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Abstract

Let G = (V,E) be a multigraph of maximum degree ∆. The edges of G can be
colored with at most 3

2∆ colors by Shannon’s theorem. We study lower bounds on
the size of subgraphs of G that can be colored with ∆ colors.

Shannon’s Theorem gives a bound of ∆

b 3
2

∆c |E|. However, for ∆ = 3, Kamiński

and Kowalik [8] showed that there is a 3-edge-colorable subgraph of size at least 7
9 |E|,

unless G is isomorphic to K3 + e (a K3 with an arbitrary edge doubled). Here we
extend this line of research by showing that

• every multigraph of maximum degree 4 has a 4-edge colorable subgraph with at
least 4

5 |E| edges, unless G is isomorphic to 2K3 (a K3 with every edge doubled),

• every multigraph of maximum degree 5 has a 5-edge colorable subgraph with
at least 5

6 |E| edges, unless G is isomorphic to 2K3 + e (a K3 with two edges
doubled and one edge tripled).

Our results have immediate applications in approximation algorithms for the
Maximum k-Edge-Colorable Subgraph problem, where given a graph G (without
any bound on its maximum degree or other restrictions) one has to find a k-edge-
colorable subgraph with maximum number of edges. In particular, when G is a
multigraph and for k = 4, 5 we obtain approximation ratios of 5

7 and 11
15 , respectively.

This improves earlier ratios of 1−
(

3
4

)4 and 5
7 due to Feige et al. [6].

1 Introduction

A graph is k-edge-colorable if there exists an assignment of k colors to the edges of
the graph, such that every two incident edges receive different colors. By Shannon’s
theorem [13],

⌊
3
2∆
⌋

colors suffice to color any multigraph, where ∆ denotes the
maximum degree. This bound is tight, e.g. for every even ∆ consider the graph
(∆/2)K3 (K3 with every edge of multiplicity ∆/2) and for odd ∆ consider the graph
b∆/2cK3 + e (K3 with two edges of multiplicity b∆/2c and one edge of multiplicity
b∆/2c+ 1).

It is natural to ask how many edges of a graph of maximum degree ∆ can be
colored with less than

⌊
3
2∆
⌋

colors. The maximum k-edge-colorable subgraph of G
(maximum k-ECS in short) is a k-edge-colorable subgraph H of G with maximum
number of edges. Let γk(G) denote the ratio |E(H)|/|E(G)|; when |E(G)| = 0 we
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define γk(G) = 1. If ∆ is the maximum degree of G we write shortly γ(G) for γ∆(G).
Lower bounds on γ(G) were studied first by Albertson and Haas [1]. They showed
that γ(G) ≥ 26

31 for simple graphs of maximum degree 3. Today, the case of simple
graphs is pretty well researched. Since by Vizing’s theorem any simple graph of
maximum degree ∆ can be edge-colored with ∆ + 1 colors, by simply discarding the
smallest color class we get γ(G) ≥ ∆/(∆ + 1). This ratio grows to 1 with ∆, and for
∆ ≤ 7 much more precise bounds are known (see [8] for a discussion).

In this paper we study lower bounds on γ(G) for multigraphs. Note that in this
case we can apply Shannon’s theorem similarly as Vizing’s theorem above and we
get the bound γ(G) ≥ ∆/

⌊
3
2∆
⌋
. As far as we know, so far better bounds are known

only for subcubic graphs (i.e. of maximum degree three). The Shannon’s bound gives
γ(G) ≥ 3

4 then, which is tight by K3 +e. Rizzi [10] showed that when G is a subcubic
multigraph with no cycles of length 3, then γ(G) ≥ 13

15 , which is tight by the Petersen
graph. Kamiński and Kowalik [8] extended this result and proved that γ(G) ≥ 7

9
when G is a subcubic multigraph different from K3 + e.

1.1 Main Result

In what follows 2K3 denotes the graph on three vertices with every pair of vertices
connected by two edges, while 2K3 + e denotes the graph that can be obtained from
2K3 by adding a third edge between one pair of vertices. Below we state our main
result.

Theorem 1. Let G be a connected graph of maximum degree ∆ ∈ {4, 5}. Then G
has a ∆-edge-colorable subgraph with at least

1. 4
5 |E| edges when ∆ = 4 and G 6= 2K3,

2. 5
6 |E| edges when ∆ = 5 and G 6= 2K3 + e.

Moreover, the subgraph and its coloring can be found in polynomial time.

Note that the bounds in Theorem 1 are tight. The smallest examples are K3 with
two edges added and K3 with three edges added.

1.2 Applications

One may ask why we study γ∆(G) and not, say γ∆+1(G). Our main motivation
is that finding large ∆-edge-colorable subgraphs has applications in approximation
algorithms for the Maximum k-Edge-Colorable Subgraph problem (aka Max-
imum Edge k-coloring [6]). In this problem, we are given a graph G (without any
restriction on its maximum degree) and the goal is to compute a maximum k-edge col-
orable subgraph of G. It is known to be APX-hard when k ≥ 2 [4, 7, 5]. The research
on approximation algorithms for max k-ECS problem was initiated by Feige, Ofek
and Wieder [6]. (In the discussion below we consider only multigraphs, consult [8]
for an overview for simple graphs.)

Feige et al. [6] suggested the following simple strategy. Begin with finding a
maximum k-matching F of the input graph, i.e. a subgraph of maximum degree k
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which has maximum number of edges. This can be done in polynomial time (see
e.g. [12]). Since a k-ECS is a k-matching itself, F has at least as many edges as the
maximum k-ECS. Hence, if we color ρ|E(F )| edges of F we get a ρ-approximation.
If we combine this algorithm with (the constructive version of) Shannon’s Theorem,
we get k/

⌊
3
2k
⌋
-approximation. By plugging in the Vizing’s theorem for multigraphs,

we get a k
k+µ(G) -approximation, where µ(G) is the maximum edge multiplicity.

Feige et al. [6] show a polynomial-time algorithm which, for a given multigraph
and an integer k, finds a subgraph H such that |E(H)| ≥ OPT, ∆(H) ≤ k + 1
and Γ(H) ≤ k +

√
k + 1 + 2, where OPT is the number of edges in the maxi-

mum k-edge colorable sugraph of G, and Γ(H) is the odd density of H, defined
as Γ(H) = maxS⊆V (H),|S|≥2

|E(S)|
b|S|/2c . The subgraph H can be edge-colored with at

most max
{

∆ +
√

∆/2, dΓ(H)e
}
≤ dk +

√
k + 1 + 2e colors in nO(

√
k)-time by an

algorithm of Chen, Yu and Zang [2]. By choosing the k largest color classes as a
solution this gives a k/dk+

√
k + 1 + 2e-approximation. One can get a slightly worse

k/(k+ (1 + 3/
√

2)
√
k+ o(

√
k))-approximation by replacing the algorithm of Chen et

al. by an algorithm of Sanders and Steurer [11] which takes only O(nk(n+ k))-time.
Note that in both cases the approximation ratio approaches 1 when k approaches∞.

k simple graphs reference multigraphs reference

2 0.842 [3] 10
13

[6]

3 13
15

[8] 7
9

[8]

4 9
11

[8] 5
7

this work

5 23
27

[8] 11
15

this work

6 19
22

[8] max{2
3
, 6

6+µ
} [13, 14, 6]

7 22
25

[8] max{ 7
10

, 7
7+µ
} [13, 14, 6]

8, . . . , 13 k
k+1

[14, 6] max{ k
b3k/2c ,

k
k+µ
} [13, 14, 6]

≥ 14 k
k+1

[14, 6] max{ k
dk+
√
k+1+2e ,

k
k+µ
} [2, 14, 6]

Table 1: Best approximation ratios for the Maximum k-Edge-Colorable Subgraph problem

The results above work for all values of k. However, for small values of k tailor-
made algorithms are known, with much better approximation ratios. Feige et al. [6]
proposed a 10

13 -approximation algorithm for k = 2 based on an LP relaxation. They
also analyzed a simple greedy algorithm and showed that it has approximation ratio
1 −

(
1− 1

k

)k, which is still the best result for the case k = 4 in multigraphs. For
k = 3 Shannon’s bound gives a 3/4-approximation. However, Kamiński and Kowa-
lik [8] showed that K3 + e is the only tight example for the Shannon’s bound in
subcubic graphs; otherwise γ(G) ≤ 7

9 . One cannot combine this result directly with
the k-matching technique, since the k-matching may contain components isomorphic
to K3 +e. However, inspired by the paper of Kosowski [9], Kamiński and Kowalik [8]
showed a general algorithmic technique which leads to improved approximation fac-
tors even if the bound on γ(G) does not hold for a few special graphs. Using this

3



technique they get a 7
9 -approximation for k = 3.

In this paper we also apply the constructive versions of our combinatorial bounds
with the algorithmic technique from [8] and we obtain new approximation algorithms
for four and five colors, with approximation ratios 5

7 and 11
15 , respectively. The current

state of art in approximating Maximum k-Edge-Colorable Subgraph is given
in Table 1.

1.3 Further Research

When considering Theorem 1 one might ask what about higher values of ∆, e.g.
∆ = 6. To prove Theorem 1 we analyze the possible free components of a coloring.
In case of ∆ ∈ {4, 5} there are 3 distinct free components and only a couple ways of
embedding them in G to consider. In case of ∆ = 6 there are 6 distinct free com-
ponents and quite a few cases that require dealing with. Analyzing all the cases for
values of ∆ higher then 6 without the aid of a computer would be very cumbersome.
Thus we restrain ourselves to ∆ ∈ {4, 5} but we hope the bounds for ∆ = 6 (both
the bound on γ(G) and the on the approximation ratio) will be improved some day.

1.4 Preliminaries

We will work with undirected multigraphs (though for simplicity we will call them
graphs). Our notation is mostly consitent with the one used in [8], which we recall
below.

Let G = (V,E) be a graph. For a vertex x ∈ V by N(x) we denote the set of
neighbors of x and N [x] = N(x) ∪ {x}. For a set of vertices S we denote N(S) =⋃
x∈S N(x) \ S and N [S] =

⋃
x∈S N [x]. We also denote the subgraph of G whose set

of vertices is N [S] and set of edges is the set of edges of G incident with S by I[S].
For a subgraph H of G we denote N [H] = N [V (H)] and I[H] = I[V (H)].

A partial k-coloring of a graph G = (V,E) is a function π : E → {1, . . . , k}∪ {⊥}
such that if two edges e1, e2 ∈ E are incident then π(e1) 6= π(e2), or π(e1) = π(e2) =
⊥. From now on by a coloring of a graph we will mean a partial ∆(G)-coloring. We
say that an edge e is uncolored if π(e) = ⊥; otherwise, we say that e is colored. For
a vertex v, π(v) is the set of colors of edges incident with v, i.e. π(v) = {π(e) : e ∈
I[v]} \ {⊥}, while π(v) = {1, . . . , k} \ π(v) is the set of free colors at v.

Let V⊥ = {v ∈ V : π(v) 6= ∅}. In what follows, ⊥(G, π) = (V⊥, π−1(⊥)) is called
the graph of free edges. Every connected component of the graph ⊥(G, π) is called a
free component. If a free component has only one vertex, it is called trivial.

Below we state a few lemmas proved in [8] which will be useful in the present
paper. Although the lemmas were formulated for simple graphs one can easily check
that the proofs apply to multigraphs as well.

Lemma 2 ([8], Lemma 7). Let (G, π) be a colored graph that maximizes the number
of colored edges. For any free component Q of (G, π) and for every two distinct
vertices v, w ∈ V (Q)

(a) π(v) ∩ π(w) = ∅,
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(b) for every a ∈ π(v), b ∈ π(w) there is an (ab, vw)-path.

For a free component Q, by π(Q) we denote the set of free colors at the vertices
of Q, i.e. π(Q) =

⋃
v∈V (Q) π(v).

Corollary 3 ([8], Lemma 8). Let (G, π) be a colored graph that maximizes the number
of colored edges. For any free component Q of (G, π) we have |π(Q)| ≥ 2|E(Q)|. In
particular Q has at most

⌊
∆
2

⌋
edges.

LetQ1, Q2 be two distinct free components of (G, π). Assume that for some pair of
vertices x ∈ V (Q1) and y ∈ V (Q2), there is an edge xy ∈ E such that π(xy) ∈ π(Q1).
Then we say that Q1 sees Q2 with xy, or shortly Q1 sees Q2.

Lemma 4 ([8], Lemma 10). Let (G, π) be a colored graph that maximizes the number
of colored edges. If Q1, Q2 are two distinct free components of (G, π) such that Q1

sees Q2 then π(Q1) ∩ π(Q2) = ∅.

We use the notion of the potential function Ψ introduced in [8]:

Ψ(G, π) = (c, nb∆/2c, nb∆/2c−1, . . . , n1),

where c is the number of colored edges, i.e. c = |π−1({1, . . . ,∆})| and ni is the
number of free components with i edges for every i = 1, . . . , b∆/2c.

1.5 Our Approach and Organization of the paper

Informally, our plan for proving Theorem 1 is to consider a coloring that maximimizes
the potential Ψ and injectively assign many colored edges to every free component
in the coloring. To this end we introduce edges controlled by a component (each of
them will be assigned to the component which controls it) and edges influenced by
a component (as we will see every edge is influenced by at most two components; if
it is influenced by exactly two components, we will assign half of the edge to each of
the components).

In Section 2 we develop structural results on colorings maximimizing Ψ. In-
formally, these results mean that in such a coloring every free component influ-
ences/controls many edges. Then, in Section 3 we prove lower bounds for the number
of edges assigned to various types of components, using a convenient formalism of
sending charge. The section concludes with the proof of Theorem 1.

2 The structure of colorings maximimizing Ψ

2.1 Moving free components

Note that if P and Q are distinct free components of a coloring (G, π) then E(P ) ∩
E(I[Q]) = ∅.

Definition 5. Let (G, π) be a colored graph and let P be a free component of
(G, π). An elementary move of P in π is a coloring π′ such that:
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1. π′ can be obtained from π by uncoloring k edges of I(P ) and coloring k edges
of P for some k ≥ 0,

2. π′|I[P ] has exactly one nontrivial free component, denote it P ′.

If the above holds we say that π′ and P ′ have been obtained respectively from π
and P by an elementary move. Sometimes we will write shortly π′ is a move of π,
meaning that π′ is a move of a free component of π.

Note that π and π′ have the same number of uncolored edges. Furthermore the
component P is either replaced with a component P ′ or merged with a component
Q into P ′ ∪ Q. Either way an elementary move does not decrease the potential Ψ.
Furthermore we have the following:

Remark 6. If π maximizes the potential Ψ then moving a component P cannot cause
a merge of components and hence P ′ is a free component of π′.

We consider π to be a trivial elementary move of any of its components.

Lemma 7. Let (G, π) be a coloring that maximizes the potential Ψ and let P and Q
be two distinct free components. Suppose that P ′ and Q′ can be obtained respectively
by elementary moves π1 and π2 of P and Q. Then:

(i) Q is a free component of π1,

(ii) Q′ can be obtained by an elementary move of Q in π1,

(iii) the move of Q to Q′ in π1 is the same coloring π′ as the move of P to P ′ in π2.

Proof.

(i) Directly from Remark 6.

(ii) We have E(P ) ∩ E(I[Q]) = ∅ (for otherwise P and Q would form a single
component) and E(P ′) ∩ E(I[Q]) = ∅ (for otherwise Ψ can be increased by
moving P to P ′). Hence I[Q] ⊂ G \ (E(P ) ∪ E(P ′)) and thus π1|I[Q] = π|I[Q].
Note that in an elementary move of Q the only edges that obtain new colors
are in Q, so whether a move is possible is determined only by colors of edges in
I[Q]. Thus we may move Q to Q′ in π1.

(iii) The coloring π′ can be given explicitly by setting π′|E(G)\(E(I[P ])∪E(I[Q])) =
π|E(G)\(E(I[P ])∪E(I[Q])), π′|E(I[P ]) = π1|E(I[P ]) and π′|E(I[Q]) = π2|E(I[Q]).

We say that a coloring π′ is a move of π if there is a sequence of colorings π0 =
π, π1, . . . , πk = π′ such that πi is an elementary move of a free component in πi−1.
We say that a free component P ′ of π′ is obtained from a free component P in π if
there are P0, . . . , Pk such that for i = 0, . . . , k Pi is a free component in πi and either
Pi = Pi−1 or πi is the elementary move of Pi−1 to Pi. We denote the free component
of a coloring π′ obtained from a free component P by P (π′). This notation naturally
extends to P (πi) for each i = 1, . . . , k, since πi can be treated as a move of P in π.

Theorem 8. Let (G, π) be a coloring that maximizes the potential Ψ. Then:

(i) if π′ is a move of π then π is a move of π′,
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(ii) if P (π′) is a free component in a move π′ obtained from P then there is a
sequence of elementary moves πi of Pi−1 where π0 = π, πk = π′ and Pi = P (πi)
for i = 1, . . . , k,

(iii) if P1, . . . , Pk are distinct free components of π and π1, . . . , πk are moves of π
then there is a move π′ of π such that Pi(π′) = Pi(πi) and π′|E(I[Pi(π′)]) =
πi|E(I[Pi(πi)]) for i = 1, . . . , k.

Proof.

(i) By Lemma 6 if π′ is an elementary move of a free component P in π then π is
an elementary move of P (π′) in π′. Since a move is a sequence of elementary
moves the claim follows.

(ii) Let π1, . . . , πk be a shortest sequence of elementary moves giving a move from
P to P ′. Let P0 = P and Pi = Pi−1(πi). We claim that πi are elementary
moves of Pi−1. Suppose this is not true and let πj be the elementary move
of Qj−1 6= Pj−1 with the highest index. By using Lemma 7 multiple times
we see that πk can be obtained from πi−1 by first moving Pj , . . . , Pk−1 and
then Qj−1. However reversing the moving of Qj−1 does not change P ′, thus we
obtain a sequence of k − 1 elementary moves giving a move from P to P ′ – a
contradiction.

(iii) We will show the claim for k = 2. The proof for more components is a trivial
generalization of this one but involves a multitude of indices. Using 2. we
get sequences of elementary moves π1,0, . . . , πt1+1,0 and π0,1, . . . , π0,t2+1 of free
components P 0

1 , . . . , P
t1
1 and P 1

2 , . . . , P
t2
2 giving respectively a move from P1 to

P1(π1) and a move from P2 to P2(π2) such that all P j11 are free components
obtained from P1 and all P j11 are free components obtained from P1. We claim
that for every j1 = 1, . . . , t1 + 1 and j2 = 1, . . . , t2 + 1 there exists a move πj1,j2
of π such that P1(πj1,j2) = P1(πj1,0) and P2(πj1,j2) = P2(π0,j2). Furthermore
we require πj1,j2 to simultaneously be an elementary move of P1(πj1−1,j2) in
πj1−1,j2 and P2(πj1,j2−1) in πj1,j2 . By Lemma 7 the existence of πj1,j2 follows
from the existence of πj1−1,j2 and πj1,j2−1 thus the claim follows by induction
on j1 + j2. The fact that π′|E(I[Pi(π′)]) = πi|E(I[Pi(πi)]) follows from the explicit
definition of coloring π′ in the proof of Lemma 7.

2.2 Controlling and influencing edges

Let P be a free component of a coloring (G, π) that maximizes the potential Ψ. We
say that an edge e is influenced by P if e ∈ E(I[P ]). We say that an edge is controlled
by P if e ∈ E(I[P ]) and one of the following conditions is satisfied:

(C1) for each vertex x of e there is a move, possibly trivial, π′ of π such that x ∈
V (P (π′)),

(C2) π(e) ∈ π(P ) and |π(P )| > ∆(G)− 1.

We denote the set of edges controlled by P by con(P ). By M(P ) we denote
the set of moves of π that can be obtained by moving only P (and the components

7



obtained from P ). We define the sphere of influence of P , denoted by I*(P ), to
be
⋃
π′∈M(P )E(I[P (π′)]) and the sphere of control of P , denoted by con*(P ), to be⋃

π′∈M(P ) con(P (π′)).

Lemma 9. Let (G, π) be a coloring that maximizes the potential Ψ and let P and
Q be two distinct free components of π. Then con*(P ) and I*(Q) have no common
edges.

Proof. Suppose e is a common edge of con*(P ) and I*(Q). Take π1 ∈ M(P ) and
π2 ∈M(Q) such that e ∈ con(P (π1)) ∩ I[Q(π2)]. Consider two cases:

(a) e satisfies condition C1 in the definition of con(P ). Since e ∈ I[Q(π2)], there is
an endpoint of e, say x, contained in Q(π2). By C1 there is a move π′1 of π1 such
that x ∈ V (P (π′)). By Theorem 8 there is a move of π with free components
P (π′1) and Q(π2), however P (π1) and Q(π2) share the vertex x, thus they have
merged into a single component in (G, π), a contradiction.

(b) e satisfies condition C2 in the definition of con(P ). Let Q′ be the free component
of π1 obtained from Q. By Theorem 8 we can obtain Q(π2) by a move of Q′

in π1 which is a sequence π1 = π1,1, . . . , π1,k = π2 of elementary moves such
that for every i = 2, . . . , k we have that π1,i is an elementary move of a free
component Q′i−1 obtained from Q′. Let Q′j be the free component satisfying
e ∈ I[Q′j ] with the smallest possible index. Thus Q′j = Q′ or e /∈ I[Q′j−1], either
way π1,j(e) = π1(e). So P (π1) sees Qj through e in the colored graph (G, π1,j)
and by Lemma 4 they have disjoint sets of free colors, a contradiction.

Lemma 10. Let (G, π) be a coloring that maximizes the potential Ψ. Then for each
edge e of G there are at most two distinct free components of π such that their spheres
of influence contain e.

Proof. Suppose there are k components P1, . . . , Pk and an edge e such that and for
every i = 1, . . . , k we have e ∈ I*(Pi). Then for every i = 1, . . . , k there is a move
πi ∈ M(Pi) such that e ∈ I[Pi(πi)]. Hence, for every i = 1, . . . , k the component
Pi(πi) contains a vertex, say vi, incident with e. By Theorem 8 there is a coloring
π′ with free components Pi(πi), i = 1, . . . , k. By the maximality of Ψ, the free
components Pi are disjoint and hence we have vi 6= vj for Pi 6= Pj . Since the vertices
vi are endpoints of e, we infer that k ≤ 2.

Definition 11. For a free component Q of a coloring (G, π) we define a set of
vertices W (Q) = {v ∈ V (G) : v ∈ V (Q(π′)) for some elementary move π′ of Q such
that |E(Q(π′)) \ E(Q)| ≤ 1}.

Lemma 12. Let (G, π) be a coloring that maximizes the potential Ψ and let Q be a
free component with |E(Q)| ≥ 2. If u, v ∈W (Q) and u 6= v then π(u) ∩ π(v) = ∅.
Proof. Assume that we have two distinct u, v ∈W (Q) such that there exists a color
a ∈ π(u) ∩ π(v). By Lemma 2 the vertices u and v cannot both belong to V (Q). By
symmetry we can assume u 6∈ V (Q).

Since u ∈ W (Q), one can uncolor an edge ux, x ∈ V (Q), and color an edge
e ∈ E(Q), obtaining a proper coloring π′. Note that e is incident with x for otherwise
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we can color e without uncoloring ux, and increase the potential Ψ. Hence e = xy
for some y ∈ V (Q) and π(ux) ∈ π(y). It follows that v 6∈ V (Q) for otherwise Q
sees the (possibly trivial) component containing u, a contradiction with Lemma 4.
Let vp be the edge such that one can uncolor vp and color an edge of Q with color
π(vp), which exists because v ∈ W (Q). By Corollary 3, |π(Q)| ≥ 4, so there is a
color b ∈ π(Q) \ {π(ux), π(vp)}. Let z be the vertex of Q such that b ∈ π(z). Note
that a 6∈ π(z) for otherwise Q sees the (possibly trivial) component containing v, a
contradiction with Lemma 4. Consider a maximal path P which starts at z and has
edges colored in a and b alternately. Swap the colors a and b on the path. As a
result, a becomes free in Q. Also, P touches at most one of the vertices u, v, so a is
still free in at least one of them, by symmetry say in u. Since b 6= π(ux), the vertex
u is still in W (Q). Hence we arrive at the first case again.

3 Proof of Theorem 1

In this section we consider a colored graph (G, π) which maximizes the potential Ψ.
We put one unit of charge on each colored edge of G. Let P be a free component

of (G, π). Each edge in con*(P ) sends its charge to P . Morevoer, each edge in
I*(P ) \ con*(P ) sends half its charge to P . By lemmas 9 and 10 each edge sends at
most one unit of charge. Let ch(P ) denote the amount charge sent to P . Then the
number of colored edges in G is at least

∑
P ch(P ) ≥ |E|minP

ch(P )
ch(P )+|E(P )| , where

the summation is over all nontrivial free components in (G, π).

Observation 13. If P is a free component of (G, π) and π′ is a move of π then the
free component P (π′) receives in the coloring π′ the same amount of charge as does
P in π.

Proof. By Lemma 8 for any move π1 ∈ M(P ) there is a move π2 ∈ M(P (π′)) such
that P (π1) = P (π2) and π1|E(I[P (π1)]) = π2|E(I[P (π2)]). Thus con*(P ) = con*(P (π′))
and I*(P ) = I*(P (π′)), hence the claim follows.

Lemma 14. Let P be a free component of (G, π) with |E(P )| = 1. Then P receives
at least ∆(G) charges.

Proof. We will show that for each color a the component P receives at least one
charge from edges colored with a. Suppose that a /∈ π(P ) then each of the two
vertices of P is incident with an edge colored with a. If those edges are distinct then
both belong to I*(P ) and send half of a charge. If this is a single edge then it belongs
to con*(P ) and sends a whole charge. Now suppose that a ∈ π(P ). Let x and y
be the vertices of P , a ∈ π(x) and π(yz) = a. Uncoloring yz and coloring xy is an
elementary move so yz is in con*(P ) and sends its whole charge to P .

Lemma 15. Let P be a free component of (G, π) isomorphic with the 2-path. If both
edges of P are single edges in G then P receives at least 2∆(G) charges.

Proof. Note that if one of the ends of an edge e belongs to W (P ) then e ∈ I*(P ) and
if both ends belong to W (P ) then e ∈ con*(P ). Thus we may say that each colored
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edge sends P half of a charge through each end belonging to W (P ). If |W (P )| ≥ 5
then by Lemma 12 for every color there are at least W (P ) − 1 ≥ 4 vertices sending
P half a charge from an edge of that color. Thus P receives at least 2∆(G) charges.

If W (P ) = 4 then any of the edges of P can be rotated to obtain a component
P ′ containing the vertex in W (P ) \ V (P ). Thus all edges incident with W (P ) and
colored with a color in π(W (P )) belong to con*(P ) and send the whole charge to P .
So for every color there are either 4 vertices sending P half a charge from an edge of
that color or

⌈
3
2

⌉
edges of that color sending P the whole charge. So P receives at

least 2∆(G) charges.

Lemma 16. Let P be a free component of (G, π) consisting of a k-fold xy edge for
k ≥ 2. Assume that |π(P )| = ∆(G). Then either ch(P ) ≥ 2∆(G) or the connected
component of G containing P has exactly three vertices.

Proof. Since |π(x)| + |π(y)| = ∆(G) we see that the sets of colors of edges incident
to x and y are disjoint and sum up to the set of all colors. In particular deg(x)− k+
deg(y)− k = ∆(G). Consider N(P ). If it contains only one vertex z then N(z) ⊂ P
and I[P ] is a connected component with three vertices. Assume that z1 and z2 are
two distinct vertices in N(P ). We can move one of the xy edges to an xzi or yzi
edge obtaining a coloring πi. Thus z1, z2 ∈W (P ) and π(zi) = ∅. Furthermore, since
|πi(Pi)| = ∆(G) we have I[zi] ⊂ con*(P ). So each colored edge in I[N [P ]] sends
its charge to P . Notice that for each color there are at least two distinct edges in
I[N [P ]] colored with this color: one incident with P and one incident with the zi not
connected to P by the first edge. Thus P receives at least two charges from edges of
a given color and hence the assertion.

Lemma 17. Let P be a free component of (G, π) consisting of a k-fold xy edge for
k ≥ 2. Assume that |π(P )| = ∆(G) − 1. Then either ch(P ) ≥ 2∆(G) or there
is an induced subgraph H of G containing P , containing exactly three vertices and
connected with G \H by at most three edges which are all colored with the color not
in π(P ).

Proof. Since |π(x)|+ |π(y)| = ∆(G)−1 we see that the sets of colors of edges incident
to x and y sum up to the set of all colors and have exactly one common element,
denote this color by a. In particular deg(x)− (k+ 1) + deg(y)− (k+ 1) = ∆(G)− 1.
Let N6=a(P ) denote the vertices from N(P ) connected with P by an edge of color
different from a. Consider N6=a(P ). If it contains only one vertex z then N6=a(z) ⊂ P
and the induced subgraph on vertices x, y, z is joined with the rest of the graph by at
most three edges colored with a. Assume that z1 and z2 are two distinct vertices in
N6=a(P ). We can move one of the xy edges to an xzi or yzi edge obtaining a coloring
πi. As in Lemma 16 we obtain that z1, z2 ∈W (P ) and π(zi) ⊂ {a}. Furthermore for
each color different from a there are at least two distinct edges in I[N6=a[P ]] colored
with this color and all of them sent the whole charge to P . It remains to show that
P receives at least two charges from edges colored with a.

If π(z1) = π(z2) = ∅ then there are four vertices in N6=a[P ] incident with an edge
colored with a. Each gives half of a charge, which sums up to two. Since both zi
belong to W (P ) it cannot occur that π(z1) = π(z2) = {a}. Assume that π(z1) = {a}
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and π(z2) = ∅. Both edges colored with a and incident with P are in con(P (π1)) and
send the whole charge to P . We are done, unless this is a single xy edge colored with
a. Assume this is the case, we will complete the proof by showing that the z2w edge
colored with a belongs to con*(P ). Notice that we can move P (π1) by uncoloring the
xy edge colored with a and coloring the uncolored xz1 or yz1 edge and then further
by uncoloring an xz2 or yz2 edge and coloring an xy edge. This way we obtain a
coloring π3 with the property that a ∈ π3(P (π3)), the z2w edge remains colored with
a and z2 is a vertex of P (π3).

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Assume that G does not contain a forbidden subgraph.
We start by showing, that if ∆(G) = 5 then we may additionally assume that G

does not contain a 2K3 as an induced subgraph. Indeed, a 2K3 may be connected
with the rest of G by at most three edges. Replace every copy of the 2K3 in G with
a single vertex of degree at most 3 and color the resulting graph G′ in such way that
at least 5

6 of the edges are colored. Use the partial coloring of G′ to color G. For any
copy of 2K3 the edges ei connecting it with the rest of G have all distinct colors, or
⊥. Color one of the two edges not incident with ei with the color of ei or with any
admissible color if ei is uncolored. Then color two of the three remaining edges with
the two remaining colors. We have colored 5 of the 6 added edges, so the resulting
coloring also has at least 5

6 of the edges colored.
Now it is enough to show that if a coloring π of a graph without a forbidden

subgraph maximizes the potential Ψ then each free component P of π receives at
least |P |∆ charges.

If |P | = 1 then we are done by Lemma 14. Assume that |P | = 2. We will first
consider two special cases and then show that all other cases can be reduced via
Observation 13 to those two cases.

If P is a P2 whose edges are single edges in G then we are done by Lemma 15.
If P is a double edge then either we are done by Lemma 16 or by Lemma 17 or

obtain a forbidden subgraph.
Assume that P has edges xy and yz and there are at least two xy edges in G. Let

a denote the color of a colored xy edge. If a ∈ π(z) then we uncolor the a-colored xy
edge and color the yz edge with a. We obtain a component consisting of a double
edge and we are done. So assume that a /∈ π(z). This means that ∆ = 5 and
a /∈ π(P ). Let π(x) = {b} and π(z) = {c}. Consider the edges ywb and ywc colored
respectively with b and c. If wb = z or wc = x then we can uncolor this edge, color
respectively xy or yz and obtain a component consisting of a double edge. If not
then {x, y}∩{wb, wc} = ∅ and we may move P to a component consisting of ywb and
ywc. We obtain a double edge or two single edges in G and we are done.

To find the desired coloring in polynomial time one should go through following
steps:

1. Collapse all double triangles for ∆(G) = 5.

2. Color the graph using a greedy algorithm.
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3. Reduce the size of free components be using repeatedly lemmas 2 and 4 and
the recolorings described in the proof of those lemmas.

4. Put charges on the edges and let each component collect the required number
of charges. If the sum of charges collected from an edge exceeds 1 then the
potential Ψ is not maximal. Move the involved free component as described in
the proofs of lemmas 9 and 10 to arrive at a point where the potential can be
increased. Then repeat this step. There are only polynomially many possible
values of the potential so this step will be repeated only polynomially many
times.

5. If ∆(G) = 5 then restore all collapsed triangles and color them.

4 Approximation Algorithms

Following [1], let ck(G) be the maximum number of edges of a k-edge-colorable sub-
graph of G. We use the following result of Kamiński and Kowalik.

Theorem 18 ([8]). Let G be a family of graphs and let F be a k-normal family of
graphs. Assume there is a polynomial-time algorithm which for every k-matching H
of a graph in G, such that H 6∈ F finds its k-edge colorable subgraph with at least
α|E(H)| edges. Moreover, let

β = min
A,B∈F

A is not k-regular

ck(A) + ck(B) + 1
|E(A)|+ |E(B)|+ 1

, γ = min
A∈F

ck(A) + 1
|E(A)|+ 1

and δ = min
A,B∈F

ck(A) + ck(B) + 2
|E(A)|+ |E(B)|+ 1

.

Then, there is an approximation algorithm for the maximum k-ECS problem for
graphs in G with approximation ratio min{α, β, γ, δ}.

Since the definition of k-normal family is very technical, we refer the reader to [8]
for its definition. As a direct consequence of Theorem 1 and Theorem 18 we get the
following two results.

Theorem 19. The maximum 4-ECS problem has a 5
7 -approximation algorithm for

multigraphs.

Proof. Let F = {2K3}. It is easy to check that F is 4-normal. Now we give the
values of parameters α, β, γ and δ from Theorem 18. By Theorem 1, α = 4

5 . We have
c4(2K3) = 4 and |E(2K3)| = 6. Hence, β =∞, γ = 5

7 and δ = 10
13 .

Theorem 20. The maximum 5-ECS problem has a 11
15 -approximation algorithm for

multigraphs.

Proof. Let F = {2K3 + e}. It is easy to check that F is 5-normal. Now we give the
values of parameters α, β, γ and δ for Theorem 18. By Theorem 1, α = 5

6 . We have
c5(2K3) = 5 and |E(2K3 + e)| = 7. Hence, β = 11

15 , γ = 3
4 , δ = 4

5 .
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