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On Centers of Curves

Abstract
There are several ways of defining a center of a curve. In this paper we will recall
three basic such definitions, based on calculus, and also propose a different way
which is interesting from the dynamical point of view.
Keywords : Calculus, Heteroclinic Curves.

1. Introduction - how to measure a middle of a curve? Three
different approaches

Let us try to answer a question given in the name of this section. What we
can measure is for instance a length of a curve, a mass, or a time required to travel
from the beginning to the end of it. This section covers three different approaches
to this topic - all of them are well known in calculus (see [2]).

In this paper by bounded curve we understand a curve which is bounded in
topological sense, that is it is contained in some open ball. Note that there are
bounded curves of infinite length (for instance fractal curves), hence there are such
curves with infinite mass.

Center of a mass

Let Γ be a curve in Rn. It is given by continuous mapping γ : [a, b] 3 t 7→
γ(t) = (x1(t), . . . , xn(t)) ∈ Rn, so the image of γ is Γ. Denote f(x) = f(x1, . . . , xn)
to be a function defining linear density of Γ. Then total mass is given by the integral

M(Γ) =

∫

Γ

fdl.

The center of a mass is given by the following rule. Denote s = (s1, . . . , sn), where

sk =
1

M(Γ)

∫

Γ

xkf(x)dl.

sk is a center of a mass with respect to k−th coordinate. Then s is a center of mass
of a curve Γ. Note, that if f and γ are bounded, then the center is well defined.
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Example 1.1. Consider an arc of a cycloid given by the equations

x(t) = a(t− sin t),

y(t) = a(1− cos t),

where t ∈ [0, 2π]. We assume that f ≡ 1.

Note, that an arc is symmetric with respect to the line x = π · a. Therefore
sx = π · a. Moreover,

sy =

∫
Γ
ydl∫

Γ
dl

=

∫ 2π

0
a(1− cos t)

√
(a(1− cos t))2 + (a sin t)2)dt

∫ 2π

0

√
(a(1− cos t))2 + (a sin t)2)dt

=
4

3
a.

Hence, s =
(
π · a, 4

3
a
)
.

Example 1.2. Consider simple curve given by the mapping

γ : [0, 1] 3 t 7→ (t, 0) ∈ R2.

We now assume that a linear density is proportional to the distance from the origin,
so f(x, y) = x. Immediately sy = 0, and

M(Γ) =

∫ 1

0

t
√

12 + 02dt =
1

2
,

∫

Γ

xf(x, y)dl =

∫ 1

0

t2
√

12 + 02dt =
1

3
.

Therefore a center of mass of this segment is in 2
3

of its length, measuring from the
origin:

s =

(
2

3
, 0

)
.

Notice, that a distribution of a mass different from uniform and symmetric dislocates
a center from the point which is not in the center of a length. Concentration of a
mass close to one of vertexes (of a Γ considered as a segment) moves the center
closer to this vertex.

We can also try to find a center of mass of a curve which is of infinite length.
This requires reasonable distribution of a mass so the center does not ,,goes to
infinity”, that is we can derive both coordinates and they are finite.
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Example 1.3. Consider Γ = (0,+∞)×{0} ⊂ R2 and γ(t) = (t, 0) for t ∈ (0,+∞).
Assume that f(x, y) = 1

1+x3 . Let us now calculate a center of mass.

ys = 0,

dt = dl,

M(Γ) =

∫ ∞

0

dt

1 + t3
=

1

6

(
ln

(t+ 1)2

t2 − t+ 1
+ 2
√

3 arctan

(
2t− 1√

3

))t=∞

t=0

=
2π

3
√

3
,

xs =

∫ ∞

0

tdt

1 + t3
=

1

6

(
ln
t2 − t+ 1

(t+ 1)2
+ 2
√

3 arctan

(
2t− 1√

3

))t=∞

t=0

=
2π

3
√

3
.

Hence

s = (1, 0).

In last example we saw that despite a curve is not bounded, proper distribution
of a mass can lead to calculable center of a mass. Notice that if we take Γ = R and
uniformly distribute mass along it, the center of a mass is not well defined. Giving
one more example, a bounded curve of infinite length (such as Koch Curve) can also
have well defined center of a mass, but not the center of its length as it can has
infinite length. We will go back to this example in later section.

Partition into two equally length segments

Consider Γ ⊂ Rn and its parametrization γ : [a, b]→ Rn. Let us pick t0 ∈ (a, b)
and define

γ1 : [a, t0]→ Rn, γ1(t) = γ(t),

γ2 : [t0, b]→ Rn, γ2(t) = γ(t).

Denote Γ1 = γ([a, t0]) and Γ2 = γ2([t0, b]). Note that Γ1 ∪ Γ2 = Γ and Γ1 ∩ Γ2 =
{γ(t0)}.

Our goal is to find t0 such that
∫

Γ1

dl =

∫

Γ2

dl =
1

2

∫

Γ

dl.

In other words, t0 divides a set of times in such a way, that it halves a length of a
curve Γ. A point s = γ(t0) is a center of a length of a curve Γ.
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Example 1.4. Consider a cycloid from example 1.1. We have
∫

Γt

tdl =

∫ t

0

√
(a(1− cosu))2 + (a sinu)2du =

= 2a

∫ t

0

sin
u

2
dt = 4a

(
1− cos

t

2

)
.

∫

Γ

dl = 8a,

where Γt is an image of γ|[a,t]. Therefore we are looking for t such that

1− cos
t

2
= 1.

Hence t = π and

γ(π) = (π · a, 2a)

is a middle of a length of a single cycloid arc.

In the latter example it was crucial that a curve is of finite length. In case of
curves that are not bounded this center is not well defined.

Partition into two equally time-length segments

Consider Γ ⊂ Rn and its parametrization γ : [a, b] → Rn. The length of it is
given by

|Γ| =
∫

Γ

dl =

∫ b

a

|γ′|dt.

We partition a domain into two equal segments I1 = [a, c] and I2 = [c, b], where
c = a+b

2
. Define

γi : Ii → Rn

as a parametrization of Γi gives as an image of γi. Note, that Γ1 ∪ Γ2 = Γ and
Γ1 ∩ Γ2 = {γ(c)}.

A point γ(c) is called time-center of a curve. It divided a curve into two
segments such that a time required to travel along these segments from the center
to either of ends is equal.

Example 1.5. Consider Γ = [0, 1] ⊂ R. Take two parametrizations

γ : [0, 1] 3 t 7→ t ∈ R,
µ : [0, 1] 3 t 7→ t2 ∈ R.
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We have γ′(t) = 1 and µ′(t) = 2t, so velocities are different, and so1

|γ1| =
1

2
,

|γ2| =
1

2
,

|µ1| =
1

4
,

|µ2| =
3

4
.

In first case, for γ, we are in the middle of a segment after time t = 1
2
. In

second case, for µ, we are in 1/4th of a curve, meaning we move faster as we move
away from the origin.

2. Asymptotic center

In previous section we saw many examples of curves with different location
of their centers depending on what type of center we are looking for, what type of
parametrization we chose, or what type of mass distribution we take. In most cases
we assumed that a curve has to be bounded, so respective integrals are convergent.

We will expand these definitions to the case of a curve defined on an open
interval (a, b) (without any restriction, that is either of ends can be infinite). Mo-
tivation for this definition comes from dynamical systems. Considering heteroclinic
orbit (that is: an orbit connecting two fixed points) we would like to answer the
following question: assuming we forget about a part of an orbit which is close to
both fixed points, where is a center of the remaining part? In other words - where
do we expect our point to be on such piece of an orbit?

All three definitions we recalled in section 1. cannot be used here, because in
fact a heteroclinic orbit in Rn is a curve2 in Rn+1 which is (mostly) not bounded. We
will propose different approach that let us derive (in some cases) a proper center.

Let Γ be a curve in Rn+1 = R×Rn, where first coordinate describes a time and
remaining ones describe spatial position of points. Let γ : A → Rn be its modified
parametrization, where A = (t0, t1) is an open interval. This parametrization is not
arbitrary - in case of dynamical system is given by the dynamics. Considering a
solution of a system of n differential equations, γ describes a solution in a phase of

1We abuse (only for this example) notation of the length by substituting parametrization in
place of an actual curve.

2For a given dynamical system φ : R×X → X an image is in X, but the domain is R×X.
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space. So in general the image of γ is a projection of Γ into spacial coordinates. For
simplicity we will denote that image as well by Γ.

Denote a = γ(t0) and b = γ(t1). Pick ε > 0 and denote Bε to be an in-
terval contained in A such that γε is a map of which image is a curve Γε := Γ \
(B(a, ε) ∪B(b, ε)). Then γε : Bε → Γε and a choice of ε determines uniquely γε (see
Remark 2.2. for some cases we have to proceed differently). Denote aε = γε(inf Bε)
and bε = γε(supBε).

On each curve Γε, which is now by the definition a bounded curve, we are
looking for a point xε such a time required to reach either of ends of Γε is equal,
that is we are looking for tε such that it halves the interval Bε. This is easy since
we are working with bounded interval Bε which middle is in

tε :=
inf Bε + supBε

2
.

Note that this definition is proper only for finite values of ends. tε and xε are well
defined since Bε is bounded. Note that each xε ⊂ B(0, R) and Γ is compact. Time
required to reach either of points aε and bε from the point xε is equal, hence xε is
what we presented in third approach in previous section.

It is important that when cutting of a part of an orbit, we always obtain
a piece which requires finite amount of time to be passed (regardless of original
parametrization).

Definition 2.1. Assume (εn)n∈N and εn ↘ 0. If for any such sequence there exists
a common limit

β := lim
n→+∞

xεn

then this limit is called an asymptotic center of a curve.

Remark 2.2. The set Γε may not be connected. If so, denote

∆ε := {A ⊂ Rn : A is a component of Γε}.

Then we choose A ∈ ∆ε such that dist(A, a) = dist(A, b) = ε and define Γε := A. If
there are many of such sets A, then we set Γε = ∅ and xε = a.

In the definition of asymptotic center we would also like to avoid a situation
where for some sequences (εn)n∈N we obtain that for infinitely many n ∈ N we have
#∆εn ≥ 2. In other words, we want to make sure that for ε′s sufficiently small we
have #∆ε = 1 so the limit β exists. This assumption is in fact very natural - curves
that are not of such behaviour and shape are unseen in dynamical systems.
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For given definition it is likely to obtain either positive or negative result of
the existance of β. In the following example we briefly describe the case where such
β does not exist.

Example 2.3. Consider γ : R→ (−1, 1) defined as follows:

(1) Set γ(0) = 0.
(2) On the interval

(
−1

2
, 1

2

)
⊂ (−1, 1) velocity is constant.

(3) On the interval
(
−3

4
,−1

2

)
velocity is constant. On the interval

(
1
2
, 3

4

)
velocity

is such that that the center lays at point x = 1
2

(so a point moves faster here).

(4) On the intervals
(
−7

8
,−3

4

)
and

(
3
4
, 7

8

)
velocities are such that that the center

lays at point x = −1
2

(point moves slower and faster respectively).

We continue this process up to infinity, obtaining non-converging sequence of points.
Each of the intervals in this construction is an image of the interval (k, k + 1) for
some (k ∈ Z). Gluing those parametrizations on each segment we obtain γ. Because
by taking εn = 2−n points xε jumps between two nonequal points, hence our curve
has no asymptotic center. This example can be obtained from careful modification
of one period of a tangent function.

A careful modification of last example can give us xεn = (−1)n

2n for the same
sequence of εn as above. Thus we can obtain a non-symmetric curve with well defined
β. We will now present an example of dynamical system generated by a differential
equation, that produces heteroclinic orbit with proper asymptotic center.

Example 2.4. Consider the following Cauchy problem
{
ẋ = (x− 2)2(x+ 2)2,
x(0) = 0.

The solution of this equation is a function

t =
1

32

(
− 4x

x2 − 4
+ ln

∣∣∣∣
x+ 2

x− 2

∣∣∣∣
)
.

Note that it is antisymmetric with respect to the origin. Consider heteroclinic orbit
between two fixed points a = −2 and b = 2. Then, thanks for the symmetry, the
origin is an asymptotic center of that orbit, and so the curve being a solution of the
equation on the interval (−2, 2).

This can be generalized to equations of the form

ẋ = (x− x1)2(x− x2)2

with the same initial condition. It follows from earlier equation that x1+x2

2
describes

an asymptotic center.
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Example 2.5. Let us go back to the Koch Curve (we will denote by K). In section
1. we noted that it has infinite length although it is bounded. Considering both
ends as fixed points we can properly define mapping γ : (0, 1) → K \ {ends of K}
to be a function such that the asymptotic center is a point γ

(
1
2

)
. Brief description

is as follows (in every step we omit ends):

Step 1. Take 1st iteration of the Koch Curve, that is a segment (0, 1)×{0}. It
can be parametrized uniformly by an inclusion. By this it follows that an asymptotic
center is just a geometric center of a segment

Step 2. Take 2nd iteration of a curve, partition it to 4 segments using vertices as
points of partition. Each segment is now uniformly parametrized by corresponding
piece of (0, 1) of the length 1/4.

Step k. Take k-th iteration, partition it to 4k segments, each one parametrized
by a piece of (0, 1) of the lenght 1/4k.

It is easy to check that from 2nd step an asymptotic center is always a point(
0,
√

3
6

)
. If we denote a parametrization of each step as γn then we have

|γn+1 − γn| ≤
C

3n

for some C > 0. Each γn is continuous. Denote γ := lim
n→∞

γn. It is easy to check

that

|γ(t)− γn(t)| ≤
∞∑

k=n

C

3k

which tends to 0 as n goes to infinity. Hence γ is a limit of uniformly converging
sequence of parametrizations γn that are continuous. Therefore γ is continuous
mapping (0, 1)→ K \ {ends}.

As a result an asymptotic center of a Koch Curve is a point
(

0,
√

3
6

)
.

3. Further applications

We will start from recalling some definitions and theorems from dynamical
systems (see [1]).

Definition 3.1. Assume ϕ is a dynamical system generated by the linear equation
x′ = Ax for some matrix A ∈M(n,R). ϕ is called a hyperbolic if a spectrum σ(A)
is disjoint with imaginary axis, that is there are no purely imaginary eigenvalues of
A. The set of n−dimensional hyperbolic dynamical systems is denoted by H(n).
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For further applications we will now recall one of basic theorems from quali-
tative theory of differential equations.

Theorem 3.2 (Grobman, Hartman). Assume n ≥ 1 and U is an open set in Rn.
Assume that f ∈ C1(U,Rn) is generating a local dynamical system ϕ. Pick p ∈
U such that f(p) = 0 and assume that Df(p) generates a hyperbolic dynamical
system ψ. Then there exists an open neighbourhood V of p contained in U , an
open neighbourhood W of 0 in Rn and a homeomorphism h : V → W such that if
ϕ(t, x) ∈ V , then h(ϕ(t, x)) = ψ(t, h(x)).

Using Grobnam-Hartman theorem we can obtain greater class of dynamical
systems of which existing heteroclinic orbits have asymptotic center.

We will now describe such class. For simplicity, consider two-dimensional dy-
namical system ϕ with two fixed points p and q. Assume, that Df(p) and Df(q) are
hyperbolic matrices. Denote Γ to be a trajectory connecting two fixed points p and
q. Without loose of generality we can assume, that eigenspace of p containing Γ is
repelling, and eigenspace corresponding to a point q is attracting. If two eigenvalues
corresponding to those eigenspaces are opposite, then ϕ and −ϕ 3 restricted to some
neighbourhoods of fixed points and this trajectory describes the same dynamics,
hence they move with the same velocity along Γ in those neighbourhoods. We can
now find an asymptotic center on that trajectory - remaining part is bounded and
requires finite time so it has well defined time-center.

Now by analogy this argument follows for higher dimensions.

3By (−ϕ) we denote a dynamical system that has reversed time comparing to ϕ.
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