
Dariusz Leniowski

Uniwersytet Warszawski

Aspects of adwords problem – examples

Praca semestralna nr 3

(semestr letni 2012/13)

Opiekun pracy: Piotr Sankowski

Aspects of adwords problem — examples

Dariusz Leniowski

September 2013

Abstract

This is a follow-up paper to ”On edge usage in adwords problem” article by the
same author [5]. It provides the most important examples related to rank-minimizing
algorithms for one-side online maximum cardinality bipartite matching problem, in par-
ticular one that proves the bound of Theorem 3.1 of [5] is tight. This is a part of joint
work with Bartłomiej Bosek, Piotr Sankowski and Anna Zych.

1 Introduction

The family of matching problems is a class of highly related problems where a new algorithm
may lead to improvements in more general settings. It happened, for example in case of the
Hungarian algorithm for assignment problem [4], the Edmonds algorithm for matchings in
general graphs [2], or Hopcroft-Karp algorithm for matchings in bipartite graphs [3].

Nevertheless, those problems are still significantly different. This work is centered around
the adwords problem, or more specifically, the one-sided online maximum cardinality bipar-
tite matching problem. The provided examples show its essential characteristics, in particu-
lar, how it differs from some other related problems. As this is a follow-up article of ”On edge
usage in adwords problem” [5], some terminology is provided only with intuitive meanings
and is not backed with formal definitions.

The main result of [5] is Theorem 3.1 which says that in one-sided online maximum
cardinality bipartite matching problem the greedy heuristic which at each step minimizes
the maximum rank of an edge (the number of times any augmenting path have visited that
edge since the beginning of the algorithm run) satisfies the bound of rankpeq � Op?nq for
any edge e. The main result of the current paper is an example which matches the bound
from Theorem 3.1 of [5], hence, proves its tightness. In section 3.2 an example is shown
where the maximum rank of an edge is of square root order with regard to the number of
vertices. Nevertheless, we encourage to go over all the provided examples as they provide
not only building-blocks, but also intuition why the result holds.

We end this introduction with brief description of the provided examples. The next sec-
tion presents the family of resource allocation problems and proves a logarithmic upper
bound for one of them, namely the online load balancing problem. Section 3 follows with
some preliminary instances, namely paths, trees and a slightly more involved Fibonacci-
themed example which all imply logarithmic lower bounds for the maximum rank of an
edge, but show the basic building blocks which would later lead to the main result. Es-
pecially, the third of them introduces the concept of allegiance switching, that is, the core
feature powering the polynomial examples presented in Subsection 3.2. Finally, it ends with

1

counterexamples for path-length-related and size-related heuristics, and the whole paper
concludes in Section 4.

It is worth noting, that this paper contains many diagrams. As some examples are com-
plicated, it would be completely futile to attempt to describe them solely by equations.
Therefore, the figures became an inherent part of this work, and many details are not worded
in the text. A significant effort was made to keep them as simple as possible, but sometimes
the underlying pattern would not be apparent until a bigger instance was drawn. For pre-
cisely this reason, the two most important examples use color, as their sizes ensured it would
be impractical to keep the pictures only in shades of gray. Thus, even if not strictly necessary,
a color-enabled medium would be definitely helpful.

2 Resource allocation problem

The resource allocation problem is a close counterpart to the adwords problem, and has
been described here to emphasize why the polynomial lower bound for the rank-minimizing
algorithm in Corollary 3.1, is so significant. We consider one particular version, namely the
online load balancing problem.

Suppose we have n servers and expect to process m tasks which arrive online with spec-
ification on which servers each task can be run. The challenge is to minimize the maximum
load of all servers.

In this setting, as in many other online problems, the best solution might be arbitrarily
bad, namely if we were to constrain all m programs to run only on the first computer, the
load would be m, the worst possible, independent of how big n is. Hence, as in other online
problems, the common way of assessing the solution is to make the competitive-analysis,
that is, compare the online algorithm to the offline solution.

Let G � xU Z V,Ey be a bipartite graph. The vertices of U are known in advance, while
the vt P V arrive online with their adjacent edges. Each time we need to pick an edge to
match vt to some u as to minimize the maximum degree of U . Any choice made is final, i.e.
there are no further changes, in particular the result is a semi-matching as we allow multiple
v P V to be assigned to a single u P U . There are two major settings:

• adversarial — where vt are given by an adversary, who can decide on next v taking
into account our previous decisions;

• stochastic — where vt come from some distribution, usually uniform.

The algorithm commonly called GREEDY assigns the newly arrived vertex to the server
with minimum load and resolves the ties arbitrarily.

Theorem 2.1. [1] In the adversarial setting the competitive ratio of GREEDY is Oplog nq.
Proof. Let vt P V for t � 1, . . . , n be the online sequence of vertices and N the optimum
offline semi-matching (the degrees of vertices of U may be bigger than one). Consider a run
of GREEDY and the respective semi-matching M . Set ut and wt to be vertices of U such that
putvtq P N and pwtvtq PM . Define

αptq �
��� vτ P V

�� putvτ q P N, τ ¤ t
(���,

βptq �
��� vτ P V

�� pwtvτ q PM, τ ¤ t
(���.

2

Now letA � maxu degN puq be the maximum load in the optimal solution andB � maxw degM pwq
be its counterpart for GREEDY.

Case A � 1. Let

Vk � tvt P V | βptq � ku.

Now, observe that |V1| ¥ m
2 and 1

2 |V z
�k
i�1 Vi| ¤ |Vk�1| ¤ |Vk|. Clearly A � 1 implies m ¤ n,

thus B ¤ rlog2 ns� 1 and the competitive ratio is not worse than B
A � Oplog nq.

Case A ¡ 1. Set V Ò
k � tv P V | βptq ¡ kAu and V Ó

k � tv P V | pk � 1qA βptq ¤ kAu and
consider a function skptq : V Ò

k Ñ V Ó
k defined as

skpvtq � vτ ðñ ut � wτ ^ αptq � βpτq � pk � 1qA.

A

2A

3A

V1

y

x

V1

s1

s1

s2 s1
vt

wtut

v¿

¯(t)

®(t)

deg ()utM

First, please note that both xut, αptqy and xwt, βptqy are unique. Moreover, since αptq ¤ A for
any t, then s1 represents a 1-to-1 correspondence between V Ò

1 and a subset of V Ó
1 . Similarly,

for k ¡ 1 and any vt P V Ò
k we have that degM putq ¥ kA, thus sk is also bijective with its

value set. Clearly, |V Ò
k | � |V Ó

k | � |V Ò
k�1|, and because of sk we arrive at |V Ò

k | ¤ |V Ó
k | and

so |V Ò
k | ¤ A n

2k . Finally, if |V Ò
k | A then V Ò

k�1 � ∅ and so the sets are non-empty for
k ¤ rlog2 ns� 1, hence B ¤ Ar1� log2 ns and B

A � Oplog nq.
Theorem 2.2. [1] In the adversarial setting the competitive ratio of GREEDY is Ωplog nq for m �
Ωpnq.
Proof. Without loss of generality we can assume that n � 2k for some k P N. The construction
of a graph with 2n vertices that causes GREEDY to have load of Θpkq � Θplog nq has been
presented in the following diagrams. The figures picture consecutive batches of steps of
an algorithm run, each new vertex comes with two edges, some corresponding pairs were
marked by the numbers. The solid circles represent GREEDY solution and the dotted positions
are the optimal ones.

3

Case m 2n. The white vertices are represented by columns and the balls are the black
vertices. The diagram presents the case where n m 2n. For m ¤ n the length of layers is
smaller than n

2 and as such both fit at the bottom.

m/2

m/8

m/4

n

m1+log

m/n
123

45

6
7

8

9

123

456789

m/4m/8

2

Case m ¥ 2n. Some numbers (e.g. 8 in the first three figures) were matched in an optimal
manner and hence do not have a pair. Please note that the optimal solution has maximum
load of mn , hence the resulting competitive ratio is Θplog nq.

m/2

n

n(1+log)

m/2n
1234

567

8
123

4 567

8

9

m/4 m/8

2

567 4

123

1

2 1

2

3

3

4
5

56

6

7

78

1

1

2

2

3

3

4

4

5

5

6

6
7

7

8

8

9

10

1

n

m/n

m/n
m/2n

m/2m/4m/2 ...

m
n2

Corollary 2.3. In the adversarial setting the competitive ratio of GREEDY is Θplog nq.
The following theorem is beyond the scope of this paper and is cited here only for com-
parison. RANKING is an algorithm that is very similar to GREEDY, however it breaks the ties
according to a random permutation. The proof along with many more details can be found
in [1].

Theorem 2.4. [1] For the stochastic setting using a uniform distribution, the RANKING algorithm
has Op1� n logn

m q expected competitive ratio.

4

3 Adwords problem

The adwords problem is a setting where we have n known advertisers and expect to process
m ad-requests of some publishers which arrive sequentially online. Both publishers and
advertisers have constraints on with whom they want to work with, i.e. the feasibility of
advertisers for a request is determined once they arrive, during the algorithm run. The
challenge is to maximize the number of ad impressions, i.e. semi-matchings of advertisers
and requests.

Similarly as to the online load balancing problem, the common approach is to do com-
petitive analysis, that is, compare the performance of an algorithm to the optimal solution.
However we consider a slightly different problem, namely one-sided online maximum car-
dinality bipartite matching. The difference is that we request the algorithm to maintain the
maximum cardinality matching and for it to be possible we allow to rematch already as-
signed vertices. There is no point in comparing the maximum cardinality matching to the
offline solution, hence we analyze the necessary number of rematchings instead. Specifically
in the previous paper we have proved that the number of changes counted per edge done
by the rank-minimizing algorithm is bounded by Op?nq. Here we will provide examples
which will show that this bound is tight.

Let G � xU Z V,Ey be a bipartite graph. We will consider the one-sided online bipartite
maximum cardinality matching problem, that is, a setting where U (i.e. its size) is known
beforehand and v P V are given sequentially along with the adjacent edges during the algo-
rithm run. The challenge is to maintain the maximum cardinality matching doing only small
number of changes per edge, i.e. how many times an edge is added and removed from the
matching . This number will be called the rank of an edge e P E at turn t and will be denoted
by ranktpeq.

3.1 Exponential examples

This subsection considers exponential examples. There are two reasons: they are rather easy,
e.g. allow to gain intuition; secondly, they introduce building block used in further sections.

Simple path. The simplest example is a path. The following diagrams picture steps 0, 8,
12, 14 and 15. The incoming vertices vt P V are marked black, and the matched u P U are
marked by a diagonal cross. The numbers near the edges represent the ranks at the given
turn. Rank r is forced by an instance of size 2r�1 � 1.

0 1

2

01 0 1 01 0 1 01 0 1 01

0 1 0 1

0 1

0 1 0 1

0 1

1

2 1

2 1

0 1

0 1 0 1

0 101 01

01

0 1 01

01

21

2 1

2 12 1

2 1 21 21

21 01

01

2 12 12 1

21

2 1

32

32 32 3232 2 12 1

3 2

4 3

5

Tree of height Θprq. The diagram shows the first five iterations of the discussed example.
The vertices of the highest-ranked edge are marked by inverted colors, while the ranks of
vertical edges were omitted for the sake of readability. The next iteration is constructed by
connecting the matched ends of the marked edge pairs (the two adjacent to a black vertex)
of two previous iteration copies (note, that in the diagram the second copy is reflected).

0 1

0 1

21

0 1 0 1 0 1

21 21 21

21 21 21 21

32 32 32

12

12

23

34

12

12

23

34

21

32

54

12

34

23

12

0 1 0 1 2 10 1

Observe, that the eccentricity of the marked vertices is linear with regard to the max-
imum rank (i.e. rank of the marked edge): each time we connect current two copies, it
increases at most by 3�2. Therefore, the tree height is bounded by 12r. Similarly to the path
it has 2r white vertices.

Fibonacci example. The two above examples are significant, because there is always only
one simple augmenting path, in particular implied lower bounds are valid for any augment-
ing path algorithm. However, if we drop this assumption, the construction can be improved
so it approaches φr, where φ is the golden ratio, i.e. φ � 1�?5

2 . The steps of obtaining the
crucial feature are as follows:

k+1k

k

k

k

k

k

k+1

k+2 k+1

k+1

k+1

The dotted lines denote borders of areas for possible augmenting paths, intuitively the
”basins” of unmatched vertices. The inverted-color vertices are those which would cause an
increase of rank in the dotted subgraphs, if matched. We start with pn � 2q components of
rank k and n components of rank k � 1, after n connections we obtain a component of rank
k � 1 and n components of rank k � 2,

6

pn� 2q � Ck � n � Ck�1 ù 1 � Ck�1 � n � Ck�2.

k

k

k+1

k+2 k+1

k+1

k+2 k+1

k+1k

k+1k k+1k

Observe, that with n going to infinity this scheme approaches Ck � Ck�1 ù Ck�2. Cu-
riously, it seems that the augmenting path joining Ck and Ck�1 goes "the wrong way" and
increases the rank of the larger component. That particular behavior is explained by the
fact that in the second step there are two components of which rank increases (naturally
k�1 k�2, but also k k�1). Even if at first the smaller one was in the same dotted area
as the bigger component, it switches its allegiances. In other words, a single augmenting
path may potentially cause many subgraphs to increase their ranks, the reason being their
boundaries changes.

The introduced rule is easily transformed into a concrete example by following it back-
wards.

1 � Crø 2 � Cr�1

�
� 1 � Cr�2

	

ø 4 � Cr�3 � 2 � Cr�2

�
� 1 � Cr�3

	

ø p2� 2q � Cr�4 � p4� 2q � Cr�3

�
� 1 � Cr�4

	

ø p6� 2q � Cr�5 � p4� 6q � Cr�4

�
� . . .

	

...

ø α � Ck � β � Ck�1

�
� 1 � Ck

	

ø pβ � 2q � Ck�1 � pα� βq � Ck
...
ø p4Frq � C1 � p4Fr�1 � 2q � C2 where Fk is the k-th Fibonacci number

It is worth noting, that in this example, each vertex has at most one path that leads to an
unmatched counterpart and minimizes the maximum of ranks of travelled edges. Hence, no
algorithm that follows this heuristic can obtain better bounds than r � Ωplogφ nq. The most
important feature of this example is that one augmenting path increases ranks of multiple
subgraphs. It is precisely this behavior that we will exploit to obtain examples of polynomial
size.

7

3.2 Polynomial examples

Here we will construct two polynomial examples, one of size Θpr3q and the second of size
Θpr2q.

First of them is presented as an intermediate step, however, it is noteworthy because it
has some sort of robustness, e.g. one of its features is that for each vertex there is at most one
turn for which a dubious choice happens (i.e. the algorithm has to pick between an optimal
and non-optimal solution).

The comb. The basic building block of the first example is a structure we will call a ”comb”.
The k-ranked comb of length n consists of a long low-ranked path joining n components of
rank k.

k k k k k k

10 10 10 10 10 10

0 0 0 0 0 0

Then we will ”fatten” the comb by supplying components of rank 1, 2, . . . , k � 1 on its both
sides.

k k k k k k

0 0 0 0 0 0

12

3

k{2

k{1

k{4

k{3

k{1 k k{1 k k{1 k k{1 k k{1 k k{1 k

Finally, we will add the most important piece, the component of rank k. This is the moment,
when the algorithm performs a suboptimal choice. It can pick any path of rank k, that is, it
is possible that in the worst case it will pick the longest one.

8

k k k k k k

0 0 0 0 0 0

12

3

k{2

k{1

k{4

k{3

k+1k

k

k+1k k+1k k+1k k+1k k+1k

However, after this step, the edges of rank pk � 1q can choose a better connection, i.e. they
switch their allegiances to the n components we have prepared at the beginning. It is this
characteristic (a single augmenting path that causes multiple components to increase their
ranks) that makes the polynomial example possible.

k k k k k k

0 0 0 0 0 0

12

3

k{2

k{1

k{4

k{3

k+1k

k

k+1k k+1k k+1k k+1k k+1k

We have used n � 1 components of rank k and one component for ranks 1, 2, . . . , k � 1; on
the other hand we have created n components of rank k � 1, available for further use.

A concrete example of a comb may look as below, it consists of 6� 1 components of rank
1 and provides 6 components of rank 2. For technical reasons we add some intermediate
vertices so that any augmenting path starting in any of the marked vertices would have to
go through an edge of rank 2 (observe, that if it were to start at the node immediately left of
the marked one, then the biggest rank of the shortest path to an unmatched vertex is only 1).

1

1

1212

0 0 0

0 0

1 11

0

1

0

1

0

1212 1212 2

The Θpr3q example. This example is generated by stacking r combs on top of each other,
i.e. using the new components of rank k � 1 for the next comb of that is shorter by one

9

element. Note, that we need to provide not only the comb-components, but also the side-
ones that make the comb fat. This causes the example to have size of order θpr3q, optimizing
it will lead to better bounds, but would also immensely complicate the graph.

1

1
2 3

4 56

7 9 10 8

12

1719

14

21201816

11

22

1513

2

4

7

11

16

35 68 91012 1314 1517 1819 2021 22

The first of two diagrams pictures the state before applying side-components. The num-
bers indicate corresponding pairs of black and white vertices, that is, those that were matched
in given turn. The endpoints of a path containing the highest-ranked edges were marked by
inverted colors. Although there is a number of unmatched vertices, the size is still of order
Θpr3q.

1

1
2 3

4 56

7 9 10 8

12

1719

14

21201816

11

22

1513

2

4

7

11

16

35 68 91012 1314 1517 1819 2021 22

The Θpr2q example. The issue with the previous instance is that we require multiple com-
ponents for each of the stacked combs to make them fat. However, an inquisitive reader
may observe that we are doing the same job many times, that is, each comb of order bigger
than k has to be pushed from rank k to k � 1. Indeed, we could improve the example so
that a single component of rank k would be enough to make all the appropriate combs into
k � 1. To achieve it, we will join all the combs in a sequential manner so that a single, long
augmenting path could go through them all, as in the sketch below. This modification will
be the base of our compression and will allow us to construct an example of size Θpr2q.

10

k k k k

1

2

3

k{1

kk{1k{1k{1332222

4

k{2

6

3-rank comb ({1)-rank comb -rank combother combs k k2-rank comb

To obtain structure similar to the one in previous paragraph, we apply the components
only to appropriate combs by joining them in the middle of the chain. In the diagrams k is
odd, which means that after the k-th pass (the diagram below) the path in the graph will
lead from left to right (similarly for 3-rank comb), while the part of paths near combs of even
rank goes from right to left, as for 2-rank and pk � 1q-rank combs.

k k k k

1

2

3

k{1

kk{1k{1k{1332222

4

k{2

6

k

3-rank comb ({1)-rank comb -rank combother combs k k2-rank comb

The whole concrete example might look as follows, here for r � 5. The green edges are
those which would stack two combs on top of each other in the Θpr3q case. Observe, that 4-
rank comb does not need additional backing by 2-rank components, as the 3-ranked provide
it while it is necessary, i.e. at that time those 3-ranked components are of rank 2. The red
edges are responsible for making the combs fat, and the blue one is the final highest-ranked
edge.

2

2

3

3

4

4

5
1 1

3-rank comb2-rank comb 4-rank comb 5-rank comb

The four augmenting paths go, as noted in corresponding points. The final state can be seen
in the next figure.

11

1. From vertex marked by red number 1, straight right, by the black path, until its black
counterpart.

2. Starting near red 2, down onto the black path, and then left until junction leading to
black 2, where it finishes.

3. From red 3 vertex, one step up, then right until the end, via red 2, back onto black path,
one step right, and through green arc, finally reaching vertex labeled by black number
3.

4. Up to black 1 and left, through the blue vertex, then further left, until the first junction
down which would lead by two green arcs and small number of black edges to the
black pair of red 4.

2

2

3

3

4

4

5
1 1

3-rank comb2-rank comb 4-rank comb 5-rank comb

The boundaries between combs are blurry, because of frequent orientation changes of edges.
However, we can still count the number of white vertices, and so, the 5-rank comb uses 4,
4-rank comb uses 2 � 4, the next one 3 � 4 and the last, 2-rank comb uses 4 � 4. Generalizing for
arbitrary r, we have that k-rank comb needs pr�k�1q�4 nodes and the sum 4

°r
k�2 r�k�1 �

4
°r�1
k�1 k � 2rpr � 1q makes the quadratic nature of the considered example self-evident.

Corollary 3.1. The bound in Theorem 3.1 of [5] is tight.

3.3 Miscellaneous examples

In this section we will briefly discuss some additional examples not directly related to the
problem, but nevertheless relevant. Some will argue that heuristics are not as promising as
it seems, others will emphasize the peculiar nature of the problem.

Exponential with loose unmatched vertices. The example below illustrates that it is quite
easy to construct a graph which would require arbitrarily high ranks, even with some ad-
ditional assumptions, like some loose unmatched vertices for each black vertex, or bounds
on numbers ratio of white vertices to black vertices, or even some structural properties (here
each black vertex has an isomorphic pair).

12

On the counterexamples for path-length-related heuristics. It may seem that some of the
counterexamples, in particular the Θpr2q example, could be refuted by adding some heuris-
tics related to path-length, e.g. to prefer shortest paths or paths with smallest number of
high-ranked edges, and so on. The natural way to adapt our examples to fool a heuristic
choosing a shorter path over longer one is to increase the lengths of the teeth of the comb
along the augmenting path as shown in the figure below.

k k k k k k

If applied to the Θpr2q example, this method blows up the number of vertices to Ωpr3q. To
create an instance of order smaller than Opr3q, one could consider the following approach.
Each comb is split into parts of size of square-root of the length of the comb. This allows
for multiple side-components of the same rank to be applied in the middle of a comb, hence
minimize the necessary number of vertices.

k k k k k kk k k

p
l

p
l

p
l

For some heuristics, it might be better to apply a similar techniques based on exponential
structures like the one in the next diagram.

13

k k k k k kk k k

llog

2

4

/2l

On the counterexamples for degree-related heuristics. The heuristics dealing with vertex
degree do not work as well, the primary reason being, we can join arbitrary graph with some
external features that would not change the matching-properties, but would totally disrupt
the degrees of the vertices. One way of doing that is as follows. Let G be a bipartite graph
of n1 � n2 vertices, then add two new arbitrary bipartite graphs G1 and G2 on n1 � n1 and
n2 � n2 vertices respectively, both of which contain a perfect matching. Then connect all
black vertices of G1 to white vertices of G and all white vertices of G2 to black in G in a way
that would disturb the degrees of G the most. Naturally, the matching of G1 still has to be
contained in G1 and similarly for G2, therefore the maximum cardinality matching of the
newly constructed graph is precisely n1 � n2 bigger than the original one.

1GG G2

Random subgraph of a graph with triangular adjacency matrix. Examples provided in
this work regard mostly the worst-case analysis. Although expected time complexity is
beyond the scope of this paper, we can note that experimental tests show that an imple-
mentation of rank-minimizing algorithm in practice performs significantly better that the
worst-case bound would suggest.

As for now, the hardest cases in the sense of sampled expected time are the random sub-
graphs of graphs with triangular bipartite adjacency matrix and their slight modifications.
Exact expected time complexity is not yet known and requires further investigation.

An example for linear rank in full online maximum cardinality bipartite matching. This
example argues that the full (or two-sided) online maximum cardinality bipartite matching
is substantially different than its one-sided version and the adwords problem. It manifests
in the fact that it is possible to construct an example that would require ranks of linear order
to maintain the maximum cardinality matching. We start with a simple path, and make it
alternate left and right, the first few steps are shown below. Please note, that we don’t need
to assume that the ties are resolved arbitrarily, in fact there is unique augmenting path each
turn.

14

10 1

1

1

1 21

32

0101

2 1 2 10 10 1

0121 21 3 23 23 4

The essential distinction is that in adwords problem all the white vertices are available
from the start, hence, if there is no available augmenting path that would use edges of rank
k or smaller, there won’t be any anymore. In particular, if there is no augmenting path at all
(the vertex would have to be left unmatched), then it will stay that way until the end.

On the other hand, here we can provide additional unmatched vertices when necessary,
and so fool the algorithm to go the costly way, and then again back to the newly available
vertex. Iterating this tactics would lead to arbitrarily high ranks using only constant number
of edges and vertices per step.

4 Conclusion

This paper presents several examples for the one-sided online maximum cardinality bipar-
tite matching problem. Case by case we show the characteristics of rank-minimizing algo-
rithms and introduce insights about hard cases in the considered task. This provides the
intuition behind the proof of Theorem 3.1 of [5], significantly, one of the examples matches
the bound and so proves it tight.

However, all the presented examples deal with the worst-case analysis and depend on
particular order of edges and vertices. Indeed, experiments show that the rank-minimizing
algorithm performs in practice significantly better, especially if the input is in random order.
Clearly, the question whether its expected time complexity is of strictly smaller order or
perhaps it is just a mere coincidence, requires further investigation.

References

[1] Y. AZAR, On-line load balancing, in Online Algorithms, A. Fiat and G. J. Woeginger, eds.,
vol. 1442 of Lecture Notes in Computer Science, Springer, 1996, pp. 178–195.

[2] J. EDMONDS, Paths, trees and flowers, Canadian Journal of Mathematics, 17 (1965),
pp. 449–467.

[3] J. E. HOPCROFT AND R. M. KARP, An n5{2 algorithm for maximum matchings in bipartite
graphs, SIAM Journal on Computing, 2 (1973), pp. 225–231.

[4] H. W. KUHN, The hungarian method for the assignment problem, Naval Research Logistics
Quarterly, 2 (1955), pp. 83–97.

[5] D. LENIOWSKI, On edge usage in adwords problem, 2013. The second progress report for
SSDNM, available at http://ssdnm.mimuw.edu.pl/.

15

