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Abstract. A sequence T = t1, t2, . . . , t2k is called a tight twin if it can be divided
into two identical disjoint subsequences. We say that a sequence S is twin-free
if it has no tight twins as subsequences. This notion is a natural generalisation
of a well known problem of nonrepetitive sequences posed by Thue in [5]. It is
a well known fact that there are arbitrarily long nonrepetitive sequences over a
3-element set of symbols. Recently Grytczuk, Przyby lo and Zhu [6] showed, using
Lefthanded Local Lemma, that a similar result holds if we choose elements from
4-element lists attached to each position in the sequence. In [1] Grytczuk, Kozik
and Micek proposed a different approach to this problem utilizing so called en-
tropy compression argument. This powerful argument allows, by means of simple
counting, to obtain results comparable to such elaborate tool as Lefthanded Local
Lemma. In this paper we use entropy compression to show that a 7-element lists
of symbols are enough to produce arbitrarily long twin-free sequences.

1. Introduction

A subsequence T = x1, x2, . . . , x2k of consecutive elements of a sequence S is called
a tight twin of length 2k if there exists a partition of elements of T into disjoint
subsequences T1 = xi1 , xi2 , . . . , xik and T2 = xj1 , xj2 , . . . , xjk

, such that xil = xjl
for

every l ∈ [k]. We call the first subsequence by the first twin and the second one by
the second twin. For instance, following sequences are tight twins

• 12341234
• 12132344
• 13412342.

A sequence S is twin-free if it does not contain a tight twin of any length 2k > 0.
The notion of twin-free sequences arises naturally as a generalisation of nonrepet-

itive sequences in which we only avoid twins formed by consecutive blocks of ele-
ments. It is easy to see that it is not possible to construct a nonrepetitive sequence
of length higher than 3 over 2-element set of symbols. It was shown by Thue [5]
that 3-elementary alphabet is enough.

Inspired by the algorithmic proof of Lovász Local Lemma [4] Grytczuk et al. [1]
showed slightly weaker upper bound for list version of the problem. In the list setting
every element of a sequence must be chosen from a different list of elements. The
authors were able to show that lists of size at least 4 are enough. Remarkably, the
same bound was earlier proved in [6] by the application of more elaborate technique
- Lefthanded Local Lemma. It was also conjectured that lists of size 3 suffice.
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In this paper we focus on showing yet another application of the method used in
papers mentioned above. We prove the following theorem.

Theorem 1.1. Let n ≥ 1 be a natural number and let L1, L2, . . . , Ln be a sequence
of 7-element sets. There exists a twin-free sequence S = s1, s2, . . . , sn, such that
si ∈ Li for every i ∈ [n].

We begin with presenting the algorithm that, with positive probability, generates
a twin-free sequence of a given length.

2. Algorithm

In the following algorithm we generate the sequence randomly from given lists,
one element by one. If, by adding a new element to the sequence, we create a
tight twin we find the index of the first element of the second twin and erase all
elements starting with that index. For example if we obtain a following sequence
123424121, where the last six digits form a tight twin, after the deletion we continue
the algorithm with sequence 12342.

It is easy to observe that, as we never create a repetition of length 2, at least
two elements remain after each of the erasures. Moreover, observe that the first
two elements of a tight twin always belong to the first twin. Similarly the last two
belong to the second twin.

Algorithm 1: Creation of twin-free sequence of length n

i← 1
while i ≤ n do

si ← element of Li\{si−1} chosen uniformly at random
if s1, s2, . . . , si is twin free then

i← i+ 1
else

there exists exactly one tight twin of length 2k for some k > 1
b← index of the first element of the second twin
i← b

end
end

Proof of Theorem 1.1. Let n ≥ 1 be a natural number and suppose by contradiction
that the algorithm can not create the twin-free sequence for such n. Moreover
suppose that each list Li is of size A

Let M be a sufficiently large integer and run the algorithm for M steps. We
double count the number of possible such executions, i.e. the number of all possible
sequences of random values produced by the algorithm during the first M steps.
Trivially, as we remove at most one element from each list, there are at least (A−1)M

such sequences.
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Fix an evaluation of s1, s2, sM . Let d1 = 1 and for j = 2, 3, . . . ,M dj be the
difference between variable i after step j-th and (j − 1)-th. So d2, d3, . . . , dM is the
sequence of differences between the lengths of twin-free sequences generated during
the running of the algorithm. This sequence satisfies following two conditions

• dj ∈ {. . . ,−3,−2,−1, 1} for j = 1, 2, . . . ,M ;

• ∑k
j=1 dj ≥ 2 for k = 2, . . . ,M.

The first one follows directly from the fact that we never create a repetition of length
2 and the second one from that we never remove the first two elements of a created
tight twin. Let

Suppose that there are exactly t negative numbers in (d1, d2, . . . , dM). Let d be j-
th such number, by Pj = (p1

j , p
2
j , . . . , p

d+1
j ) we denote the binary sequence of length

|d| + 1 describing the pattern of the erased part of a tight twin, i.e. pk
j is equal

to 1 if the k-th removed element belonged to the first twin and 0 otherwise. For
example, if at j-th step we create a following sequence . . . 12342415215, where the
last six digits form a tight twin, then dj = −5 and the pattern associated with it
is (0, 1, 1, 0, 0, 0). Finally, for every such pattern Pj we associate a sequence Ej of
elements that belongs to the first twin in the erased part of the sequence. If there
were no such elements (i.e. we created a repetition and removed only elements of
the second twin) we put Ej = (). In the example above Ej = (1, 5).

A quadruplet (D,P,E,C) is a log of lengthM if there is an evaluation of s1, s2, . . . , sM

such that D is the corresponding sequence of differences, P sequence of patterns,
E sequence of sequences of erased elements from each first twin and C is the twin-
free sequence created by the algorithm after M steps. A triplet (D,P,E) satisfying
those constraints is called a sketch of length M . We show that having a log, one can
retrieve the whole sequence (s1, s2, . . . , sM).

Lemma 2.1. Every log corresponds to a unique evaluation of (s1, s2, . . . , sM).

Proof of Lemma. Let ((d1, d2, . . . , dM), (P1, P2, . . . , Pt), (E1, E2, . . . , Et), CM) be a log
with exactly t negative entries in D and CM = (c1, c2, . . . , cl) for some integer l > 0.
We prove the lemma by induction on M .

For M = 1 it is obvious. Suppose the lemma is true for all numbers smaller than
M .

If dM = 1, then in the M -th step the element cl is appended to CM and thus
sM = cl. Moreover

((d1, d2, . . . , dM−1), (P1, P2, . . . , Pt), (E1, E2, . . . , Et), (c1, c2, . . . , cl−1))

is a log of length M − 1 and, by the induction hypothesis, we can retrieve
the sequence s1, s2, . . . , sM−1.

Suppose that dM < 0. In that case |dM | + 1 elements were erased from the
sequence. Let there be exactly h elements in Et = (e1, e2, . . . , eh) and r1, r2, rh be the
indices of ”1” in Pt. Then, the length of a tight twin we created in step M is 2(|dM |+
1 − h) and the sequence before the erasure was (c1, c2, . . . , cl, cl+1, . . . , cl+|dM |+1),
where we first fill up the values of cl, cl+1, . . . , cl+|dM |+1 according to the pattern Pt.
First, using consecutive elements of Et, in those places where there is a ”1” in the
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pattern, i.e. cl+rf
= ef for f = 1, 2, . . . , h. Afterwards, sequentially using elements

(cl−(|dM |+1−2h)+1, cl−(|dM |+1−2h)+2, . . . , cl, e1, e2, . . . , eh), in those places, where there is
a 0 in Pt. Thus sM = cl+|dM |+1 = eh and from a log of length M − 1

((d1, d2, . . . , dM−1), (P1, P2, . . . , Pt−1), (E1, E2, . . . , Et−1), (c1, c2, . . . , cl, . . . , cl+|dM |)),

by the induction hypothesis, we retrieve the sequence s1, s2, . . . , sM−1. �
As we assumed that the algorithm can not produce a twin-free sequence then in

every log (D,P,E,C) of length M there are at most n− 1 elements in C. Observe
that if there are k elements in C, then

M∑

j=1

dj = k. (1)

Obviously the number of possible logs is bounded from above by the An
∑n−1

k=2 L
k
M ,

where Lk
M is the number of sketches (D,P,E) of length M satisfying (1). Moreover,

observe that Lk
M ≤ L2

M+1 (we simply append −k+1 to D, sequence of (k−2) zeros to
P and an empty sequence to E) and L2

M+1 = LM , where LM is the number of sketches
with the first ”1” removed from D, satisfying 1 with k = 2 and with all possible
sequences of elements of appropriate length allowed in E. We call such structure
a restricted sketch. Thus the total number of logs of length M and consequently
sequences s1, s2, . . . , sM is bounded from above by

An · n · LM .

To estimate the number LM we need some facts about generating functions. We
call a generating function f(z) with positive radius of convergence algebraic if there
exists a nonconstant polynomial W (z, f) ∈ C[z, f ] (defining polynomial) such that
W (z, f) is constantly zero within the disc of convergence of f(z). Trivially, the
coefficients fn for n = 0, 1, 2, . . . of a generating function f(z) =

∑∞
n=0 fnz

n with a
radius of convergence strictly greater then λ satisfy fn = o(λ−n). We need following
well known fact about algebraic generating functions.

Fact ( [3]). Let f(z) =
∑∞

n=0 fnz
n be a nonpolynomial algebraic generating function

with defining polynomial W (z, t). Then the radius of convergence of t(z) is one of
the roots of the discriminant of W (z, t) with respect to the variable t.

Let C0−1(z) be the ordinary generating function in which [zk]C0−1(z) counts the
number of sequences (x1, x2, . . . , xk), where

• xi ∈ {0, 1} for i = 1, 2, . . . , k,

• ∑k
i=1 xi = 1,

• ∑j
i=1 xi ≥ 1 for j = 1, 2, . . . k.

We call such sequence a binary zig-zag. Every such sequence is either a singleton
(1) or can be uniquely decomposed into l subsequent binary zig-zags, where

• the j-th component is a subsequence starting with the last such h that∑h
i=1 xi = j − 1 and ending with the last such g that

∑g
i=1 xi = j

• l is the number of ”− 1” at the end of the sequence, increased by 1.
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Thus, C0−1(z) satisfy the following functional equation:

C0−1(z) = z + z(1 + zC0−1(z) + z2C2
0−1(z) + . . . ), (2)

and consequently C0−1(z) = z
1−zC0−1(z)

. Next, let P (z) be the ordinary generating

function in which [zk]P (z) counts the number of possible patterns of length k that
may appear in restricted sketches with each of ”1” additionally annotated with an
element of an appropriate list Li. Observe that each of those patterns Pj may be
concatenated with a string of some number of leading ”1” to obtain a pattern that
describes a full tight twin. Now, we look at Pj from the end. We treat every ”0”
as ”1” and every ”1” as ”-1”. In this way we obtain a sequence that satisfy (2)
and (2) and (2) with some number l instead of 1. We call this sequence a binary
extended zig-zag. Observe that each such sequence can be decomposed into l + 1
binary zig-zags in a similar manner as before. The number of ”1’s” that need to be
annotated in the restricted sketch of length k with corresponding binary extended
zig-zag that in (2) sums to l is exactly k−l

2
. Thus the generating function P (z) can

be written as

P (z) = z
(C0−1(z

√
A)√

A
+
C2

0−1(z
√
A)

√
A

2 + . . .
)
, (3)

or P (z) = z 1

1−C0−1(z
√

A)√
A

−z. Finally, let L(z) =
∑∞

n=0 Lnz
n be the generating function

that counts the number of restricted sketches. We claim that function L(z) satisfies

L(z) = x+ xP (L(z)). (4)

Indeed, again for every restricted sketch either D consists of a single ”1”, or it can
be annotated with a binary extended zig-zag of length |dM |+1 and decomposed into
|dM |+ 1 restricted sketches of total length M − 1. But the number of such extended
zig-zags is exactly [x|dM |+1]P (x). Thus, for any integer k > 1,

k−1∑

i=1

[Li]P (L)
∑

a1+···+ai=k−1
a1,...,ai>0

[xa1 ]L(x) · [xa2 ]L(x) · . . . · [xai ]L(x)

is equal to [xk−1P (L(x))] and counts the number of restricted sketches of length k.
Putting together relations (2), (3) and (4) we obtain the defining polynomial for
L(x) to be

W (z, L) = x2 + (2x+ 2x2 +Ax2)z+ (−1− 3x− 2Ax− 2x2)z2 + (1 +A+ 2x+ x2)z3

and the discriminant of this polynomial is

x4 − 2Ax5 − 6x6 + A2x6 − 8x7 + 6Ax7 + 8A2x7 − 3x8 + 4Ax8 − 20A2x8 − 4A3x8.

For A = 7 it has only one positive root, namely x0 ≈ 0.171444 > 6−1. Thus we can
take any x−1

0 < α < 6 and get that LM = o(αM). Combining two bounds on the
number of possible logs we have that

6M ≤ 6n · n · o(αM),

which for sufficiently large M and fixed n yields a contradiction. �
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3. Remarks

The result we presented in the previous section gives an upper bound on the sizes
of lists from which we build a twin-free sequence. We suspect that it is not the
optimal value and pose the following conjecture:

Conjecture. Let n ≥ 1 be a natural number and let L1, L2, . . . , Ln be a sequence
of 5-element sets. There exists a twin-free sequence S = s1, s2, . . . , sn, such that
si ∈ Li for every i ∈ [n].

One way to achieve the lower upper bound might be using a bit different algorithm
to generate our sequence. Instead of avoiding repetitions of length 2 one could avoid
also repetitions of length 4. Unfortunately in this case both the lower and upper
bound on the number of possible sequences generated by the algorithm become much
more complicated.

Interestingly, by means of simple case analysis, we were able to show the lower
bound of 4. But, due to performed simulations, we believe that it is not the proper
value.

References

[1] J. Grytczuk, J. Kozik, P. Micek, New approach to nonrepetitive sequences, Random Struct
Algorithms 42 (2012), 214–225.

[2] M. Molloy, Cores in random hypergraphs and boolean formulas, Random Structures and Algo-
rithms 27 (2005), 124–135.

[3] P. Flajolet, R. Sedgewick, Analytic combinatorics, Cambridge University Press, Cambridge,
2009.

[4] R. A. Moser, G. Tardos, A constructive proof of the general lovász local lemma, J ACM 57
(2010).
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