any matrix

γ =
(
a b
c d

)
∈M2,2(Q)

with det γ > 0 we define a map
γ : H → H

which is a linear fractional transformation given by

γ(τ) =
aτ + b

cτ + d
.

In fact, the imaginary part has the following form

=(γ(τ)) =
det γ · =τ
|cτ + d|2 ,

hence the map γ is well-defined.
The map γ provides a natural action of the group GL+

2 (Q) of 2 by 2 matrices with
positive determinant and rational entries on the upper half-plane. We specialize the
action to certain subgroups of GL+

2 (Q).

Definition 1.1 (Congruence subgroups). Fix an integer N ­ 1. Let Γ(N) ⊂
GL+

2 (Q) be the subgroup

Γ(N) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
(mod N)

}
.

A subgroup Γ ⊂ SL2(Z) is called a congruence subgroup if Γ(N) ⊂ Γ for some
integer N ­ 1. In particular, Γ is called a congruence subgroup of level N .

We define two families of congruence subgroups of particular interest to us:

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
,

Γ1(N) =
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N), a, c ≡ 1 (mod N)

}
.

There are inclusions

Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z).

Proposition 1.1 ([7], Ch. 1.6). Let Γ ⊂ SL2(Z) be a congruence subgroup. The
index

[SL2(Z) : Γ]

is finite. Moreover:

[SL2(Z) : Γ(N)] = N3
∏

p|N

(
1− 1

p2

)
(1)

[Γ0(N) : Γ1(N)] = N
∏

p|N

(
1− 1

p

)
,(2)

[Γ1(N) : Γ(N)] = N.(3)

We will define the space of modular forms of certain level and weight. For further
reference cf. [4] Ch. 1.1.

Definition 1.2 (Weak modular forms). Fix a non-negative integer k and a positive
integer N . Let Γ be a congruence subgroup of level N . A function f : H → C is a
weak modular form of weight k with respect to Γ if

(i) f is holomorphic on H,
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(ii) for every
(
a b
c d

)
∈ Γ the function f satisfies:

f(
(
a b
c d

)
(τ))(cτ + d)−k = f(τ)

for every τ ∈ H.

Since any congruence subgroup Γ contains Γ(N) for some N there exists a matrix

Th =
(

1 h
0 1

)
with minimal positive h ∈ N such that Th ∈ Γ(N). If we consider

any weak modular form of weight k with respect to Γ we obtain from condition (ii)

f(τ + h) = f(τ)

for any τ ∈ H. Hence f is h-periodic and there exists a holomorphic function

g : B(0, 1) \ {0} → C

on punctured unit disk with the property g(e2πiτ/h) = f(τ). If g extends to 0 we
say that f is holomorphic at infinity and f has Fourier expansion

f(τ) =
∞∑

n=0

anq
n
h

where qh = e2πiτ/h. In the sequel we use notation q = q1. Moreover we want to define
holomorphy condition at rational points Q ⊂ C in analogy to holomorphy at ∞.
We can extend the action of group GL+

2 (Q) to the projective line P1(Q) = Q∪{∞}
as follows (

a b
c d

)(
x

y

)
=
ax+ by

cx+ dy
=:
(
a b
c d

)
([x : y]).

Since we have x
y = [xy : 1] = [x, y] in projective coordinates and the point at infinity

∞ = [1, 0], we can also act on that point
(
a b
c d

)
([1 : 0]) = [a : c].

Provided that c 6= 0 we have
(
a b
c d

)
(∞) = a

c . Now holomorphy at s ∈ Q is

defined as follows. A weakly modular function f of weight k and with respect to Γ is
holomorphic at s ∈ Q if and only if the following condition holds true. The weakly
modular function f(τ)(cτ + d)−k of weight k and with respect to the congruence
subgroup αΓα−1 is holomorphic at infinity provided that

α =
(
a b
c d

)
∈ SL2(Z)

and

α(∞) = s.

The points on P1(Q) are called cusp(idal) points.

Definition 1.3 (Modular forms). Fix a non-negative integer k and a positive in-
teger N . Let Γ be a congruence subgroup of level N . A function f : H → C is a
modular form of weight k with respect to Γ if

(i) f is a weak modular form of weight k with respect to Γ,
(ii) f is holomorphic at all cusps.
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If a0 = 0 in the Fourier expansion at ∞ of f(τ)(cτ + d)−k, for all
(
a b
c d

)
∈ SL2(Z),

then f is a cusp form.

The vector space of modular forms of weight k and with respect to Γ is denoted
Mk(Γ), similarly the space of cusp forms is denoted Sk(Γ).

We can easily multiply two modular forms of weight k and l with respect to the
same group. The product is a modular form of weight k + l. This shows that the
direct sum

M(Γ) =
⊕

k

Mk(Γ)

is a graded ring with a graded ideal

S(Γ) =
⊕

k

Sk(Γ).

We work with Fourier expansions of modular forms at∞ to avoid ambiguous Fourier
expansions at different cusps. It is noteworthy that condition (ii) can be expressed
equivalently as a certain growth condition of Fourier coefficients

Proposition 1.2 ([4], Prop. 1.2.4). Let Γ be a congruence subgroup of level N and
qN (τ) = e2πiτ/N for τ ∈ H. Let f be a weak modular form of weight k and with
respect to Γ. Then f(τ) =

∑∞
n=0 anq

n
N and the coefficients for n > 0 satisfy the

condition
|an| ¬ Cnr

for some positive C and r independent of n, then the weak modular form f is mod-
ular, i.e. f ∈Mk(Γ).

Example 1.1 ([4]). Let k > 2 be an even integer. We define

Gk(τ) =
∑

c2+d2 6=0

1
(cτ + d)k

where the sum is over c, d ∈ Z and τ ∈ H. It is a holomorphic function which
is bounded as =τ → ∞. Moreover it is a weak modular form of weight k with
respect to the full modular group SL2(Z). There is just one cusp with respect to
SL2(Z), hence Gk is a modular form of weight k. The modular form Gk has Fourier
expansion

Gk(τ) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑

n=1

σk−1(n)qn

where σm(n) =
∑
d|n d

m. The form Gk is called the Eisenstein series of weight k.
Combining G4 and G6 we can obtain another important modular form of weight
12:

∆̃(τ) = (60G4(τ))3 − 27(140G6(τ))2.

It can be shown that

∆̃(τ) = (2π)12q
∞∏

n=1

(1− qn)24 = (2π)12
∞∑

n=1

τ(n)qn.

The coefficients τ(n) define a mutliplicative function, proved by L. Mordell in
1917. We will show further that this function satisfies some remarkable congru-
ences pointed out by Ramanujan

τ(n) ≡ σ11(n) (mod 691).

We summarize few important facts about modular forms.
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Theorem 1.1 ([4], Ch. 3). (i) For every k < 0 the space Mk(Γ) = {0}, for
any congruence subgroup Γ.

(ii) For every k ­ 0 the space Mk(Γ) has finite dimension over C, for any
congruence subgroup Γ.

(iii) The ring M(SL2(Z)) is isomorphic as a C-algebra to C[G4, G6]. The sub-
ring S(SL2(Z)) = ∆M(SL2(Z)) is a principal ideal of M(SL2(Z)).

1.1. Hecke operators. We describe briefly the action of algebra of Hecke opera-
tors on the vector space Mk(Γ1(N)). For a recent account of the theory we refer
the reader to [4], Ch. 5. For a fuller treatment, cf. [7], Ch. 3. Let f =

∑∞
n=0 anq

n be
a Fourier expansion of a modular form of weight k for the group Γ1(N). We define
the Hecke operator at the prime p by the formula

Tp(f) =
∞∑

n=0

(anp + 1N (p)pk−1an/p(〈p〉f))qn

where an/p is equal to 0 if p - n and (for (d,N) = 1)

〈d〉f(τ) = (cτ + δ)−kf(
aτ + b

cτ + δ
)

for any matrix in Γ0(N) with entries a, b, c, δ and d ≡ δ (mod N). If (d,N) > 1
we put 〈d〉 = 0). The function 1N is the trivial Dirichlet character modulo N . It is
straightforward to see that the operator Tp is linear, however the formula doesn’t
show why it is an endomorphism. For n composite we define Tn as a composition
of operators Tpi for appropriate primes p appearing in the factorization of n. The
operators Tp and Tq do commute for distinct prime numbers p and q. The operators
commute also with 〈d〉. Furthermore we have the relation

Tpr = TpTpr−1 − pk−1〈p〉Tpr−2 .
Definition 1.4. We say that a nonzero modular form f in Mk(Γ1(N)) is an eigen-
form if f is an eigenvector with respect to Hecke operators Tn and diamond oper-
ators 〈n〉 for all n ­ 0. We say that an eigenform is normalized if a1(f) = 1.

1.2. Hecke algebra. Hecke operators defined in the previous section form an alge-
bra which encapsulates the properties of eigenforms for different weights and levels,
cf. [3]. Assume that Γ contains Γ1(N) for some positive integer N . Let

TC(Mk(Γ))

be the C-algebra generated by the Hecke operators Tn and 〈d〉. In fact, we can ommit
diamond operators since they can be generated by operators Tn. The algebra TC is
a subalgebra in the algebra of endomorphisms EndC(Mk(Γ)).

Theorem 1.2. Hecke algebra TC is finitely generated as a C-module. There exists
a perfect pairing

(·, ·) : TC ×Mk(Γ)→ C
defined by (T, f) = a1(T (f)).

Proof. We will first prove the perfectness of the pairing. Since the space of modular
forms Mk(Γ) is finite-dimensional, the first statement of the theorem follows. Since
C is a field, we need only to show that the pairing is non-degenerate, i.e. left and
right kernels are trivial.

Let T ∈ T be fixed and (T, f) = a1(T (f)) = 0 for all f ∈ Mk(Γ). We can take
f = Tn(g) where g ∈ Mk(Γ). Since TTn = TnT , we get a1(Tn(T (f))) = 0, but
a1(Tn(h)) = an(h), so we have an(T (f)) = 0 for any n ­ 1 and any form f . Since
k ­ 1 there are no non-zero modular forms which are constant, hence T (f) = 0 for
any modular form f , so the operator T is zero.
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Let f ∈ Mk(Γ) be fixed and (T, f) = 0 for any T ∈ TC. In particular, (Tn, f) = 0
for any n ­ 1, so an(f) = 0, so f = c ∈ C, but again k ­ 1, hence there are no
non-zero constant modular forms and f = 0. �

The space of modular forms is a direct sum Mk(Γ) = Sk(Γ)⊕Ek(Γ) and the Hecke
operators act separetly on each factor. We define then suitable C-algebras

TSC = TC(Sk(Γ))

TEC = TC(Ek(Γ))

We will establish now a similar result for Hecke algebras over any unital commu-
tative ring R. Again we will assume that k ­ 1 and Γ(N) ⊂ Γ for some positive
integer N .

Let TZ(Mk(Γ)) be the Z-submodule obtained by restriction of scalars induced from
TC. In the same way we define TSZ(Sk(Γ)) and TEZ (Ek(Γ)). We define also

TR = TZ ⊗Z R

TSR = TZ ⊗Z R

TER = TZ ⊗Z R

for any Z-algebra R. Similarly, we define a space of modular forms with coefficients
in Z

Mk(Γ,Z) = Mk(Γ) ∩ Z[[q]]

Sk(Γ,Z) = Sk(Γ) ∩ Z[[q]]

Ek(Γ,Z) = Ek(Γ) ∩ Z[[q]]

where we assume that the expansion is taken at infinity, i.e. q = e2πiτ for =(τ) > 0.
By spaces of modular forms with coefficients in Z-algebra R we understand

Mk(Γ, R) = Mk(Γ,Z)⊗Z R

Sk(Γ, R) = Sk(Γ,Z)⊗Z R

Ek(Γ, R) = Ek(Γ,Z)⊗Z R.

There is a direct sum decomposition

Mk(Γ, R) = Sk(Γ, R)⊕ Ek(Γ, R).

Theorem 1.3. Let R be a Z-algebra. An R-algebra TR is a finitely generated R-
module, Mk(Γ, R) is a finitely generated R-module and there exists a non-degenerate
R-pairing

(·, ·) : TR ×Mk(Γ, R)→ R

given by (T ⊗ r, f ⊗ s) = a1(T (f)) ⊗ (rs), f ∈ Mk(Γ,Z), T ∈ TZ. We get also
similar pairings for Eisenstein submodule and cusp forms submodule

(·, ·) :TER × Ek(Γ, R)→ R,

(·, ·) :TSR × Sk(Γ, R)→ R.

The pairings are both non-degenerate. The pairing of cusp forms with its Hecke
algebra is perfect, hence we get an isomorphism

Sk(Γ, R) ∼= HomR(TSR, R).

Proof. Our proof starts with the observation that TZ is a finitely generated Z-
module since we can view it as a subring of endomorphisms of H1(X1(N),Z). Here
X1(N) is the compact Riemann surface Γ1(N)\(H∪P1(Q)). The homology group is
a finitely generated free Z-module, hence the same is true for its endomorphism ring.
This implies that the Z-modules TEZ and TSZ are finitely generated. Non-degeneracy
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in the case R = Z is proved in the same way as in the previous theorem. Hence we
get two injective homomorphisms

Mk(Γ,Z) ↪→ HomZ(TZ,Z),

TZ ↪→ HomZ(Mk(Γ,Z),Z).

Since TZ is finitely generated and free, it implies that Mk(Γ,Z) is finite free over
Z and it follows that rankZTZ = rankZMk(Γ,Z). It implies that the quotient
HomZ(TZ,Z)/Mk(Γ,Z) is a finite abelian group. In case of Hecke algebra of cusp
forms we will show that this quotient is trivial

Sk(Γ,Z) ∼= HomZ(TSZ ,Z).

Suppose its order is greater than 1. Then there exists a map φ ∈ HomZ(TSZ ,Z) and
k > 1 such that

kφ ∈ Sk(Γ,Z).

Take f such that it represents kφ, namely kφ(Tn) = an(f). If f ∈ Sk(Γ,Z), then
it shows that there exists a cusp form g ∈ Sk(Γ,Z) such that f = kg, hence
φ(Tn) = an(g) for any natural n. This implies that φ ∈Mk(Γ,Z) since the operators
Tn generate the module. Consequently, k = 1 a contradiction and the result follows.

We observe that HomZ(Mk(Γ,Z),Z) is a finitely generated free Z module, hence it
is flat. By [5], Ch.1.2 Prop.2.6 it follows that, for any Z-module R the sequence

0→ TZ ⊗Z R→ HomZ(Mk(Γ,Z),Z)⊗Z R

is exact, because the pairing with TZ is non-degenerate. Similar property holds for
the space of cusp forms and the space of Eisenstein series. By duality we get that
the sequence

0→Mk(Γ,Z)⊗Z R→ HomZ(TZ,Z)⊗Z R

is exact. In the same way we prove that the sequences for TE and TS are exact.
In order to generalize to modules over any commutative unital ring, we use the
following standard fact. Let A be a right R-module, B a (R,S)-module and C a
right S-module. Then there is a natural isomorphism

(4) HomS(A⊗R B,C) ∼= HomR(A,HomS(B,C)).

Let R be any Z-algebra. From (4) it follows that

HomR(TR, R) ∼= HomZ(TZ,HomR(R,R)) ∼= HomZ(TZ, R)

and since TZ is free of rank r we have isomorphisms

HomZ(TZ,Z)⊗Z R ∼= Zr ⊗Z R ∼= Rr ∼= HomZ(TZ, R)

which dependend on the choice of a basis. By the same method we obtain

HomZ(Mk(Γ,Z),Z)⊗Z R ∼= HomR(Mk(Γ, R), R).

The non-degeneracy of the pairing TR ×Mk(Γ, R) → R follows, and in the conse-
quence for TER and TSR.

We have shown that the injective map Sk(Γ,Z) ↪→ HomZ(TSZ ,Z) is in fact an
isomorphism. It follows that

Sk(Γ, R) ∼= HomR(TSR, R).

�
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Remark 1.1. In general the injective map ψ : Mk(Γ,Z) ↪→ HomZ(TZ,Z) is not an
isomorphism. We show that the cokernel of the map ψ is of order 24 for Γ = Γ0(2)
and k = 2. We know that M2(Γ0(2),C) is one-dimensional vector space and it is
spanned by the modular form

F2 = 1 + 24(
∞∑

n=1

σ1(n)qn − 2
∞∑

n=1

σ1(n)q2n)

where σ1(n) =
∑
d|n d. Hence we have M2(Γ0(2),Z) = spanZ(F2). The Hecke oper-

ators act as follows

TpF2 =
{
F2 if p = 2,
(1 + p)F2 if p 6= 2.

By a simple inductive argument the formula Tpr = TpTpr−1−p〈p〉Tpr−2 , for a prime
p, implies that

Tpr =
{

1 if p = 2,
σ1(pr) if p 6= 2.

This gives a general formula for the Hecke operator

Tn =
∏

pr||n,p odd prime

σ1(pr).

On the other hand, for n odd, greater than 1, the n-th Fourier coefficient an(F2) of
F2 is equal to 24σ1(n) and for 2|n

an(F2) = 24(σ1(n)− 2σ1(n/2)) = 24
∏

pr||n,p odd prime

σ1(pr)

which we get from the multiplicativity of σ1. Finally, the image of M2(Γ0(2),Z) by
the map ψ is generated by the homomorphism of Z-modules

Tn 7→ an(F2).

The module HomZ(TZ,Z) equals Z and is generated by the identity map ι

ι(Tn) =
∏

pr||n,p odd prime

σ1(pr).

Hence HomZ(TZ,Z)/ψ(M2(Γ0(2),Z)) = Z/24Z.

1.3. The eigencurve. It is important to analyze the structure of the scheme
Spec TSZ → Spec Z. By studying its fibers we can obtain all possible congruences
between Hecke eigenforms modulo a prime.

Let K be a field and K its algebraic closure. We denote by G the absolute Galois
group Gal(K/K). By the adjoint property of functors HomS(B, ·) and (· · · )⊗R B
for (R,S)-module B (see (4)) we have the isomorphisms

Sk(Γ,K) ∼= HomK(TS
K
,K) ∼= HomK(TSK ,K)

Let σ ∈ Gal(K/K) be the Galois automorphism. It acts on the homomorphism
φ ∈ HomK(TSK ,K) by the composition φ 7→ σ◦φ and by the above homomorphisms
we get an action on Sk(Γ,K).

By the q-expansion principle (cf. [3], Thm. 12.3.2), we can identify the space
Sk(Γ,Z)⊗ZK with the space of modular forms with coefficients in K if char K = 0
or k > 1 and N is invertivle in K. For example, if K = Q we have the needed
identification.

Moreover, we can attach to each prime ideal p ∈ Spec TSK a unique K-algebra
homomorphism φp : TSK → K where ker(φp) = p. The image of φp is an integral
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domain over the field K and it is finitely generated since TSK is finitely generated.
Thus it is a field and p is a maximal ideal. So we have proven

Spec TSK = SpmTSK .

Since K-algebra homomorphisms correspond to eigenforms by the Hom identifi-
cation and the action of the Galois group commutes with Hecke operators, each
prime ideal p ∈ Spec TSK corresponds to a unique Galois orbit of normalized eigen-
forms. We denote by Eigen(G) the set of Galois orbits of normalized eigenforms.
Altogether this defines a function of sets

Spec TK → Eigen(G)

p 7→ (Tn 7→ φp(Tn)).

This map is a bijection by Theorem 1.3. In the case K = Q by the q-expansion
principle the series

∑∞
n=1 φp(Tn)qn is a genuine normalized eigenform. If the rep-

resenting eigenform is f , then the associated prime ideal is denoted by pf .

Theorem 1.4 ([10], Thm. 9.23). Let Γ be a congruence subgroup containing Γ1(N)
and put r = k[SL2(Z):Γ]

12 − [SL2(Z):Γ]−1
N . Then the Hecke algebra TSZ is generated as a

Z-module by Hecke operators Tn for n ¬ r.

As an algebra TSZ is generated by T1 and Tp for primes p ¬ r where r denotes the
integer from Theorem 1.4. In general, the algebra TSZ is not generated by a single
element of TSZ . We will illustrate this fact with the following example.

Proposition 1.3. The Hecke algebra TSZ over Z acting on S = S2(Γ0(40),Z) is
equal to

Z[T2, T3]

as a Z-algebra. However, there is no element T ∈ TSZ such that

TSZ = Z[T ].

Proof. Let S = S2(Γ0(40),Z), rankZS = 3. By Theorem 1.4 and Proposition 1.1
we have that the Hecke algebra TSZ is generated as a Z-module by Hecke operators
T1, T2, · · · , T10 (the bound is r = 409

40 ).
We choose a basis of S as follows

f1 = q + q5 +O(q6),

f2 = q2 +O(q6),

f3 = q3 + q5 +O(q6).

With respect to this basis we can represent the operators T2 and T3 by the following
matrices

T2 =




0 0 0
1 0 −2
0 0 0




and

T3 =




0 0 0
0 −2 0
1 0 −2


 .
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We can check directly that T 2
2 = 0 and T3(T3 +2) = 0 and T2T3 = −2T2. Moreover,

T1 = idS ,

T4 = 0 · T1,

T5 = T1 + T3,

T6 = −2T2,

T7 = −4T1 − 3T3,

T8 = 0 · T1,

T9 = −3T1 − 2T3,

T10 = −T2,

hence
TSZ = Z[T2, T3]

as a Z-algebra.

In order to show the second statement suppose that there exists an element T ∈ TSZ
such that TSZ = Z[T ] as an algebra. Since T2 and T3 generate TSZ as a Z-module,
T = a+ bT2 + cT3, for some a, b, c ∈ Z. Therefore

T =



a 0 0
b a− 2c −2b
c 0 a− 2c


 .

We know that 3 = rankZS = rankZTSZ and the characteristic polynomial of T is
of degree 3, therefore 1, T, T 2 must be linearly independent over Z. But then there
exist u, v, w ∈ Z such that

u+ vT + wT 2 = T2.

and we can assume b 6= 0 and c 6= 0 (otherwise the minimal polynomial of T would
have degree less than 3). It follows that

u =
a2 + 2ac

2bc

v =
a− c
bc

w =
−1
2bc

and w /∈ Z, a contradiction. �

1.4. Congruences mod `. The main reference for this part is [3].

Let S = Sk(Γ,Z) be the cuspidal module. The Hecke algebra T = TSZ tensored with
Q is a finitely generated Q-algebra of finite dimension. It is an Artinian ring and it
splits canonically into a product

T⊗Z Q =
∏

p

Tp

of its localizations at primes p such that p ∩ Z = 0. The ideals correspond to
Gal(Q/Q)-conjugacy classes of eigenforms in Sk(Γ,Q).
In the same way we obtain the decomposition

TZl =
∏

m

(TZl)m

where m runs over maximal ideals of T containing a prime l. They correspond to
Gal(Fl/Fl)-conjugacy classes of eigenforms in Sk(Γ,Fl).
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We identify each factor (TZl)m with the m-adic completion T̂m of the ring T, since
l belongs to m. It is a finite flat Zl-algebra and the following isomorphism holds

T̂m ⊗Zl Ql
∼=
∏

p⊂m

Tp ⊗Q Ql

where p runs over minimal prime ideals p contained in m.

Definition 1.5. Let f1 and f2 be two eigenforms lying in different Gal(Q/Q)-
conjugacy classes. Let pf1 and pf2 be the corresponding minimal prime ideals of T
attached to Galois conjugacy classes of forms f1 and f2. We say that f1 is congru-
ent to f2 modulo a prime above l if and only if there exists a maximal ideal m in
T containing l such that

pf1 ⊂ m and pf2 ⊂ m.

Remark 1.2. By the q-expansion principle two modular forms f, g ∈ Sk(Γ,O),
where O is the ring of algebraic integers of a number field, are congruent modulo
l, if and only if,

an(f) ≡ an(g) (mod λ)
for any prime λ in O dividing l.

Example 1.2. Let S = S2(Γ0(169),Z), T = TSZ . We compute in SAGE that
rank ZT = 8 and the characteristic polynomial of the operator T2 ∈ T is its minimal
polynomial, so the elements T1, T2, T

2
2 , . . . , T

7
2 are linearly independent over Z. By

Theorem 1.3 the rank of T as the Z-module is 8 and it is easy to express all Hecke
operators (up to the Sturm bound) as Z-linear combinations of the powers of T2.
Hence

T = Z[T2] ∼= Z[x]/(f1f2f3),
where

f1 = x2 − 3,

f2 = x3 − 2x2 − x+ 1

f3 = x3 + 2x2 − x− 1,

are irreducible, pairwise coprime polynomials over Z. The product f1 · f2 · f3 is the
characteristic polynomial of T2 in S.

The epimorphism Z[x] � Z[x]/(f1f2f3) defines a bijection between prime ideals of
Z[x]/(f1f2f3) and prime ideals of Z[x] containing h = (f1f2f3). Let p be non-zero
prime ideal in Z[x] such that p∩Z = (0). Then there exists an irreducible (over Z)
polynomial f ∈ Z[x] such that p = (f). If p ∩ Z = (p) and p is a prime number in
Z, there we have the equality p = (p, g) where g is irreducible modulo p. This gives
a complete description of prime ideals in Z[x].

If P ⊂ Z[x]/(h) is a prime ideal, there exists a prime ideal p in Z[x] such that

pZ[x]/(h) = P
and (h) ⊂ p. Two prime ideals (f̄i), (f̄j) (i 6= j) are contained in the same maximal
ideal m, where l belongs to m if and only if the reductions modulo l have a non-
trivial factor. This is equivalent to the fact that the resultant of polynomials fi and
fj is divisible by l.

We compute suitable resultants

Res(f1, f2) = 13

Res(f1, f3) = 13

Res(f2, f3) = −8.
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Each polynomial fi corresponds to a Gal(Q/Q)-conjugacy class of eigenforms and
hence to a localization of T at a suitable minimal prime pi = (fi(T2)). Thus, each
such prime defines an irreducible component of the scheme

Spec T→ Spec Z.
Moreover, the components intersect at maximal primes above 13 and 2 or more
precisely

(f1) ⊂ (13, x+ 4),

(f2) ⊂ (13, x+ 4),

(f1) ⊂ (13, x+ 9),

(f3) ⊂ (13, x+ 9),

(f2) ⊂ (2, x3 + x+ 1),

(f3) ⊂ (2, x3 + x+ 1).

f2

f3

f1

(2, x3 + x+ 1)

(13, x+ 4)

(13, x+ 9)

Figure 1. Sketch of Spec T, the lines correspond to irreducible
components defined by fi.

2. Congruences between modular forms

We consider reductions of coefficients of modular forms modulo prime ideals in
rings of integers of the coefficient fields.

2.1. Sturm theorem and applications. In this section we consider modular
forms with respect to a fixed congruent subgroup Γ of level N . Let f be a modular
form and let

∑
anq

n
N be its Fourier expansion. Suppose the coefficients of f lie in

OK , which is the ring of algebraic integers of a number fieldK containing coefficients
an. For any non-zero prime ideal p we define

ordp(f) = min{n ∈ N ∪ 0 : an /∈ p}
and we call the number order of f at p. If for every n the condition an ∈ p holds,
then we put ordp(f) = +∞.
Observe that ordp(fg) = ordp(f) + ordp(g).

Let R be a subring of C. We denote by Mk(Γ, R) the R-module of modular forms
which have the q-expansion with coefficients in R.

Theorem 2.1 ([10]). Let K be a number field, let Γ be a congruence subgroup of
level N and m = [SL2(Z) : Γ]. If f belongs to Mk(Γ,OK) and

ordp(f) >
km

12
,



CONGRUENCES FOR MODULAR FORMS MODULO POWERS OF PRIME IDEALS 13

then f ≡ 0 (mod p). Moreover, if f ∈ Sk(Γ,OK) and

ordp(f) >
km

12
− m− 1

N

then f ≡ 0 (mod p).

Example 2.1. The space M12(SL2(Z)) is of dimension two. Its cuspidal part is
one dimensional and it is spanned by

∆ = q
∞∏

n=1

(1− qn)24 =
∞∑

n=1

τ(n)qn.

The Eisenstein subspace is generated by

E =
12! · 2730

(2π)12 G12 = 691 + 65520
∞∑

n=1

σ11(n)qn.

The coefficients of both forms lie in Z. We choose the prime ideal p = (691). The
Sturm bound km

12 = 1 and we have

E − 65520∆ = 691 + (σ11(2) · 65520 + 1572480)q2 +O(q3).

Since σ11(2) · 65520 + 1572480 = 196560 · 691, we obtain

ord(691)(E − 65520∆) > 1

which implies by Theorem 2.1 that

E − 65520∆ ≡ 0 (mod p).

Hence we get
τ(n) ≡ σ11(n) (mod 691).

Corollary 2.1. Let p be a prime ideal in OK for a number field K and Γ be a
congruent subgroup of level N . If f and g lie in Mk(Γ,OK) and

an(f) ≡ an(g) (mod p)

for n ¬ k[SL2(Z):Γ]
12 , then

f ≡ g (mod p).

If f − g ∈ Sk(Γ,OK) and the congruence an(f) ≡ an(g) (mod p) holds for n ¬
k[SL2(Z):Γ]

12 − [SL2(Z):Γ]−1
N , then

f ≡ g (mod p).

2.2. Congruences mod `n. In this section we present the algorithm for finding
congruences with respect to powers of prime ideals in number fields for the coeffi-
cients of normalized eigenforms.

The algorithm closely follows the approach to the problem described in [11]. Ex-
plicit congruences in certain cases can be checked via the generalization of Sturm’s
theorem as indicated in [2].

From now on we fix a rational prime l, algebraic closures Q and Ql and an em-
bedding Q ↪→ Ql. We denote by Zl the ring of roots of monic polynomials with
coefficients in Zl. We choose a valuation vl on Ql such that vl(l) = 1.

Definition 2.1. Let n ∈ N be a natural number and α, β ∈ Zl be two algebraic
integers. We say that α is congruent to β modulo ln if and only if vl(α−β) > n−1.
We denote this fact by

α ≡ β (mod ln).
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The definition doesn’t depend on a choice of the extension K/Ql. In the case of
unramified extensions it really means that if πK is a uniformizer in OK , then
α− β ∈ (πnK). If n = 1, it means that the elements α and β are equal in Fl.

It is convienient to reinterpret the above definiton.

Definition 2.2. Let K/Ql be a finite field extension, L/K be a finite extension
and let eL/K denote the ramification index of L/K. For n ∈ N, let

γL/K(n) = (n− 1)eL/K + 1.

Proposition 2.1 ([11], Def. 2.2). The function γL/K satisfies the following prop-
erties

(i) γL/K(1) = 1
(ii) If L/K is unramified, then γL/K(n) = n.
(iii) For extensions M/L and L/K we have γM/K(n) = γM/L(γL/K(n)).
(iv) For extensions L/K, the integer γL/K(n) is the minimal one such that the

embedding OK ↪→ OL induces an injection OK/(πnK) ↪→ OL/(πγL/K(n)
L ).

(v) For α, β ∈ K and K/Ql finite, we have

vK(α− β) ­ γK/Ql(n)⇔ vl(α− β) > n− 1⇔ α ≡ β (mod ln).

By Proposition 2.1 we are allowed to define the “algebraic closure” of Z/lnZ

Z/lnZ := lim−→
K

[OK/(π
γK/Ql (n)
K )]

where K runs through all finite extensions of Ql with respect to the family of
compatible maps from Proposition 2.1 (iv).

The natural projection OK � OK/(π
γK/Ql (n)
K ) induces an epimorphism

πn : Zl � Z/lnZ.

Hence we can reformulate the congruence condition as

πn(α) = πn(β).

It is always possible to choose πn in a compatible way. Let then πn,m : Z/lnZ �
Z/lmZ be a natural projection for m < n. We have the obvious equality

πn,m ◦ πn = πm.

To find congruences between algebraic integers we consider minimal polynomials
defining them.

In the sequel we also denote by πn its restriction to Z. Let P,Q ∈ Z[x] be two
coprime monic polynomials and let n ∈ N.
We want to check the following conditions hold

There exist α, β ∈ Z such that
(i) P (α) = Q(β) = 0,

(ii) πn(α) = πn(β), or equivalently α ≡ β (mod ln)).

In order to check this conditions we define a map

Z[X]<n ⊕ Z[X]<m −→ Z[x]<m+n

(f, g) 7→ fP + gQ

where Z[X]<k denotes the polynomials of degree less then k. We call it the Sylvester
map. The map is injective and the least degree polynomials in the image are con-
stants.
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Definition 2.3. For coprime monic polynomials P and Q in Z[x] we define a
number c(P,Q) which is the least positive integer in the image of the Sylvester
map.

In general c(P,Q) is a proper divisor of the resultant of the polynomials P and Q.
Furthermore it can be computed from the matrix associated to the Sylvester map.
Let M = M(P,Q) be such a matrix (computed with respect to the standard basis
in Z[x]). The number c(P,Q) equals am+n,m+n where M̃ = (ai,j)1¬i,j¬m+n is the
upper triangular row echelon form of M .

Proposition 2.2 ([11], Prop. 2.7). Let P,Q ∈ Z[x] be coprime polynomials and
ln||c(P,Q) be the exact power of l dividing c(P,Q). Then there are no α, β ∈ Z
such that

(i) P (α) = Q(β) = 0,
(ii) πm(α) = πm(β) for any m > n.

Proof. There exists polynomials f, g ∈ Z[x] such that c(P,Q) = fP + gQ. Let
α, β ∈ Z be zeros of P and Q, respectively and such that πm(α) = πm(β). It follows
that

πm(c(P,Q)) = πm(f(α)P (α) + g(α)Q(α)) = πm(f(α))πm(Q(α))

= πm(f(β))πm(Q(β)) = 0

and in consequence lm divides c(P,Q), hence m ¬ n. �

The Proposition 2.2 establishes an upper bound for the exponent of l in congruences
between modular forms. Further refinement of the method (see [11], Cor. 2.12) gives
a lower bound for such congruences. However the bounds are not always the same.

Let T = TSZ be the Z-algebra of Hecke endomorphisms of the space S = Sk(Γ0(N)).
We define a modular form of weight k and level N over Z/lnZ to be a Z-module
homomorphism

f : T→ Z/lnZ.

Definition 2.4. We say that modular forms f : T → Zl and g : T → Zl are
congruent modulo ln if πn ◦ f = πn ◦ g. This is the same as saying that am(f) ≡
am(g) (mod ln) in the sense of valuation vl.

Definition 2.5. We say that eigenforms f and g are almost congruent modulo
ln if for all but finitely many prime numbers p

ap(f) ≡ ap(g) (mod ln).

Let f, g ∈ Sk(Γ0(N)) be two normalized eigenforms and let l be a prime number.
We describe the algorithm from [11] which produces two numbers (L−, L+) such
that if ln|L− then f is almost congruent to g modulo ln and if lm - L+ then f is
not almost congruent to g modulo lm. The algorithm disregards the congruences of
coefficients ap for p|N up to the Sturm bound, but if N is a prime there is no such
p. Since we work with Z/lnZ-forms we need to assume the following hypothesis

Hypothesis ([11])
Let f1 and f2 be normalized eigenforms and n ∈ N. Suppose that for all primes p
there are embeddings σi,p : K → Q (i = 1, 2) where K is a number field containing
coefficients of both forms and

σ1,p(ap(f1)) ≡ σ2,p(ap(f2)) (mod ln).

Then there are embeddings σ1 and σ2 such that

σ1(f1) ≡ σ2(f2) (mod ln).
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This is a rather restrictive condition, however in most cases such embeddings do
exist.

3. Algorithms

In this section we discuss several results established via computations in SAGE
and Magma. We obtain a finite family of generalized congruences between certain
cuspidal eigenforms and Eisenstein series modulo powers of prime ideals in number
fields.
Let f1, f2 ∈ Sk(Γ0(N)) be normalized eigenforms which are notGal(Q/Q)-conjugated.

Let p be a prime number. For the Galois conjugacy class [fi] of fi we compute the
action of the Hecke operator Tp and compute the characteristic polynomial Pfi,p.
For each such pair we compute the congruence number

(5) cp = c(Pf1,p , Pf2,p).

In fact, polynomials Pf1,p and Pf2,p are coprime because the Hecke algebra respects
the Galois conjugacy classes which are simple T-modules.

We calculate

(6) L+ = gcdp¬B(cp)

where B is the Sturm bound (see Theorem 2.1) for p - N . The function gcd is
computed in slightly modified way - for two congruence numbers cp1 and cp2 we
compute

(7) c = gcd(cp1 · p
vp1 (cp2 )
1 , cp2 · p

vp2 (cp1 )
2 )

to disregard the coefficient ap while reducing modulo powers of p. Inductively for
any new cp and c given we compute c′ = gcd(cp · pvp(c), c).
Second step of the algorithm is to compute L−. For each l|L+ we compute a local
factor L−l = minp¬Bldp . The numbers dp determine the maximal power of l modulo
which polynomials Pf,p and Pg,p have a root in common. Finally, we take

(8) L− =
∏

l|L+
L−l .

In general, we will have L− 6= L+. However in some cases we can obtain the equality.
In that case we know that modulo ln||L− = L+ we have a congruence of almost all
coefficients ap of both forms.
In Section 4.1 we present the code for the algorithm above with all technical details
and further description.

We can obtain a more precise result applying the generalization of Sturm’s theo-
rem. This is used in refined computations with rational eigenforms in Section 3.1.
Moreover, on its base, we build an algorithm to refine Theorem 3.2 and show some
interesting class of congruences modulo powers of prime ideals (see Section 3.2).

Theorem 3.1 ([2], Prop. 1). Let N and n be two positive integers and k ­ 2. Let
f1, f2 ∈ Mk(Γ1(N)) be modular forms which have coefficients in OK , the ring of
algebraic integers of a number field K. Let m = [SL2(Z) : Γ1(N)] and p be a prime
ideal in OK .

If an(f1) ≡ an(f2) (mod pn) for all 0 ¬ n ¬ km
12 then

f1 ≡ f2 (mod pn).

Proof. The theorem is proved by induction on n. Instead of working with OK we
switch to work with the localization (OK)p. It is essential to use the property of
’bounded denominators’ for modular forms with respect to a congruent subgroup.

�
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3.1. Examples. We present the data computed according to the algorithms in last
section. In Section 4 the reader can find the code of all algorithms. Table 2 and
Table 3 presented below describe the following data.

For each tuple (N, i, j, L−, L+) there is a congruence of coefficients ap, for almost
all primes p, between Galois conjugacy classes of eigenforms fi and fj in S4(Γ)
(internal numeration in SAGE 4.6.1) in the sense of Definition 2.1

ap(fi) ≡ ap(fj) (mod lk)

where lk | L− and l is a prime number, and p - N . There is no such congruence for
lm - L+ (see 3).

N i j L− L+

13 0 1 26 52
14 0 1 2 10
15 0 1 2 2
17 0 1 34 68
19 0 1 38 38
21 0 1 7 14
21 0 2 6 384
21 1 2 2 8
22 0 1 11 11
22 0 2 4 8
22 1 2 1 1
23 0 1 46 368
25 0 1 2 2
25 0 2 5 5
25 1 2 3 3
26 0 1 2 2
26 0 2 1 1
26 1 2 5 5
27 0 1 6 6
27 0 2 3 9
27 1 2 3 9
28 0 1 14 14
29 0 1 58 116
30 0 1 2 12
31 0 1 124 496
32 0 1 8 8
32 0 2 16 16
32 1 2 8 8

N i j L− L+

33 0 1 2 2
33 0 2 6 12
33 0 3 22 176
33 1 2 22 88
33 1 3 6 12
33 2 3 2 64
34 0 1 34 34
34 0 2 2 12
34 1 2 2 4
35 0 1 7 7
35 0 2 10 20
35 1 2 2 4
37 0 1 74 592
38 0 1 19 19
38 0 2 4 24
38 1 2 2 2
39 0 1 13 52
39 0 2 6 48
39 1 2 2 16
40 0 1 10 10
40 0 2 16 16
40 1 2 2 2
41 0 1 82 164
42 0 1 2 8
43 0 1 86 172
44 0 1 22 22
45 0 1 2 2
45 0 2 2 2

N i j L− L+

45 0 3 9 18
45 0 4 10 20
45 1 2 2 4
45 1 3 7 14
45 1 4 2 2
45 2 3 5 10
45 2 4 6 6
45 3 4 1 2
46 0 1 2 2
46 0 2 46 92
46 0 3 4 4
46 1 2 4 4
46 1 3 46 92
46 2 3 2 4
47 0 1 94 752
48 0 1 32 32
48 0 2 6 24
48 1 2 2 8
49 0 1 2 2
49 0 2 7 7
49 0 3 7 7
49 0 4 14 196
49 1 2 3 3
49 1 3 1 1
49 1 4 14 28
49 2 3 14 14
49 2 4 7 49
49 3 4 7 49

Figure 2. Data set: 12 ¬ N ¬ 49, k = 4

The case N = 48 from Table 2 with L− = L+ corresponds to two eigenforms with
rational coefficients

f1 = q − 3q3 − 18q5 − 8q7 + 9q9 − 36q11 − 10q13 + 54q15 + 18q17 + 100q19 +O(q20),

f2 = q − 3q3 + 14q5 + 24q7 + 9q9 + 28q11 − 74q13 − 42q15 + 82q17 − 92q19 +O(q20).

We can check directly that all coefficients are congruent modulo 25. The Sturm
bound (as defined in Theorem 3.1) is equal to 32, so we need to compare 32 co-
efficients modulo 25. By direct computation we obtain that the statement holds.
Hence

f1 ≡ f2 (mod 25).
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N i j L− L+

50 0 1 5 5
50 0 2 15 15
50 0 3 1 1
50 0 4 2 2
50 1 2 10 10
50 1 3 4 4
50 1 4 1 1
50 2 3 2 2
50 2 4 1 1
50 3 4 5 5
51 0 1 6 36
51 0 2 2 2
51 0 3 17 17
51 0 4 2 2
51 1 2 2 2
51 1 3 1 1
51 1 4 34 34
51 2 3 17 17
51 2 4 6 24
51 3 4 2 4
52 0 1 26 26
53 0 1 7 14
53 0 2 106 424
53 1 2 106 848
54 0 1 9 9
54 0 2 1 3

N i j L− L+

54 0 3 4 24
54 1 2 2 6
54 1 3 1 3
54 2 3 9 9
55 0 1 2 2
55 0 2 22 22
55 0 3 10 10
55 1 2 10 20
55 1 3 22 176
55 2 3 2 16
56 0 1 8 8
56 0 2 14 56
56 1 2 2 8
57 0 1 2 8
57 0 2 2 2
57 0 3 38 76
57 1 2 38 304
57 1 3 2 8
57 2 3 6 96
58 0 1 2 2
58 0 2 58 58
58 0 3 2 2
58 1 2 2 2
58 1 3 58 58
58 2 3 4 8
59 0 1 38 76

Figure 3. Data set: 50 ¬ N ¬ 59, k = 4

We present a more extensive data set in Table 4. Description and code of the
algorithm can be found in Section 4.1. The computations were done in SAGE 4.6.1.
Number N (2 ¬ N ¬ 119) is the level, the weight k = 4 and i, j are internal numbers
(in SAGE 4.6.1) for the normalized eigenforms Galois conjugacy classes (the data
presented below only includes eigenforms with integral coefficients, so each class
corresponds to a single eigenform). The number lm indicates the maximal power
of a prime l for which we have fi ≡ fj (mod lm). In the case l = 2 we present
congruences with m ­ 4 and in the case l = 3 we pick only those with m ­ 2.

3.2. Congruences with Eisenstein series. In paper [6] Mazur described a class
of congruences between cusp forms and Eistenstein series of weight 2 and level
N = p, a prime. The Eisenstein subspace is in that case always generated by a
single eigenform

(9) Ep =
p− 1

24
+
∞∑

n=1

σ1(n)qn − p
∞∑

n=1

σ1(n)qpn.

Theorem 3.2 ([6]). Let p be a prime number p ­ 11. Let l be a prime (l 6=
2, 3) dividing the numerator of p−1

12 . There exists a normalized cuspidal eigenform
in S2(Γ0(p)) with coefficients in OK ,which is the ring of algebraic integers of the
number field K. The cuspidal eigenform is congruent to Eisenstein series Ep modulo
a prime λ | l at almost all coefficients aq with q a prime.
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N i j lm

32 0 2 24

40 0 2 24

45 0 3 32

48 0 1 25

51 0 1 32

54 0 1 32

54 2 3 32

64 0 4 24

72 0 3 25

72 1 2 24

72 0 2 32

78 0 1 32

80 0 4 24

N i j lm

80 1 2 25

90 0 1 32

96 0 1 24

96 3 4 24

96 0 3 32

108 0 1 32

108 0 2 32

108 0 3 32

108 1 2 33

108 1 3 32

108 2 3 32

112 1 6 24

112 3 5 25

Figure 4. Data set: 2 ¬ N ¬ 119, k = 4

We apply Theorem 3.1 to show that for several cases the congruence holds for powers
of prime ideals. Below p < 500 there are only four primes p = 101, 151, 197, 251 and
491 such that the numerator of p−1

12 is divisible by a power of prime different than
2 and 3. For every such p we obtain the maximal possible congruence. Each one
happens with prime l which is totally split in the coefficient field of the suitable
eigenform. Algorithm was performed in MAGMA V2.17 and the code is presented
in Section 4.2.

The numbers i and j denote the number of Galois orbits and the position on the
orbit in the internal MAGMA enumeration. The number field K is defined by a
single root of irreducible polynomial defined above. We also indicate the factoriza-
tion of the primes (p) in OK . All primes p are totally split, hence the ramification
degree e = 1. The number | OK/λ | denotes the order of the residue class field with
respect to λ. Finally

fλ ≡ Ep (mod λke)

is the congruence between the cuspidal eigenform fλ and the Eisenstein series Ep
modulo λke. We omit the explicit presentation of several coefficients of cusp forms
involved in the congruence due to its excessive length.

N lk||num(N−1
12 ) i j K (p) =

∏
λi e | OK/λ | fλ ≡ Ep (mod λke)

101 52 2 1 Q(α101) (5) = λλ2 1 5 fλ ≡ E5 (mod λ2)
151 52 3 1 Q(α151) (5) = λλ2λ3 1 5 fλ ≡ E5 (mod λ2)
197 72 3 1 Q(α197) (7) = λλ2λ3λ4 1 7 fλ ≡ E7 (mod λ2)
251 53 2 1 Q(α251) (5) = λλ2λ3λ4 1 5 fλ ≡ E5 (mod λ3)
497 72 3 1 Q(α497) (7) = λ

∏6
n=2 λi 1 7 fλ ≡ E7 (mod λ2)
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f101(x) = x7 − 13x5 + 2x4 + 47x3 − 16x2 − 43x+ 14

f101(α101) = 0

f151(x) = x6 − x5 − 7x4 + 3x3 + 13x2 + 3x− 1

f151(α151) = 0

f197(x) = x10 − 15x8 + x7 + 78x6 − 7x5 − 165x4 + 15x3 + 123x2 − 9x− 26

f197(α151) = 0

f251(x) = x17 − 2x16 − 28x15 + 54x14 + 317x13 − 582x12 − 1867x11 + 3178x10

+ 6186x9 − 9216x8 − 11921x7 + 13680x6 + 13752x5 − 9400x4 − 8800x3

+ 1920x2 + 2240x+ 256

f251(α251) = 0

f491(x) = x29 − 49x27 + x26 + 1068x25 − 39x24 − 13655x23 + 658x22 + 113723x21

− 6306x20 − 647801x19 + 37953x18 + 2578721x17 − 150115x16 − 7201417x15

+ 398246x14 + 13959112x13 − 711934x12 − 18310154x11 + 839798x10 + 15574775x9

− 585854x8 − 8065060x7 + 132680x6 + 2339280x5 + 83968x4 − 350400x3 − 36608x2

+ 20992x+ 3584

f491(α491) = 0

4. Codes for the algorithms

In this section we present the algorithms used to produce the results in the
preceding section.

4.1. SAGE code. First algorithm computes the pair of numbers (L−, L+) (code
in SAGE 4.6.1).

Function EigenRange(k,N) returns the simple factors, Galois conjugacy classes of
normalized eigenforms of weight k and level N with respect to group Γ0(N). We use
modular symbols, since from computational perspective it is much more effective
than working with modular forms (cf. [8], Ch. 3, Ch. 8).

Function Sturm(k,N) returns the Sturm bound of Theorem 3.1.

Function c(f1,f2,p) returns the congruent number with respect to Hecke operator
Tp of two conjugacy classes of eigenforms f1 and f2 (see (5)).

Function conglist(f1,f2) returns all the congruence numbers up to Sturm bound.

Function modgcdinit(l1,l2) returns a modified greatest common divisor accord-
ing to (7). Similarly, function modgcd(l1,c) does the same (the difference is that
first function computes with two elements at first position in both lists l1 and l2
and the second function computes with c and a single list l1).

Function Lplus(f1,f2) returns the number L+ for two different conjugacy classes
f1 and f2 (see (6)).

Function Lminus(f1,f2) return the number L− for two different conjugacy classes
f1 and f2 (see (8)). Other function rs(P,Q), congnumber(f,g),
Newtoncong(P,Q,l), primitivefactorscongnumber(P,Q,l)
and localcongnumber(P,Q,l) are used to compute the local factors L−l for each
prime l - N up to the Sturm bound. Further description of the algorithm can be
found, without a code, in [11].
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R.<x>=ZZ[];
def EigenRange(k,N):
M=ModularSymbols(Gamma0(N),k,sign=1).cuspidal_submodule();
return M.new_submodule().simple_factors()

def Sturm(k,N):
b=Gamma0(N).index();bound=k*b/12-(b-1)/N;
return bound

def c(f1,f2,p):
t1=R(f1.hecke_operator(p).charpoly());t2=R(f2.hecke_operator(p).charpoly());
H=t1.sylvester_matrix(t2).hermite_form();
r=len(H.rows());c=len(H.columns());
return H[r-1,c-1];

def conglist(f1,f2):
N1=f1.level();N2=f2.level();k=f1.weight();clist=[];
if (k==f2.weight()):
s=max(Sturm(k,N1),Sturm(k,N2));
for i in range(1,int(s)+1):
if(((i in Primes())==True)&(mod(N1*N2,i)!=0)):
if(c(f1,f2,i)!=0):
clist.append([c(f1,f2,i),i]);

return clist
def modgcdinit(l1,l2):
c1=l1[0];p1=l1[1];c2=l2[0];p2=l2[1];
return gcd(c1*p1^(c2.valuation(p1)),c2*p2^(c1.valuation(p2)))

def modgcd(l1,c):
c1=l1[0];p1=l1[1];
return gcd(c1*p1^(c.valuation(p1)),c)

def Lplus(f1,f2):
l=conglist(f1,f2);n=len(l);
if(len(l)==1):
return l[0][0];

else:
ctmp=modgcdinit(l[0],l[1]);
for i in range(2,n):
ctmp=modgcd(l[i],ctmp);

return ctmp;
def rs(P,Q):
g=P.variables()[0];S=P.sylvester_matrix(Q);
H,E=S.hermite_form(transformation=True);
dP=P.degree();dQ=Q.degree();coeff=E.rows()[dP+dQ-1];
r=0;s=0;
for i in range(dP+dQ-1,dQ-1,-1):
s+=coeff[i]*g^(dP+dQ-1-i);

for i in range(dQ-1,-1,-1):
r+=coeff[i]*g^(dQ-1-i);

return [r,s];
def congnumber(f,g):
S=f.sylvester_matrix(g);H=S.hermite_form();
return H[len(H.rows())-1,len(H.columns())-1];

def Newtoncong(P,Q,l):
T.<X,Y>=PolynomialRing(ZZ,2);S=P.parent();f1=S.hom([X],T);f2=S.hom([X+Y],T);
Pim=f1(P);Qim=f2(Q);r=Pim.resultant(Qim,X);
g=S.gens()[0];f3=T.hom([0,g],S);r=f3(r);
slope=r.newton_slopes(l);slope.sort();
return ceil(slope[len(slope)-1]);

def primitivefactorscongnumber(P,Q,l):
if (gcd(P,Q)!=1):
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return "not coprime";
r,s=rs(P,Q);c=cong_number(P,Q);n=c.valuation(l);
if(n==0):
return n;

if(n==1):
return n;

S.<y>=GF(l)[];Pbar=S(P);Qbar=S(Q);
c1=cong_number(P,P.derivative());c2=cong_number(Q,Q.derivative());
if((c1.valuation(l)==0) & (c2.valuation(l)==0)):
return n;

rbar=S(r);sbar=S(s);
if((c2.valuation(l)==0) & (gcd(sbar,Qbar)==1)):
return n;

if((c1.valuation(l)==0) & (gcd(rbar,Pbar)==1)):
return n;

if(gcd(sbar,Qbar)==1):
return ceil(n/Q.degree());

if(gcd(rbar,Pbar)==1):
return ceil(n/P.degree());

return Newton_cong(P,Q,l);
def localcong_number(P,Q,l):
A=P.factor();B=Q.factor();n=0;
for i in range(0,len(A)):
for j in range(0,len(B)):
n=max(n,primitive_factors_cong_number(A[i][0],B[j][0],l));

return n;
def Lminus(f1,f2):
Lp=Lplus(f1,f2);fact=Lp.prime_factors();N1=f1.level();N2=f2.level();
k=f1.weight();Lmin=1;S.<x>=ZZ[];
if (k==f2.weight()):
s=max(Sturm(k,N1),Sturm(k,N2));
for i in range(0,len(fact)):
l=fact[i];val=Lp.valuation(l);
for j in range(1,s):
if ((j in Primes()) & (j<=s)):
P=S(f1.hecke_operator(j).charpoly());
Q=S(f2.hecke_operator(j).charpoly());
val=min(val,local_cong_number(P,Q,l));

Lmin*=l^(val);
return Lmin;

The second set of functions, defined below, is used to produce congruences between
eigenforms with rational coefficients. We use the function Lminus and Lplus to
obtain the maximal and minimal bounds for the powers of prime with respect to
which we compute congruences of coefficients.

Function RationalNewforms(N,k) returns the eigenforms at level N and weight k
in Sk(Γ0(N),Z).

Function congrationalpot(N,k) returns the bounds Lminus and Lplus of congru-
ences between rational eigenforms.

Function congrational(N,k,p,r) checks if there exists a congruence of two ratio-
nal cuspidal eigenforms modulo pr+1.

Function directcheck(N,k,f,g,p,r) operates on coefficients of eigenforms (rather
then minimal polynomials of Hecke operators, as we proceded in the case of func-
tions Lminus and Lplus) and checks directly the congruence between coefficients.



CONGRUENCES FOR MODULAR FORMS MODULO POWERS OF PRIME IDEALS 23

The upshot is that we check the congruence of all coefficients up to the Sturm
bound computed in Theorem 3.1.

Function congruenceeigenforms(N,k,p,r) checks if the predicted congruence holds.

def RationalNewforms(N,k):
M=ModularSymbols(Gamma0(N),k,sign=1).cuspidal_submodule().new_submodule();
N=M.simple_factors();
R=[];
for i in range(0,len(N)):
if (N[i].dimension()==1):
R.append(N[i]);

return R;

def congrationalpot(N,k):
li=RationalNewforms(N,k);
c=[];
if (len(li)>1):
for i in range(0, len(li)):
for j in range(i+1,len(li)):
c.append([li[i],li[j],[Lminus(li[i],li[j]),Lplus(li[i],li[j])],[i,j]]);

return c;

def congrational(N,k,p,r):
c=cong_rational_pot(N,k);
s=[];
for i in c:
if (i[2][1].valuation(p)>r):
s.append(i);

return s;

def directcheck(N,k,f,g,p,r):
bound=Gamma0(N).index()*k/12;
fq=f.q_eigenform(bound+2);
gq=g.q_eigenform(bound+2);
for i in range(0,bound+2):
if( mod(fq[i]-gq[i],p^r)!=0):
return false;

return true;

def congruenceeigenforms(N,k,p,r):
c=cong_rational(N,k,p,r);
s=[];
for i in c:
if (direct_check(N,k,i[0],i[1],p,r)==true):
s.append(i);

return s;

4.2. MAGMA code. In this section we present the code in MAGMA V2.17 which
we used to produce the congruences between cusp forms and Eisenstein series in
Section 3.2.

Function Mazur(N) returns the numerators of the number N−1
12 .

Function getfactors(n) produces the factorization of number n given.

Function getMazurfactors(N) returns the factors of the numerator of number N−1
12

and rips off the powers of 2 and 3 in factorization.
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Function CongruenceMazur(N) takes N as an argument (the level of the space
of cuspidal modular forms of weight k = 2) and returns the list of eigenforms
at this level and weight which are congruent to the Eisenstein series (9) modulo
a power of prime ideal dividing each rational prime occuring in the factorization
getMazurfactors(N).

function Mazur(N)
l:=Numerator((N-1)/12);
return l;
end function;

function getfactors(n)
s:=Factorization(n);r:=[ [f[1],f[2]]: f in s];
return r;
end function;

function getMazurfactors(N)
m:=Mazur(N);
t:=m/(2^Valuation(m,2));t:=t/(3^Valuation(t,3));
m:=Numerator(t);s:=Factorization(m);
m2:=&*[ f[1]^( f[2] gt 1 select f[2] else 0) : f in s];
s:=getfactors(m2);
return s;
end function;

function CongruenceMazur(N)
factors:=getMazurfactors(N);
S:=Newforms(CuspForms(Gamma0(N),2));
E:=Basis(EisensteinSubspace(ModularForms(Gamma0(N),2)))[1];
E_a1:=Coefficient(E,1);
B:=Ceiling(2*Index(Gamma0(N))/12);
Collection:=[];
for pfactors in factors do
p:=pfactors[1];
k:=pfactors[2];
for ind1 in [1..#S] do
for ind2 in [1..#(S[ind1])] do
f:=S[ind1][ind2];
K:=CoefficientField(f);
O:=MaximalOrder(K);
I:=ideal<O|p>;
factI:=Factorization(I);
for ind3 in [1..#factI] do
ptuple:=factI[ind3];
J:=ptuple[1]^(k*ptuple[2]);
R,m:=quo<O|J>;
cong:=true;
for i in [0..B] do
if (not( m(E_a1*Coefficient(f,i)-Coefficient(E,i)) eq m(0))) then

cong:=false;
break;
end if;
end for;
if (cong eq true) then
Include(~Collection,[N,p,k,ind1,ind2,ind3]);
end if;
end for;
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end for;
end for;
end for;
return Collection;
end function;
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