
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Piotr Hofman

Equivalence of infinite-state systems with silent

steps

PhD dissertation

Supervisor

prof. dr hab. Sławomir Lasota

Institute of Mathematics
University of Warsaw

June 2013

Author’s declaration:
aware of legal responsibility I hereby declare that I have written this dissertation myself
and all the contents of the dissertation have been obtained by legal means.

June 7, 2013 .
date Piotr Hofman

Supervisor’s declaration:
the dissertation is ready to be reviewed

June 7, 2013 .
date prof. dr hab. Sławomir Lasota

iii

Abstract

This dissertation contributes to analysis methods for infinite-state systems. The disser-
tation focuses on equivalence testing for two relevant classes of infinite-state systems:
commutative context-free processes, and one-counter automata. As for equivalence
notions, we investigate the classical bisimulation and simulation equivalences. The
important point is that we allow for silent steps in the model, abstracting away from
internal, unobservable actions. Very few decidability results have been known so far
for bisimulation or simulation equivalence for infinite-state systems with silent steps,
as presence of silent steps makes the equivalence problem arguably harder to solve.

A standard technique for bisimulation or simulation equivalence testing is to use
the hierarchy of approximants. For an effective decision procedure the hierarchy must
stabilize (converge) at level ω, the first limit ordinal, which is not the case for the
models investigated in this thesis. However, according to a long-standing conjecture,
the community believed that the convergence actually takes place at level ω+ω in the
class of commutative context free processes. In Chapter 2 we disprove the conjecture
and provide a lower bound of ω·ω for the convergence level. We also show that all
previously known positive decidability results for commutative context-free processes
can be re-proven uniformly using the improved approximants techniques.

The following Chapter 3 is about an unsuccesfull attack on one of the main open
problems in the area: decidability of weak bisimulation equivalence for commutative
context-free processes. Our technical development of this section is not sufficient to
solve the problem, but we believe it is a serious step towards a solution. Furtermore,
we are able to show decidability of branching (stuttering) bisimulation equivalence, a
slightly more discriminating variant of bisimulation equivalence. It is worth emphesiz-
ing that, until today, our result is the only known decidability result for bisimulation
equivalence in a class of inifinite-state systems with silent steps that is not known to
admit convergence of (some variant of) standard approximants at level ω.

In Chapter 4, the last one, we consider weak simulation equivalence over one-
counter automata without zero tests (allowing zero tests implies undecidability). While
weak bisimulation equivalence is known to be undecidable in this class, we prove a sur-
prising result that weak simulation equivalence is actually decidable. Thus we provide
a first example going against a trend, widely-believed by the community, that simula-
tion equivalence tends to be computationally harder than bisimulation equivalence.

In short words, the dissertation contains three new results, each of them solving a
non-trivial open problem about equivalence testing of infinite-state systems with silent
steps.

v

Acknowledgements

First of all I would like to express my great thanks to my supervisor, Sławomir
Lasota. He put a lot of effort teaching me what does it mean to be a scientist, and what
are principles of working as a researcher. He shared with me enormous amount of
knowledge. I could always rely on him with my problems, even those not scientific. I
admire him for a lot of patience to read and to correct my writings. I could not imagine
a better mentor and I am extremely grateful for those last four years.

I would also like to thank my friends with whom I worked: for their ideas and
questions, for solving some of my problems, and constantly motivating me to work.
Wojciech Czerwiński and Partick Totzke, thank you guys.

Furthermore, I am very grateful to Richard Mayr, Partick’s supervisor who helped
us a lot in our work on one-counter automata. I also wish to thank Diego Figueira with
whom I had a joy to work during my first year of studies. Moreover I would like to
thank Mikołaj Bojańczyk and Damian Niwiński, for their advices, good example and
support.

Finally, huge thanks to my family and friends.

vi

Contents

1 Introduction 1
1.1 Basic Definitions . 3

1.1.1 Processes . 3

1.1.2 Simulation and bisimulation 5

1.1.3 Decision problems . 8

1.1.4 Approximations . 9

1.2 Results . 10

1.2.1 Approximations . 11

1.2.2 Decidability of branching equivalence 12

1.2.3 Decidability of simulation pre-orders 13

1.3 Related research . 13

1.3.1 Plain and commutative context-free processes 14

1.3.2 One-counter automata . 15

2 Approximations of equivalences and pre-orders 17
2.1 Approximating hierarchies . 17

2.1.1 Computability of finite approximants 20

2.2 Simulation and bisimulation via games 22

2.2.1 Approximants via games . 24

2.3 Non-stabilization at level ω . 26

2.3.1 Simulation pre-order over one-counter automata 26

2.3.2 Bisimulation equivalence over commutative context-free pro-
cesses . 27

2.3.3 Other combinations . 30

2.4 Lower bounds for stabilization levels 32

2.5 Decidability via approximation . 38

2.5.1 Pure generators . 41

2.5.2 Unnormed processes over one letter alphabet 43

vii

viii CONTENTS

3 Bisimulation equivalence for commutative context-free processes 45
3.1 Decidability via bounded response property 46

3.1.1 Proof strategy . 48
3.2 Normal form by squeezing . 49

3.2.1 Normal forms . 49
3.2.2 Decreasing transitions . 50
3.2.3 Unambiguous processes . 52
3.2.4 Squeezes . 54
3.2.5 Bounds on normal forms . 59

3.3 Effective bound on normal forms . 62
3.3.1 Proof of Lemma 24 . 63

3.4 Proof of the bounded response property 71
3.4.1 Proof of Theorem 7 . 71
3.4.2 Proof of Theorem 5 . 71

4 Simulation pre-order over one-counter automata 77
4.1 Reduction to ω-automata . 78

4.1.1 Proof of Theorem 10 . 80
4.2 Simulation by ω-automata . 85

4.2.1 Approximants . 85
4.2.2 Computability of finite approximants 92

4.3 Approximant convergence at level ω · ω 97
4.4 Branching pre-order . 99

5 Bibliography 101

Chapter 1

Introduction

We observe recently an increasing interest in methods of formal analysis of computer
systems. A typical approach is twofold: first, a real system is replaced by a finite-state
abstract model, and then the model is analyzed against a correctness criterion. The
number of states of a model is a crucial parameter that one wants to minimize, as the
state-space explosion is the major bottleneck in efficient analysis. One way of avoid-
ing this negative phenomenon is replacing a model by an equivalent one. This leads
to investigation of equivalences of systems, with the emphasis on effective decision
procedures.

Finite-state abstractions are sometimes too weak, as computer systems typically
exhibit infinite-state behaviours. Typical reasons are unboundedness of recursion depth
or the number of concurrently executed threads; other possible reasons behind infinite
state spaces are, among the others, data of unbounded size, or elapse of time. Moreover,
as finite-state abstractions tend to grow in size, their formal verification becomes often
infeasible. This is why it is sometimes arguably more efficient to keep the infinity
of state-space, since it enforces usage of symbolic techniques instead of enumerative
ones. As a toy illustrating example, checking emptiness of a pushdown automaton
using a symbolic algorithm is often less costly than testing emptiness of its finite-
state abstraction obtained by bounding the stack depth, using an exhaustive state-space
exploration.

In this dissertation we investigate two classes of infinite-state systems: commuta-
tive context-free processes, and one-counter automata. The former model is a special
case of labelled Petri nets, while the latter one is a special case of pushdown automata.
In both cases, we allow for silent (i.e. unobservable) steps that abstract away from inter-
nal actions of a system. Presence of silent steps makes analysis arguably harder. This
claim is confirmed by a very few known decidability results for infinite-state systems
with silent steps. As a consequence, there is still a number of open problems in this
area that call for a solution.

1

2 CHAPTER 1. INTRODUCTION

The topic of this dissertation is decidability of equivalence-checking for commuta-
tive context-free processes and one-counter automata. We concentrate on two notions
of equivalences, namely bisimulation equivalence and simulation equivalence, as most
of the other semantics equivalence are undecidable in the models considered in this
dissertation.

A standard technique for bisimulation or simulation equivalence checking is to use
the hierarchy of approximating relations (called approximants in this dissertation), in-
dexed by ordinals. For an effective decision procedure the hierarchy must stabilize
(converge) at level ω, which is not the case for the models we consider. However,
according to a long-standing conjecture, the community believed that the stabilization
actually takes place at level ω+ω for commutative context-free processes. We dis-
prove the conjecture, by providing a suitable counterexample, and thus establishing a
new lower bound of ω·ω for the convergence level. We also show that all decidability
results for commutative context-free processes, known prior to this dissertation, may
be uniformly shown using the hierarchies of standard approximants that stabilize at ω.

Technically, the most involved part of this dissertation is an unsuccessful attempt at
attacking one of the main open problems in the area: decidability of weak bisimulation
equivalence for commutative context-free processes. Our technical development is not
sufficient to solve the problem, but we feel it is a serious step towards a solution. On
the other hand, our framework is sufficient to show decidability of branching (stutter-
ing) bisimulation equivalence, a slightly more discriminating variant of bisimulation
equivalence. It is worth emphasizing that, up to date, our result is the only known de-
cidability result for bisimulation equivalence in a class of infinite-state systems with
silent steps that is not known to admit convergence of (some variant of) standard ap-
proximants at level ω.

Finally, we consider also simulation equivalence and pre-order over one-counter
automata without zero tests (for one-counter automata with zero tests, simulation equiv-
alence and pre-order are undecidable). While weak bisimulation equivalence is know
to be undecidable in this class, we prove a surprising result that weak simulation equiv-
alence (as well as weak simulation pre-order) is actually decidable. Thus we provide
the first example going against a trend, widely-believed by the community, that simu-
lation equivalence tends to be computationally harder than bisimulation equivalence.

The remaining sections of Chapter 1 are devoted to concisely present the main re-
sults of this dissertation. We start by introducing the necessary terminology and defini-
tions, in Section 1.1. Then in Section 1.2 we outline briefly the content of the following
chapters. Afterwards, in Section 1.3 we sketch the wider context of our research. We
also briefly survey state of the art of the field, with emphasis on the relationship be-
tween previously known results and the results presented in this dissertation. Most of
the results contained in this dissertation have been already published in [13, 28, 27].

1.1. BASIC DEFINITIONS 3

1.1 Basic Definitions

1.1.1 Processes

All equivalences investigated by us may be considered over any labelled transition
system. The definitions below assume a finite alphabet Act of transition labels, or
actions. In addition, we always assume that silent transitions are labelled with a special
label ε, such that ε /∈ Act. We shortly write Actε for Act ∪ {ε}.

Definition 1. A labelled transition system (LTS in short) over a finite alphabet Act is a

tuple (N,E) consisting of a possibly infinite set of nodesN and a setE ⊆ N×Actε×
N of edges labelled with symbols from Actε.

Note that the definition allows for self loops and for multiple edges (with dif-
ferent labels) between a pair of nodes. In the sequel we write v

ζ−→ v′ instead of
(v, ζ, v′) ∈ E. For nodes of LTS we will use the name processes, and edges will be
called transitions.

The silent transitions ε−→ will be written concisely as −→ in the sequel, and the
reflexive-transitive closure of ε−→ will be written as =⇒. Thus α=⇒β if a process
β can be reached from α by a sequence of ε−→ transitions.

One typically investigates LTSs that are finitely represented, i.e., induced by a finite
description, like a grammar or an automaton. In this thesis we focus on LTSs induced
by commutative context-free grammars, or by one-counter automata. In both cases, an
infinite set of transitions will be induced by a finite set of transition rules.

Commutative context-free processes. Fix attention to grammars in Greibach nor-
mal form. A commutative context-free grammar is like an ordinary one, with two
differences: first, there is no distinguished initial symbol; second, the right-hand sides
of productions are interpreted as multisets, not words, over the set of nonterminal sym-
bols. In the formal definition below we deliberately use terminology typically used in
process algebra community, rather that that used in formal languages community.

Definition 2. A commutative context free grammar consists of: a finite alphabet Act, a

finite set V of variables, and a finite set of transition rules, each of the form X
ζ−→ α,

where X ∈ V , ζ ∈ Actε, and α is a finite multiset of variables.

A process is any finite multiset of variables, thus a mapping that assigns a finite
nonnegative multiplicity to each variable, and may be understood as the parallel com-
position of a given number of copies of respective variables. In particular the empty

process, denoted ε, is the empty multiset. Let V ⊗ denote the set of all processes,
V ⊗ = NV .

In this thesis we are interested in LTSs induced by grammars, instead of the gener-
ated languages. Denote by α||β the composition of processes α and β, understood as

4 CHAPTER 1. INTRODUCTION

the multiset union. A grammar induces an LTS, with the set of processes V ⊗, and with
transitions defined as follows: for any transition rule X

ζ−→ α in the grammar and for
every process β, the LTS has a transition

β||X ζ−→ α||β.

Example 1. As an illustration consider a grammar over an alphabet Act = {a, b}
(recall that we omit the label ε of silent transition rules):

P −→ ε P −→ P ||A P
b−→ ε P −→ Q

Q −→ ε Q −→ Q||A A
a−→ ε A −→ ε

The induced LTS contains, among other transitions, the following sequence of transi-

tions:

Q||P −→Q||P ||A −→Q||P ||A||A −→ P ||A||A b−→A||A.

Writing Ak for the k-ary composition of the process A,

Ak = A|| . . . ||A︸ ︷︷ ︸,
k times

one obtains, for any k, the transitions Q||P =⇒P ||Ak b−→Ak.

One-counter automata. Now we define one-counter automata, and LTSs they in-
duce. For the purpose of the dissertation it is sufficient to define automata without zero

tests.

Definition 3. A one-counter automaton without zero tests consists of: a finite alphabet

Act, a finite set of control-states Q, and a finite set of transition rules, each of the

form q
ζ,d−→ p, where p, q ∈ Q, ζ ∈ Actε, and d ∈ {−1, 0, 1} encodes a change of the

counter value along the transition.

An automaton induces an LTS, with the set of processes Q × N; the processes
will be written as qm. The transitions are defined as follows: for every transition rule
q

ζ,d−→ p, and every m ∈ N with m+ d > 0, the LTS has a transition

qm
ζ−→ p(m+ d).

Example 2. As an illustration consider an automaton over an alphabet Act = {a, b},
with only one state p and the following transition rules (again, labels of silent transition

rules are omitted):

p
a,1−→ p p

b,−1−→ p p
ε,−1−→ p .

1.1. BASIC DEFINITIONS 5

The induced LTS contains, among other transitions, the following sequence of transi-

tions:

p0
a−→ p1

a−→ p2
b−→ p1

a−→ p2 −→ p1 −→ p0.

Normedness is, intuitively, capability of reaching the empty process or zero counter
value.

Definition 4 (Normed processes). A commutative context-free grammar is normed if

for every process there is a sequence of transitions to the empty one.1 A one-counter

automaton is normed if for every process there is a sequence of transitions to a process

with zero counter value.

For instance, the systems in Examples 1 and 2 are normed.

1.1.2 Simulation and bisimulation

To simplify the definitions, in all LTSs considered in this thesis we assume that every
process α has additionally a silent self-loop α −→ α (including the transition ε −→ ε).

Now we state definitions necessary to formulate our results, namely definitions of
bisimulation equivalence (bisimilarity), as well as simulation pre-order and equiva-
lence. It is widely known that bisimulation and simulation appears in various variants.
In general there are many reasons for this proliferation, but in the dissertation we con-
sider only one: different ways of treating silent transitions. The proliferation motivates
us to separate the part of definition that varies from one variant to another (namely ex-

pansion), from the remaining invariant part, as illustrated in the definition of weak2 and
branching (bi)simulation below. All the definitions in Section 1.1 apply to an arbitrary
fixed LTS (N,E).

We use the notation α
ζ

=⇒β to mean that α=⇒γ ζ−→ γ′=⇒β for some γ, γ′. In
particular, when ζ = ε, the transition ε

=⇒ denotes a finite sequence of silent transi-
tions, maybe the empty one (using a silent self-loop).

Definition 5. Let S ⊆ N × N . A pair (α, β) of processes satisfies weak simulation
expansion wrt. S if for every ζ ∈ Actε:

if α
ζ−→ α′ then β

ζ
=⇒β′ such that (α′, β′) ∈ S.

Definition 6. Let B ⊆ N ×N . A pair (α, β) satisfies weak bisimulation expansion
wrt. B if (α, β) satisfies weak simulation expansion wrt. B, and (β, α) satisfies weak

simulation expansion wrt. B−1.

1In other words, a grammar is normed if every nonterminal generates at least one word. The restriction,
being irrelevant from the language perspective, becomes relevant from the LTS perspective.

2As opposed to strong simulation/bisimulation, which assumes that there are no silent transitions.

6 CHAPTER 1. INTRODUCTION

Unwinding the above definition one obtains: a pair (α, β) satisfies weak bisimula-
tion expansion wrt. B if and only if for every ζ ∈ Actε:

• if α
ζ−→ α′ then β

ζ
=⇒β′ such that (α′, β′) ∈ B;

• if β
ζ−→ β′ then α

ζ
=⇒α′ such that (α′, β′) ∈ B.

The expansion of Definition 5 is asymmetric while the one of Definition 6 is sym-
metric. In consequence, the former one will yield a pre-order on processes, while the
latter one will yield an equivalence of processes, as defined below.

Definition 7. S ⊆ N ×N is weak simulation if every pair (α, β) ∈ S satisfies weak

simulation expansion wrt. S. Weak pre-order is the union of all weak simulations.

Definition 8. B ⊆ N × N is weak bisimulation if every pair (α, β) ∈ B satis-

fies weak bisimulation expansion wrt. B. Weak equivalence is the union of all weak

bisimulations.

We thus prefer to write shortly weak pre-order and weak equivalence, instead of weak

simulation pre-order and weak bisimulation equivalence, respectively.

In other words, processes α and β are related by weak pre-order, if there exists a
weak simulation S containing (α, β). Similarly, processesα and β are weak equivalent,
if there exists a weak bisimulation B containing (α, β). In general, weak equivalence
in finer than the symmetric part of weak pre-order. In other words, two simulations in
both directions do not imply existence of bisimulation. The symmetric part of weak
pre-order is called weak simulation equivalence in the literature.

Proposition 1. Weak pre-order is a pre-order indeed, and weak equivalence is an

equivalence indeed.

Proposition 2. Weak pre-order is the greatest weak simulation, while weak equiva-

lence is the greatest weak bisimulation.

The latter proposition follows immediately from Knaster-Tarski Fixpoint Theorem.
Indeed, weak simulation expansion defines a monotonic refinement function

S 7→ exp(S) (1.1)

which takes an arbitrary binary relation S over processes to the relation

exp(S) = {(α, β) : (α, β) satisfies weak simulation expansion wrt. S}.

With this notation weak simulations are exactly those relations S that satisfy

S ⊆ exp(S)

1.1. BASIC DEFINITIONS 7

and weak pre-order is the greatest fixed point of the refinement function (1.1). Similar
facts hold for weak bisimulation expansion as well.

In presence of silent transitions, weak simulation and bisimulation are not the
unique choices. The best known among the competitors are branching simulation and
branching bisimulation, to be defined now. We will exploit the fact that Definition 7
is universal, and makes sense not only for weak simulation expansion, but also for
branching simulation expansion, to be defined now:

Definition 9. Let S ⊆ N × N . A pair (α, β) of processes satisfies the branching
simulation expansion wrt. S if for every ζ ∈ Actε:

if α
ζ−→ α′ then β=⇒β̄ ζ−→ β′ such that (α, β̄) ∈ S and (α′, β′) ∈ S.

(Note that β̄ may be equal to β′, due to silent self-loops.)

By substituting the new expansion in place of weak simulation expansion in Def-
inition 7, we obtain branching pre-order. Furthermore, Definition 6 may be adapted
similarly to the new expansion, yielding branching bisimulation expansion:

Definition 10. Let S ⊆ N × N . A pair (α, β) of processes satisfies the branch-
ing bisimulation expansion wrt. S if (α, β) satisfies branching simulation expansion

wrt. S and (β, α) satisfies branching simulation expansion wrt. S−1.

Then one obtains in turn branching equivalence, due to the analogous adaptation
of Definition 8. Propositions 1 and 2 still hold if ’weak’ is replaced by ’branching’.

Branching equivalence (resp. pre-order) is finer than the weak counterpart, as it
essentially requires that along a matching sequence of transitions β=⇒β̄ a−→ β′, the
bisimulation class is only changed once (via the last transition). Indeed, if two branch-
ing equivalent processes β and β̄ are related by a sequence of silent transitions β=⇒β̄
then all intermediate processes are also equivalent to β (and β̄)3 . Thus in general there
are the following inclusions between the relations (arrows stand for ’finer than’):

weak pre-order

weak equivalence

33

branching pre-order

kk

branching equivalence

33kk

When there is no silent steps (apart from self-loops), weak and branching semantics
clearly coincide. We may say thus about the bisimulation equivalence, and the simula-
tion pre-order.

3The same fact holds for weak equivalence too. (Lemma 4.)

8 CHAPTER 1. INTRODUCTION

Example 3. As an illustration of differences between weak equivalence and branching

equivalence, consider the following grammar:

A −→ ε A
a−→ ε

B −→ ε B −→ A B
a−→ A

and two processes B and A||A. The two processes are easily seen to be in weak

equivalence. On the other hand, they are not branching equivalent (even not related by

branching pre-order), as the transition

B −→ ε

can not be matched properly. A natural candidate for a matching sequence, namely the

sequence A||A −→A −→ ε, does not satisfy the requirement of branching bisimula-

tion expansion, as its second last process A is not branching equivalent to B. Another

possible candidate, namely A||A=⇒ε −→ ε, doesn’t work either for similar reasons.

1.1.3 Decision problems

This thesis is about few instantiations of the following generic pattern of decision prob-
lems, parametrized by a class C of finitely representable LTSs and a notion≡ of equiv-
alence or pre-order:

INPUT: an LTS from the class C and two processes α and β

QUESTION: Does α ≡ β hold ?

We focus on the following instantiations:

• weak and branching equivalence for commutative context-free processes;

• weak and branching pre-order for one-counter automata without zero tests.

Clearly, the choice of these decision problems is not accidental. Decidability status
of the four problems has been unknown until recently. In this thesis we describe so-
lutions of three of them; decidability of weak equivalence over commutative context-
free processes remains open.4 Decidability status of three of the other combinations,
namely pre-orders on commutative context-free processes, and weak equivalence over
one-counter automata, are already known (decidability of branching equivalence is still
unknown). Furthermore, all other reasonable semantic equivalences or pre-orders are
undecidable for both models, even without silent steps, as well as for other natural

4We claim however that we have done a substantial progress towards a solution of this long-standing
open problem.

1.1. BASIC DEFINITIONS 9

models, like pushdown automata or labeled Petri nets. The detailed discussion of the
area, with emphasis on the relationship between our contribution and previously known
results, is contained in Section 1.3.

1.1.4 Approximations

For any of expansions defined so far (and for many others) we may define a hierarchy
of relations that approximate the equivalence (resp. pre-order) from above.

Definition 11 (approximants). Define the family of relations Rκ ⊆ N ×N indexed by

ordinals κ ∈ Ord.

• R0 = N ×N contains all pairs of processes (α, β);

• (α, β) ∈ Rκ+1 if and only if (α, β) satisfies expansion wrt. Rκ;

• for a limit ordinal κ, we define Rκ =
⋂
λ<κRλ.

Note that we could define Rκ+1 using the refinement function defined in (1.1) as
Rκ+1 = exp(Rκ).

The above definition is generic, as it does not specify which particular expansion is
used. It may be actually instantiated with any of simulation or bisimulation expansions
defined in Section 1.1.2. In each case, the hierarchy forms a decreasing chain of rela-
tions that finally stabilizes and hence converges to the appropriate notion of pre-order
or equivalence, by Knaster-Tarski Fixpoint Theorem. Formally speaking:

Definition 12. For a class of LTSs, we say that the hierarchy of approximants (Rκ)κ∈Ord
stabilizes (converges) at ordinal λ if for every LTS from the class, Rλ = Rλ+1.

In general, however, the hierarchy may stabilize far beyond the first infinite ordinal
ω. This is provably the case for weak and branching, simulation and bisimulation
expansions, on the classes of LTSs induced by commutative context-free grammars or
one-counter automata.

Example 4. For illustration consider again the grammar form Example 3, and the

hierarchy of approximants (Rκ)κ induced by weak bisimulation expansion. Clearly the

pair (A, ε) is inR0 but not inR1, as ε has no a-transition. Similarly, the pair (A||A,A)

is in R1 but not in R2, as the only possibility of matching the transition A||A a−→A is

A
a−→ ε. Intuitively speaking, processes A||A and A can not be distinguished at level

1 but can be so at level 2. Generally, if n > m then the pair (An, Am) is in Rm but

not in Rm+1, thus the hierarchy is strict on finite ordinals. Finally, for this particular

transition system the hierarchy stabilizes at ω, i.e. the relation Rω coincides with weak

equivalence.

10 CHAPTER 1. INTRODUCTION

The aim of introducing approximants is that they are typically decidable for finite
ordinals. On the other hand, decidability is usually hard to prove beyond ordinal ω.
This motivates introducing faster approximants, which converge to the same relation.
To state our results for weak equivalence we need to define two hierarchies of faster
approximants. For one of them we need to extend the relation a

=⇒ to words w ∈ Act∗:
let α a1...an=⇒ β if α a1=⇒γ1

a2=⇒ . . . γn−1
an=⇒β for some γ1, . . . , γn−1.

Formally speaking, the symbol ε
=⇒ is a notational clash as it has been actually

defined twice: for the silent action ε ∈ Actε, as well as for the empty word ε ∈ Act∗.
Fortunately, the two definitions coincide, and amount to a finite sequence of silent
transitions.

Definition 13. Let S ⊆ N × N . A pair (α, β) of processes satisfies the long weak
simulation expansion wrt. S if for every ζ ∈ Actε:

if α
ζ

=⇒α′ then β
ζ

=⇒β′ such that (α′, β′) ∈ S.

Definition 14. Let S ⊆ N × N . A pair (α, β) of processes satisfies the word weak
simulation expansion wrt. S if for every w ∈ Act∗:

if α w
=⇒α′ then β w

=⇒β′ such that (α′, β′) ∈ S.

In the last definition the quantification could also range over w ∈ Act∗ε , instead of
w ∈ Act∗. This would define the same notion of expansion, due to our assumption that
every process has a silent self-loop.

As before, we naturally obtain symmetric versions of the expansions: long (resp.
word) weak bisimulation expansion. Interestingly, the two new expansions give rise
to precisely the same notion of bisimulation, namely weak bisimulation, and thus to
the same weak equivalence (the same holds for simulation). On the other hand, sur-
prisingly, the hierarchies of approximants differ: in general, word weak bisimulation
expansion yields faster convergence than long weak bisimulation expansion, and the
latter yields faster convergence than weak bisimulation expansion.

For κ = 1, the relation Rκ induced by word weak simulation (resp. bisimulation)
expansion is trace5 inclusion (resp. equivalence). Both relations are undecidable in
models considered in this thesis.

There are also branching analogues of the weak expansions defined above.

1.2 Results

Our results are described in detail in Chapters 2–4 of this thesis. The first two chap-
ters focus mostly on normed commutative context-free processes: in Chapter 2 we

5Trace inclusion is the special case of language inclusion, when all states are accepting.

1.2. RESULTS 11

investigate different hierarchies of approximating relations for weak and branching
equivalence, and then in Chapter 3 we prove decidability of branching equivalence.
Decidability of weak equivalence remains an open problem, in fact one of the main
open problems in equivalence checking for infinite-state systems. Finally, in Chap-
ter 4 we prove decidability of weak and branching pre-orders for one-counter automata
without zero tests. The three chapters are based on the results of papers [28, 13, 27],
respectively.

Below we outlined the content of Chapters 2–4 in detail.

1.2.1 Approximations

In Chapter 2 we investigate various hierarchies of approximants for weak and branch-
ing equivalence over commutative context-free processes. Our study is twofold: we
investigate both limitations and usefulness of standard approximants, for instance those
introduced in Section 1.1.4. On one hand, we prove high inapproximability of weak
equivalence, by providing examples showing that the hierarchies of approximants do
not stabilize up to large ordinals. On the other hand, we prove that all decidability
results known prior to this thesis for subclasses of commutative context-free processes
may be re-proved using ω-stabilization of one of the hierarchies of decidable approxi-
mants. Thus the general conclusions from this results are quite disappointing.

Chapter 2 contains a number of results. Below we formulate two of them, illustrat-
ing both the limitations and usefulness of approximants.

Concerning the former aspect, we prove the following theorem, thus disproving the
conjecture of Hirsfeld and Jančar that approximants induced by long weak bisimulation
expansion stabilize at ordinal ω + ω.

Theorem. The hierarchy of approximants induced by long weak bisimulation expan-

sion does not stabilize below level ω2 in the class of normed commutative context-free

processes.

We also demonstrate that even the fastest hierarchy, namely that induced by word
expansion, does not stabilize below ω + ω.

Concerning the usefulness of approximations, we demonstrate that the non-trivial
decidability proof of Stirling [53] for a subclass of commutative context-free processes
may be re-done using the approximants.

Theorem. The hierarchy of approximants induced by long weak bisimulation expan-

sion does stabilize at level ω in the subclass investigated in [53].

The word expansion is the only one among the expansions defined in Section 1.1.2
that is not effective in the class of commutative context-free processes; indeed, already

12 CHAPTER 1. INTRODUCTION

on the first level it expresses trace equivalence, which is undecidable even for com-
mutative context-free grammars without silent steps. In Chapter 2 we propose a new
expansion that is effective, and surprisingly, very close to the word weak expansion.

1.2.2 Decidability of branching equivalence

The following theorem, whose proof occupies almost entire Chapter 3, is probably the
most difficult to prove among the result of this thesis:

Theorem. Branching equivalence is decidable over normed commutative context-free

processes.

The decision procedure consists of two separate semi-decision procedures. The
positive one is entirely standard and known well in advance, and builds on two funda-
mental facts:

• congruences over Nk are semilinear;

• Presburger’s arithmetic is decidable.

Branching equivalence is a congruence. Hence the first fact we know that if there is a
branching bisimulation witnessing equivalence, then there is also a semilinear one.
Branching bisimulation expansion property is expressible in Presburger arithmetic,
hence the positive procedure enumerates all semilinear relations and checks them for
being a branching bisimulation. The same procedure works for weak equivalence as
well.

The whole contribution of Chapter 3 is thus to provide a negative semi-decision
procedure for branching equivalence. Concerning the approximants, we know that the
hierarchy induced by branching bisimulation expansion does not stabilize at level ω;
moreover, the hierarchy induced by the branching analogue of long weak bisimulation
expansion is not known do stabilize at level ω. Thus the proof cannot be based on
standard techniques.

Our way of proving decidability is by bounded response property, which says that
whenever α and β are branching equivalent, they necessarily satisfy a sharpening of
branching bisimulation expansion. Namely, there is a constant c ∈ N such that the size
of β̄ in Definition 9 is at most c times greater than the size of α, and similarly for the
size of β′ compared to the size of α′. Furthermore, the constant c may be effectively
computed from the input grammar.

Our approach may be understood as proposing a new non-standard expansion, call
it c-branching bisimulation expansion; the clue here is clearly to show correctness of
this new expansion with respect to the branching equivalence, the main technical core
of the proof. Once the correctness is proved, we easily get the negative semi-decision
procedure due to the following simple facts:

1.3. RELATED RESEARCH 13

• the hierarchy of approximants induced by c-branching bisimulation expansion
stabilizes at ω;

• finite approximants in this hierarchy are decidable.

The proof presented in Chapter 3 required developing a framework that includes,
among the others, a result on transforming a process into a normal form of bounded
size. It is worth emphasizing that most of this development works for weak equivalence
just as well. In particular, weak equivalence also satisfies bounded response property.
However, we were not able to estimate the constant c effectively in this case. Clearly,
any such estimation would immediately lead to decidability of weak equivalence.

1.2.3 Decidability of simulation pre-orders

Here is the second main results of this thesis, proved in Chapter 4:

Theorem. Over processes of one-counter automata without zero tests, weak and branch-

ing pre-orders are effectively semilinear and thus decidable.

As a corollary one obtains decidability of weak (resp. branching) simulation equiv-

alence, defined as the symmetric part of weak (resp. branching) simulation pre-order.
On technical level, we propose a new effective notion of simulation expansion. The

notion is intricate: in order to compute each next approximant one needs to solve, as
a subroutine, the pre-order problem for one-counter automata without zero tests and
without silent transitions6. This time our technique works, equally well, both for weak
and branching pre-order.

It has been widely observed that bisimulation equivalence tends to be computation-
ally less expensive than the analogous simulation pre-order. Theorem 8, surprisingly,
presents an exception in this trend: while weak equivalence is undecidable, weak pre-
order is decidable for one-counter automata without zero tests. As far as we know, this
is the only natural class of infinite-state systems that exhibits this exceptional property.

1.3 Related research

Decidability questions for infinite-state systems, such as Petri nets, pushdown au-
tomata, or process algebras, have been investigated since 70ies. However, the real
interest has been attracted since the discovery by Beaten, Bergstra and Klop [2, 3], in
late 80ies, that bisimulation equivalence [45, 52] is decidable, under normedness as-
sumption, for plain (non-commutative) context-free processes. This result initiated a
successful line of research, in a substantial part devoted to plain context-free processes,
and commutative context-free processes. An excellent reference concerning the early

6Decidability of this problem has been shown in [1] and in [39], as we discuss in detail in Section 1.3.2.

14 CHAPTER 1. INTRODUCTION

results on both classes is Chapter 9 of [46]. Both commutative and plain context-free
processes have been classified in the so called Process Rewrite Systems (PRS) hierar-
chy by Mayr [43], as special cases of Petri nets and pushdown processes, respectively.
An exhaustive survey on decidability and complexity of bisimulation equivalence in all
PRS classes is [50].

Except for bisimulation equivalence and simulation pre-order, there are other rele-
vant semantic equivalences and pre-orders on processes. A widely accepted taxonomy
of those is contained in [16], in absence of silent steps; extension of this taxonomy to
systems with silent steps is given in [17].

1.3.1 Plain and commutative context-free processes

Both for commutative and plain context-free grammars, even in the normed case, all se-
mantic equivalences and pre-orders from van Glabbeek’s spectrum, except from bisim-
ulation equivalence, are undecidable. This negative result was shown by Hüttel in [30]
and [22] for commutative processes, and in [18] and [31] for non-commutative ones.
Bisimulation equivalence is thus the only interesting one, from the point of view of
decidability.

Plain context-free processes. This class is also often called Basic Process Algebra,
see for instance [46]. For unnormed processes without silent steps, decidability of
bisimulation equivalence has been first shown by Christensen, Hüttel and Stirling in [9].
The best known upper bound on complexity is 2-EXPTIME, shown by Burkart, Caucal
and Steffen [6] (see also the recent simpler proof [36]). On the other hand EXPTIME
is the best known lower bound for complexity of this problem, shown recently by
Kiefer [41].

On normed context-free processes without silent steps, bisimulation equivalence
can be solved in polynomial time, as proved by Hirshfeld, Jerrum and Moller in [24]
(full version in [25]). The decision procedure runs in time O(n13). This breakthrough
paper was followed by a sequence of improvements [42, 14], culminating in the best
currently known algorithm, described in Czerwiński’s PhD thesis [10], running in time
O(n4polylog(n)).

On the other hand, very little is know about context-free processes with silent
steps. Examples of partial positive result are decidability of weak equivalence [23]
and branching equivalence [29, 23] in the subclass of totally normed context-free pro-
cesses. Decidability status of weak and branching equivalence in the whole class, or
even for normed processes, remains an intriguing open problem.

Commutative context-free processes. This class is also often called Basic Parallel

Processes [7]. Consider processes without silent steps now. The first positive results

1.3. RELATED RESEARCH 15

was decidability of bisimulation equivalence by Christensen, Hirshfeld and Moller [8].
The decidability has been later reproved, using the result of Hirshfeld [21], indepen-
dently shown by Jančar [33], stating that every congruence on a finitely generated
commutative semigroup is finitely generated (and semilinear). The bisimulation equiv-
alence is PSPACE-complete, due to [49] and [35].

Under normedness assumption, but still without silent steps, bisimulation equiva-
lence is solvable in polynomial time, as shown by Hirshfeld, Jerrum and Moller in [26].
A fast decision procedure running in time O(n3) has been later given in [37] by Jančar
and Kot. Existence of separate polynomial time procedures for commutative and non-
commutative context-free processes revealed apparent similarities between the two
classes of systems; despite this similarities, the decision procedures in [24] and [26]
were entirely different. This raised a question about a common framework to cap-
ture both commutative and non-commutative processes. A successful answer appeared
in [11, 12], in terms of partially-commutative context-free processes.

Now we move to commutative context-free processes with silent steps. Similarly as
for non-commutative processes, not much is known about decidability status of weak
or branching equivalence.

Concerning decidability results for restricted subclasses, totally normed processes
have been investigated in [23]. Decidability of weak equivalence was shown by Stir-
ling [53], under a restriction on generators in a grammar. This restricted subclass is
interesting since, as opposed to totally normed processes, the standard approximants
do not stabilize at ω in this class. A simpler decidability proof have been given in [28]
by demonstrating that approximants induced by long weak expansion do stabilize in
the subclass of [53] at level ω. Yet another subclass was investigated by Jitka Stribrna
in her PhD thesis [54], under restriction to singleton alphabets and non-zero norms;
approximants induced by long weak expansion converge in this subclass only at level
ω + ω. Again, a simpler decidability proofs have been given in [28] by demonstrat-
ing that approximants induced by an effective variant of word weak expansion, a new
expansion introduced in [28], do stabilize at ω. The results of [28] are described in
Chapter 2 of this thesis.

Decidability of weak equivalence for commutative context-free processes, even
under normedness assumption, remains a major open problem, similarly as for non-
commutative processes. However, branching equivalence has been recently shown de-
cidable in [13]. The proof is the topic of Chapter 3 of this thesis.

1.3.2 One-counter automata

One-counter automaton is a special case of pushdown automaton (singleton stack al-
phabet); if an automaton has no zero tests, as assumed in this thesis, it is also a special
case of labelled Petri net (a net with one unbounded place).

16 CHAPTER 1. INTRODUCTION

Most of semantic equivalences and pre-orders from van Glabbeek’s spectrum are
undecidable for Petri nets, as well as for one-counter automata with zero tests, even
without silent steps. For Petri nets, the undecidability result due to Jančar [33] applies
to all equivalences in van Glabbeek’s spectrum. For one-counter automata with zero
tests, undecidability of simulation pre-order was given by Jančar, Moller and Sawa
in [40], and trace equivalence was known to be undecidable since 70’s [56]. As the
only positive result, Jančar showed that bisimulation equivalence is decidable [34],
using a nice geometrical technique of coloring.7 Thus the two models are quite hard
to analyze, which motivates searching for an interesting but simpler subclasses. One-
counter automata without zero tests seem to be a reasonable choice.

A result relevant for this thesis is that simulation pre-order is decidable for one-
counter automata without zero tests, which was shown by Abdulla and Cerans in [1];
a much simpler proof, based again on a coloring technique, has been given soon af-
terwards by Jančar and Moller [39]. The complexity of the problem is still unknown,
except for the PSPACE lower bound shown in [51]. On the other hand, trace equiva-
lence remains undecidable even without zero tests, as recently shown in [27].

In view of the above results, an interesting question arises whether decidability
of bisimulation equivalence and simulation pre-order is preserved when silent steps
as allowed. For the bisimulation equivalence, the negative answer has been given by
Mayr [44]: weak equivalence is undecidable, even for normed automata. Decidabil-
ity of weak pre-order remained an open problem since more than a decade, until it
has been recently solved positively by Hofman, Mayr and Totzke, who showed de-
cidability of weak (resp. branching) pre-order in [27]. This result, together with its
adaptation to branching pre-order, is the topic of Chapter 4 of this thesis. It is worth
stressing that our result closes the last open question concerning equivalence- or pre-
order-checking of one-counter automata with silent transition rules. As explained in
the introduction, the decidability of weak pre-order, combined with undecidability of
weak equivalence, contradict the common trend that simulation problems tend to be
computationally harder than bisimulation problems.

A somewhat separate line of research focused on analysis of deterministic one-
counter automata, where bisimulation equivalence (resp. simulation pre-order) coin-
cides with trace equivalence (resp. trace inclusion). Several decidability and complex-
ity results have been obtained in deterministic case, see for instance [5, 19, 20, 55]; ba-
sically for deterministic automata both weak pre-order and weak equivalence are solv-
able in logarithmic space. Equivalence of deterministic one-counter automata is a spe-
cial case of famous equivalence of deterministic pushdown automata which, after being
an open question for few decades, was proved decidable by Senizeurges in [47, 48].

7Recently, the problem has been shown PSPACE-complete in [4], and even in NL for deterministic
automata [5].

Chapter 2

Approximations of equivalences
and pre-orders

The following three sections, namely Sections 2.1 – 2.3, are preparatory ones before
formulating and proving the results of this chapter. In Section 2.1 we analyze how dif-
ferent approximating hierarchies relate to each other, and to the corresponding equiva-
lence or pre-order. In addition to the expansions defined before, we will also introduce
a new one, namely multiset expansion. Furthermore we discuss computability of finite

approximants, i.e. those indexed by finite ordinals. Then in Section 2.2 we recall well-
known characterizations of equivalences and pre-orders in terms of games, in the style
of Bisimulation Game of [45, 53].

In Section 2.3 few simples example LTSs are presented as witnesses of non-stabili-
zation of various approximating hierarchies over commutative context-free processes
and over one-counter automata. These examples are either known from the literature,
or may be easily deduced.

The last two sections present the contribution of this chapter. In Section 2.4 we
prove new lower bounds for stabilization level of weak bisimulation approximants over
normed commutative context-free processes. Finally, in Section 2.5 we investigate two
restricted subclasses of commutative context-free processes studied in the literature, for
which decidability of weak equivalence has been established before. For each of them,
we prove that some of approximating hierarchies stabilizes at level ω, thus immediately
reproving the decidability of weak equivalence.

2.1 Approximating hierarchies

As we argue below, the word expansion admits the fastest convergence among all ex-
pansions defined so far. On the other hand, it is the only expansion that is not effective,

17

18 CHAPTER 2. APPROXIMATIONS OF EQUIVALENCES AND PRE-ORDERS

namely one can not decide finite approximants. We claim one can find a consensus
between the convergence speed and effectiveness. We define below a new expansion
that is quite similar to word expansion on one hand, and on the other hand it admits
a decision procedure for finite approximants. The expansion is called multiset weak

simulation expansion as it requires the matching move to agree only up to the multiset
of alphabet letters, instead of the word. Later in Section 2.5.2 we will use the hierarchy
induced by multiset weak bisimulation expansion, the symmetric version, to re-prove
one of partial decidability result known in the literature.

For a word w ∈ Act∗ε , the observable Parikh image P (w) of w is the multiset of
letters of Act appearing w. Formally, the cardinality of a letter a ∈ Act in the multiset
P (w) is the same as the number of occurrences of a in w. Note that we deliberately
ignore the occurrences of the silent action ε in w. For example, P (εababaaεε) =

P (aaaεabb).

Definition 15. Let S ⊆ N × N . A pair (α, β) satisfies multiset weak simulation
expansion wrt. S if for every w ∈ Act∗:

if α w
=⇒α′ then β v

=⇒β′ such that (α′, β′) ∈ S and P (w) = P (v).

Similarly as before, one obtains multiset weak bisimulation expansion as a symmetric
version of the above definition.

Before we relate approximating hierarchies induced by different expansions, let’s
establish a bundle of notation that is used in this and the following chapters. First, the
equivalences and pre-orders will be denoted by the following symbols:

≈ weak equivalence
' branching equivalence
4 weak pre-order
� branching pre-order

Second, we will use ordinals κ in lower indices to denote the approximants induced
by the expansions corresponding to an equivalence or pre-order at hand:

approximants induced by

≈κ weak bisimulation expansion
'κ branching bisimulation expansion
4κ weak simulation expansion
�κ branching simulation expansion

Finally, as there are typically several different expansions defining the same equiv-
alence or pre-order, and hence also several different approximating hierarchies, we will
use additional symbols to specify a particular expansion. The following table defines
notation for approximants induced by different weak bisimulation expansions, which
will be the most intensively investigated in the sequel.

2.1. APPROXIMATING HIERARCHIES 19

approximants induced by

≈κ weak bisimulation expansion
L
≈κ long weak bisimulation expansion
M
≈κ multiset weak bisimulation expansion
W
≈κ word weak bisimulation expansion

Along the same lines one can define notation for approximants induced by other expan-
sions: ', L', 4,

L

4,
M

4,
W

4, �,
L

� (recall that we did not define all variants of branching
simulation/bisimulation expansions, and it is not straightforward to define its word and
multiset variants).

Lemmas 1 and 2 below apply to any LTS.

Lemma 1. For every ordinal κ,

≈ ⊆
W
≈κ ⊆

M
≈κ ⊆

L
≈κ ⊆ ≈κ .

Proof. The first inclusion ≈ ⊆
W
≈κ follows easily by transfinite induction on ordinal κ,

knowing that weak equivalence≈ is the fixed point of the refinement function (cf. (1.1)
in Section 1.1.2) induced by word weak bisimulation expansion, and that the refinement
is monotonic.

Out of the remaining inclusions we will only prove one, say
M
≈κ ⊆

L
≈κ, as the

remaining ones are shown similarly. The proof is again by transfinite induction. For
a limit ordinal κ the inclusion follows directly, as

M
≈κ ⊆

L
≈k for all k < o. For the

successor ordinal, assume
M
≈κ ⊆

L
≈κ, aiming at showing

M
≈κ+1 ⊆

L
≈κ+1. We will use

two easy observations about the refinement functions induced by both expansions (as
in (1.1)), call them

M
exp and

L
exp:

• For every fixed relation R, the results of the two refinement functions are related
by inclusion:

M
exp(R) ⊆ L

exp(R).

• Both the refinement functions are monotonic: R ⊆ S implies
M

exp(R) ⊆ M
exp(S),

and
L

exp(R) ⊆ L
exp(S).

Using the above observations we derive the inclusion
M
≈κ+1 ⊆

L
≈κ+1 in few steps:

M
≈κ+1 =

M
exp(

M
≈κ) ⊆ L

exp(
M
≈κ) ⊆ L

exp(
L
≈κ) =

L
≈κ+1 .

The first inclusion follows by the first item above, and the second one by the second
item together with the induction assumption. 2

Recall that we denote the class of all ordinals by Ord.

Lemma 2. ≈ =
⋂
κ∈Ord

W
≈κ =

⋂
κ∈Ord

M
≈κ =

⋂
κ∈Ord

L
≈κ =

⋂
κ∈Ord ≈κ.

20 CHAPTER 2. APPROXIMATIONS OF EQUIVALENCES AND PRE-ORDERS

Proof. The chain of inclusions holds by transfinite induction using Lemma 1. The
equality between ≈ and

⋂
κ∈Ord ≈κ follows by Knaster-Tarski Fixpoint Theorem,

applied to the refinement function (1.1) induced by weak bisimulation expansion. 2

Analogs of Lemmas 1 and 2 hold also for weak simulation pre-order. Namely, for
every ordinal κ we have

4 ⊆
W

4κ ⊆
M

4κ ⊆
L

4κ ⊆ 4κ

and moreover

4 =
⋂

κ∈Ord

W

4κ =
⋂

κ∈Ord

M

4κ =
⋂

κ∈Ord

L

4κ =
⋂

κ∈Ord
4κ

Furthermore, analogs of Lemmas 1 and 2 hold also for branching equivalence and pre-
order. We focus on plain and long expansions only. For every ordinal κ we have

' ⊆ L'κ ⊆ 'κ and � ⊆
L

�κ ⊆ �κ

and moreover

' =
⋂

κ∈Ord

L'κ =
⋂

κ∈Ord
'κ and � =

⋂
κ∈Ord

L

�κ =
⋂

κ∈Ord
�κ .

All the proofs are exactly the same as the proofs of Lemmas 1 and 2.

2.1.1 Computability of finite approximants

In this section we focus on LTSs induced by commutative context-free grammars.
We will show that for finite ordinals κ < ω, the approximants induced by plain/
long/multiset weak/branching simulation/bisimulation expansions are effectively com-
putable. In particular this means that all these relations admit finite representations.
(In fact a similar computability result is also valid for LTSs induced by one-counter
automata without zero tests.)

On the other hand, finite approximants induced by all the variants of word expan-
sions are not computable for both models. Indeed, already for κ = 1 the approximat-
ing relation is trace inclusion or trace equivalence, both undecidable for commutative
context-free processes as well as for one-counter automata without zero tests (even
without silent transitions).

For computability we will use Presburger arithmetic, i.e. the first order theory of
natural numbers with addition. A set R ⊆ Nk of k-tuples of natural numbers is said
to be Presburger-definable if there is a Presburger formula φR(x1, x2, . . . , xk) with k

2.1. APPROXIMATING HIERARCHIES 21

free variables such that

φR(n1, n2, . . . , nk) ⇐⇒ (n1, n2, . . . , nk) ∈ R.

It is well-known that it is decidable if a given a Presburger formula φ without free
variables is valid. Thus Presburger-definable sets are decidable.

Assuming an arbitrary linear order on variables of a commutative context-free
grammar, processes of a grammar with k variables are tuples from Nk. Thus any bi-
nary relation R over such processes is a subset of N2k. (Similarly, any binary relation
over processes of a one-counter automaton may be seen as a family of |Q|2 subsets of
N2, where n is the number of states.) We will focus on the approximating hierarchy in-
duced by one of expansions, say multiset weak simulation expansion (other expansions
may be treated similarly), and will show that for finite ordinals κ, the approximants

M

4κ
are Presburger-definable. Moreover, we claim that a Presburger formula defining

M

4κ
may be effectively constructed, given a commutative context-free grammar and a finite
ordinal κ. We will build on an immediate corollary of the result of [15] (Theorem 3.3),
stated as a lemma below. For k the number of variables and l the cardinality of Act, by
the reachability relation we mean the set of all triples

(α,m, β) ∈ Nk × Nl × Nk = N2k+l

such that there is a path from α to β labelled by a word w ∈ Actε whose observable
Parikh image is m, P (w) = m.

Lemma 3. Given a commutative context-free grammar, one may compute a Presburger

formula defining the reachability relation.

Using the above lemma, the proof of computability of approximants
M

4κ is by in-
duction on a finite ordinal κ. For κ = 0 the claim is obviously true as the relation
M

40 contains all pairs of processes. Assuming that we have already constructed a Pres-
burger formula ψ for

M

4κ, we will now describe a formula defining
M

4κ+1. Recalling

that
M

4κ+1=
M

exp(
M

4κ) is the refinement of
M

4κ, we simply encode the definition of mul-
tiset weak simulation expansion in Presburger arithmetic (we denote by r the formula
defining the reachability relation):

∀α′,m. r(α,m, α′) =⇒ ∃β′. r(β,m, β′) ∧ ψ(α′, β′).

The symbols α, β, etc. stand for vectors of variables of length k; similarly m stands for
a vector of variables of length l.

22 CHAPTER 2. APPROXIMATIONS OF EQUIVALENCES AND PRE-ORDERS

2.2 Simulation and bisimulation via games

This section is devoted to characterization of equivalences and pre-orders defined so far,
in term of games played between Spoiler and Duplicator. The definitions are in the style
of bisimulation game of [45, 52]. Analogous characterizations will be provided for
approximants as well. The game characterizations will be useful later as a convenient
tool in the proofs.

The games we consider in this thesis are played in rounds. Different notions of
expansion will lead to different variants of game. On one hand, the overall structure of
the game will remain intact when changing one expansion into another; on the other
hand, the definition of a single round of a game will change accordingly. This is why
we start with a generic definition that does not specify the round at all, and then we
provide definitions of a single round that correspond to particular expansions. The
definition below applies to an arbitrary LTS (N,E).

Definition 16 (abstract game). The game is played by two players, Spoiler (she) and

Duplicator (he), over an arena N × N consisting of all pairs of processes (called

positions), and proceeds in rounds. Each round starts with a Spoiler’s move followed

by a Duplicator’s response. Every consecutive round starts in a position in which the

preceding round ended.

When one of players gets stuck, the other player wins. Otherwise the play is infinite

and then it is Duplicator who wins.

As the first case, define the round of the game corresponding to weak simulation
expansion. The corresponding instantiation of the abstract game we will call weak

simulation game.

weak simulation round

In a position (α, β), Spoiler chooses one transition α
ζ−→ α′ of process α. Then

Duplicator answers by a sequence of transitions of the form β
ζ

=⇒β′. The round
ends in (α′, β′).

Note that Spoiler is never stuck in weak simulation game, as she has always an
available move induced by a silent self-loop. The same happens in other games defined
below, but will not necessarily be true in approximant games defined in Section 2.2.1.

All the games used in this dissertation are determined: for every starting position
(α, β), exactly one of players has a strategy to win the game, regardless of the opponent
choices. One may also prove that there always exists a winning strategy independent
from history. Thus if Spoiler wins, she can choose every her move solely on the basis
of the starting position of the current round and if Duplicator wins, he can do his choice
on the basis of the last Spoiler’s move.

2.2. SIMULATION AND BISIMULATION VIA GAMES 23

There is a tight connection between weak simulations and Duplicator’s winning
strategies in weak simulation game. To justify this connection, we recall a well-known
fact that weak simulation game characterizes weak pre-order 4:

Fact 1. α 4 β if and only if Duplicator has a winning strategy from (α, β) in weak

simulation game.

Proof. For the only if implication, assume that α and β are related by weak pre-order,
and consider the game starting from (α, β). In order to win, Duplicator’s strategy is
always to choose a response that leads to a pair of processes that are related again by
weak pre-order. This is always doable as weak pre-order satisfies weak simulation
expansion.

For the opposite implication, collect the set R of all the positions (α, β) such that
Duplicator wins the game starting from (α, β). Using co-induction, it is enough to
show that R is weak simulation, i.e. that every pair from R satisfies weak simulation
expansion wrt. R. Indeed, whatever pair (α, β) ∈ R is chosen, Duplicator can play
one round so that the resulting pair of processes (α′, β′) in again winning for him,
as otherwise Spoiler would win from (α, β). This means that (α, β) satisfies weak
simulation expansion wrt. R as required. 2

Analogously we define weak bisimulation round, in order to obtain weak bisimula-

tion game.

weak bisimulation round

In a position (α, β), Spoiler chooses one of α and β, say α, and one transition of the
chosen process, say α

ζ−→ α′. Then Duplicator answers by a sequence of transitions
of the form β

ζ
=⇒β′ from the other process. The round ends in (α′, β′).

The round corresponding to branching simulation/bisimulation expansion is defined
analogously, but with an additional Spoiler’s choice ending every round. This leads to
branching simulation/bisimulation game.

branching simulation round

In a position (α, β), Spoiler chooses one transition α
ζ−→ α′ of process α. Then

Duplicator answers by a sequence of transitions of the form β=⇒β̄ ζ−→ β′ from the
other process. Finally, Spoiler chooses (α, β̄) or (α′, β′) for the ending position of
the round.

branching bisimulation round

In a position (α, β), Spoiler chooses one of α and β, say α, and one transition of the
chosen process, say α

ζ−→ α′. Then Duplicator answers by a sequence of transitions
of the form β=⇒β̄ ζ−→ β′ from the other process. Finally, Spoiler chooses (α, β̄)

or (α′, β′) for the ending position of the round.

24 CHAPTER 2. APPROXIMATIONS OF EQUIVALENCES AND PRE-ORDERS

All the definitions of rounds strictly follow the definitions of corresponding expansions
in a straightforward way, by allowing Spoiler to govern universal quantification and
Duplicator to govern the existential one. Using this rule one may also obtain games
corresponding to other expansions defined in Section 1.1, like long/word weak sim-
ulation/bisimulation expansion, as well as to multiset weak simulation/bisimulation
expansion. In each case, the analog of Fact 1 holds. In particular, weak bisimulation
game characterizes weak equivalence, and branching bisimulation game characterizes
branching equivalence. Moreover, there are typically many different games character-
izing a given equivalence or pre-order, similarly as there are different but equivalent
expansions. For instance, weak equivalence is characterized also by long weak bisim-
ulation game, as well as by word weak bisimulation game.

Example 5. For the context-free grammar from Example 3. let’s analyze weak bisim-

ulation game form the position (B,A||A).

A −→ ε A
a−→ ε

B −→ ε B −→A B
a−→A

Formally, Spoiler has 4 possible moves. One possibility, not stated explicitly in the

context-free grammar above, is to use a silent self-loop and thus stay in the same pro-

cess. However this move can be always responded by Duplicator by staying in the

same process as well. If she moves B −→ ε then Duplicator in response will play

A||A −→A
ε−→ . The game essentially ends at this point because the only possible

move now is ε −→ ε. If Spoiler chooses B −→A or B a−→A then Duplicator re-

sponses via A||A −→A or A||A a−→A, respectively. Next round in both cases will

be played from the position (A, A) and Duplicator will use the copy-paste strategy to

mimic Spoiler’s moves. Thus Duplicator wins.

Any Duplicator’s response which is played according to his winning strategy will
be called matching in the sequel. We will also say that a Spoiler’s move is matched by
a Duplicator’s response.

2.2.1 Approximants via games

We have already described game-theoretic characterizations of equivalences and pre-
orders we work with. Now we adopt the similar characterizations to approximants.
The crucial difference is that a position will contain additionally an ordinal, thus being
a triple (κ, α, β) ∈ Ord × N × N . The ordinal will only decrease during a play,
therefore the plays will be always finite. The choice of the next value of the ordinal
will be up to Spoiler.

Below we formalize this new version of game. Similarly as before we prefer to state
one abstract definition, without specifying the definition of round. By instantiating with

2.2. SIMULATION AND BISIMULATION VIA GAMES 25

the concrete rounds, exactly as before, one gets different variants of the game that will
characterize different approximants.

Definition 17 (abstract approximant game). The game is played by two players, Spoiler

(she) and Duplicator (he), over an arena consisting of all triples (κ, α, β) ∈ Ord ×
N ×N , and proceeds in rounds. In a position (κ, α, β) Spoiler starts by choosing an

ordinal κ′ < κ. Then a single round is played from (α, β), exactly as before; suppose

that the round ends in (α′, β′). Then the game continues from the position (κ′, α′, β′).

When one of players gets stuck, the other player wins.

Observe that if κ = 0 then Duplicator wins, as Spoiler is stuck. Thus it is Spoiler’s
interest to keep the ordinal as large as possible. Therefore, whenever κ is not a limit
ordinal, we silently assume that Spoiler chooses for κ′ the predecessor of κ, i.e. κ =

κ′ + 1.
Analogously as before, the abstract approximant game instantiated with weak sim-

ulation round will be called weak simulation approximant game, and similarly for all
other expansions.

Now we are ready to recall an analog of Fact 1: characterization of approximants
4κ by weak simulation approximant game.

Fact 2. α 4κ β if and only if Duplicator has a winning strategy from position (κ, α, β)

in weak simulation approximant game.

The analogs of Fact 2 hold for all other expansions defined by now; for instance,
α

L'κ if and only if Duplicator has a winning strategy from position (κ, α, β) in long

branching bisimulation approximant game.

Example 6. Consider the following grammar, and the pair (Z,A) of processes as the

initial position.

Z −→ Z||A Z −→ ε

A −→ ε A
a−→ ε

We will show how Spoiler wins weak simulation approximant game from the initial

position (4, Z,A). As her first move, Spoiler chooses Z −→ Z||A. In response, Du-

plicator can either stay in the same process, or vanish A; the former option seems

better for Duplicator. Suppose the second round starts from the position (3, Z||A,A).

Then Spoiler does Z||A a−→ Z, which has to be responded by the Duplicator’s move

A
a−→ ε and the third round starts in (2, Z, ε). Now Spoiler does Z −→ Z||A and thus

the fourth round starts in (1, Z||A, ε). Finally Spoiler does Z||A a−→ Z, a move which

can not be matched by Duplicator.

On the other hand Duplicator wins the game from the position (3, Z,A), because

Spoiler is not able to play the last a−→ .

26 CHAPTER 2. APPROXIMATIONS OF EQUIVALENCES AND PRE-ORDERS

The game-theoretic setting introduced in this section will be very convenient in the
proofs given in the following sections.

2.3 Non-stabilization at level ω

Originally, the definition of weak equivalence due to Milner was based on the ω-
approximant. However, it soon become apparent that the hierarchy of approximants
does not need to stabilize at level ω. Actually, the stabilization is surely guaranteed
only over finitely branching LTSs; in term of games, finite branching translates to the
requirement that at every position, both Spoiler and Duplicator have only finitely many
possible moves to choose. From the game perspective models considered in this the-
sis, namely LTSs induced by commutative context-free grammars or by one-counter
automata (recall that we only work with automata without zero tests), are not finitely
branching in general.

Section 2.3 is devoted to studying simple examples witnessing non-stabilization at
level ω.

2.3.1 Simulation pre-order over one-counter automata

We will start with the hierarchy of approximants induced by weak simulation expansion
over one-counter automata, and show that the hierarchy does not stabilise at level ω.
As a byproduct we will explain, among the others, how is it possible that Spoiler wins
the weak simulation game starting from a position (α, β) consisting of two processes
related by the ω-approximant, α 4ω β. Recall that it means, due to Fact 2, that it is
Duplicator who wins the weak simulation approximant game from (ω, α, β).

Example 7. Consider a one-counter automaton over the alphabet {a, b}, with four

states {p, q, p′, q′}.

p q

p′ q′

b,0

ε,1

b,0

a,-1a,0

q
ε,1−→ q

p
b,0−→ p′ q

b,0−→ q′

p′
a,0−→ p′ q′

a,−1−→ q′

When considering pre-orders, we will often separate states of Spoiler from those of

Duplicator, and instead of one automaton consider actually two separate automata. In

2.3. NON-STABILIZATION AT LEVEL ω 27

this example, the Spoiler’s automaton would have states {p, p′}, and the Duplicator’s

one {q, q′}.
What is the least ordinal κ such that

p0 64κ q0?

First, observe that p′0 4k q′k for every k ∈ N. Indeed, in the weak simulation approx-
imant game at position (k, p′0, q′k), the most reasonable option for Spoiler is to play
p′0

a−→ p′0. Duplicator has only one possible response, namely q′k a−→ q′(k−1), and
the round ends in position (k − 1, p′0, q′(k − 1)). Thus we have shown:

∀k∈N ∃n∈N p′0 4k q′n. (2.1)

One may similarly argue that

p′0 64k+1 q
′k. (2.2)

Now if we consider weak simulation approximant game starting from position
(ω, p0, q0), then for every choice of an ordinal k < ω by Spoiler, followed by the
unique possible Spoiler’s move p0 b−→ p′0, Duplicator may respond with q0 b

=⇒q′n,
for an arbitrarily large n. Due to (2.1) this proves

p0 4ω q0.

On the other hand we claim that p0 64ω+1 q0. This time Spoiler chooses ω as
the next ordinal, and moves p0 b−→ p′0, which must be responded by Duplicator with
q0

b
=⇒q′n for some n ∈ N. If Spoiler chooses in the next round an ordinal bigger than

n, then after n rounds she will win, by (2.2).

The described Spoiler’s strategy, seen as a tree, has infinite branching, even if every
branch is finite. Thus we can not bound the depth of the Spoiler’s strategy, in particular
König’s Lemma does not apply.

As a conclusion 4ω 6= 4 over LTSs generated by one-counter automata. However,
since the Spoiler’s LTS has no silent transitions, our argument works just as well for
long weak simulation approximant game, which allows us to conclude

L

4ω 6= 4 as well.

2.3.2 Bisimulation equivalence over commutative context-free pro-
cesses

Our next goal is to construct an analogous example for weak equivalence over normed
commutative context-free processes. We will apply the same general scheme: to con-
struct a pair of processes α and β that are related by the ω-approximant, but not by the

28 CHAPTER 2. APPROXIMATIONS OF EQUIVALENCES AND PRE-ORDERS

(ω + 1)-approximant. We need to endow Duplicator with an infinite set of possible
responses, among which one is chosen by Duplicator on the basis of a prior Spoiler’s
move. We will face however two difficulties. The first one is lack of control states in
commutative context-free processes. Another one is that we will work with bisimula-
tion expansion, instead of simulation one, and thus Spoiler can change the side in every
round.

Example 8. Consider the following commutative context-free grammar. The left-hand

side is a graphical depiction of the rules listed on the right-hand side. A loop

Y A

is used to concisely depict a rule Y −→ Y ||A.

X

Z

Y

ε

A

ε

ab b

A

a

X −→ Y Y −→ Y ||A

X
b−→ Z Y

b−→ ε

Z
a−→ Z Z −→ ε

A −→ ε A
a−→ ε

The two processes X and Y are not weak equivalent, X 6≈ Y . Indeed, Spoiler wins
the bisimulation game by playing X b−→ Z; proper Duplicator’s responses lead to An,
for some n ∈ N. Now Spoiler continues by playing the move Z a−→ Z, as many as n
times, and then wins in the next round. Actually X 6≈ω+1 Y .

On the other hand X ≈ω Y as it is Duplicator to win the weak bisimulation ap-
proximant game from position (ω,X, Y). To see this observe that the first Spoiler’s
move (after choosing an ordinal smaller than ω) has to be X b−→ Z on the left-hand
side, as otherwise Spoiler would play on the right-hand side and Duplicator would win
by ending his response in exactly the same process as Spoiler (and continuing using
copy-paste strategy in consecutive rounds). Then Duplicator responds via a sequence
of transitions Y b

=⇒Aj , for j equal to the ordinal chosen by Spoiler, which guarantees
Duplicator to win the game as

Z ≈j Aj for every j ∈ N.

We deduce ≈ω 6= ≈ over LTSs generated by commutative context-free grammars.
In order to obtain

L
≈ω 6= ≈ we need to introduce a slight modification. Observe

that in the LTS from the previous example, Z||Ak 6
L
≈2 A

j for every j, k ∈ N (while
Z||Ak ≈j Aj was a crucial property before). Indeed, this is due to a Spoiler’s move
Aj =⇒ε on the right-hand side. To prevent Spoiler from playing on the right-hand
side, let’s replace the loop Z a−→ Z by the rule Z −→ Z||A.

2.3. NON-STABILIZATION AT LEVEL ω 29

Example 9.

X

Z

Y

ε

A

ε

ab b

A

A

X −→ Y Y −→ Y ||A

X
b−→ Z Y

b−→ ε

Z −→ Z||A Z −→ ε

A −→ ε A
a−→ ε

To understand why Z||Ak
L
≈j Aj for every k, let’s consider one round of long weak

bisimulation approximant game. Spoiler chooses the ordinal j − 1, and then one of
two sides. However, if she chooses the right-hand side, and makes any move, then
Duplicator is able to reach exactly the same process from the left-hand side, and thus
win. Hence Spoiler will play from Z||Ak. But during one round she can make only
one transition labelled with a, which means that she can force Duplicator to decrease
the exponent j only to j−1. Therefore Spoiler needs at least j+1 rounds to win. Thus
L
≈ω 6= ≈.

The next example deals with branching bisimulation expansion in order to show
'ω 6= ' over normed commutative context-free processes.

Let’s start by analysing why the previous example does not show 'ω 6= '. The
problem is that the crucial relation

Z 'j Aj

does not hold for every j. Indeed, Spoiler does a move Z −→ ε. In response, Dupli-
cator has to vanish all A’s, Aj =⇒ε. However, at that point Spoiler can choose one of
the following two pairs of processes as the next position in the game:

(Z,A) (ε, ε).

The first one is due to, intuitively speaking, a “rollback” of the last transition performed
by Duplicator. Spoiler clearly chooses the first pair; it is easy to check that Spoiler wins
from (4, Z,A). Thus she also wins from (5, Z,Aj) and thus Z 6'5 A

j for every j.

The problem is that Spoiler is able to win using a smart trick allowing her to force
Duplicator to vanish all A’s but one. A quick solution of that problem could be to re-
move the transition rule Z −→ ε, which however would result in an unnormed system.
In order to preserve normedness, we can modify the system as follows:

30 CHAPTER 2. APPROXIMATIONS OF EQUIVALENCES AND PRE-ORDERS

Example 10.

X

Z

Y

W

Q

ε

A

ε

ab b

c c

A

A

A

X −→ Y Y −→ Y ||A

X
b−→ Z Y

b−→W

Z −→Q Z −→ Z||A

W
c−→Q

Q −→Q||A Q −→ ε

A −→ ε A
a−→ ε

The crucial property is Q ' Q||Aj . Thus, if Spoiler does the move Z c−→Q then
Duplicator does not have to remove A’s, and hence a rollback does not help Spoiler.
Thus 'ω 6='.

The next natural question is:

Does
L'ω = ' over normed commutative context-free processes? (2.3)

Unfortunately, we do not know the answer to this question. We conjecture however
that the answer is positive. Observe that once one establishes the positive answer, the
proof of decidability of branching equivalence, being the main results of Chapter 3,
may be drastically simplified.

2.3.3 Other combinations

We have shown non-stabilization at level ω of:

• approximants
L

4κ over normed1 one-counter automata, and

• approximants
L
≈κ over normed commutative context-free processes.

It turns however that the examples may be easily modified to work for the two re-
maining combinations: approximants

L
≈κ over normed one-counter automata, and ap-

proximants
L

4κ over normed commutative context-free processes. Furthermore, the
example for non-stabilization of approximants 'κ over commutative context-free pro-
cesses may be easily adapted to approximants �κ, and even to

L

�κ. Finally, the latter
example may be easily translated to a one-counter automaton, as well as the example
witnessing non-stabilization of approximants 'κ.

1For one-counter automata, normedness means that from every process there is a sequence of transitions
that ends with the counter value 0.

2.3. NON-STABILIZATION AT LEVEL ω 31

These similarities are not accidental. All the grammars appearing in the examples
are of a special form, with all reachable processes of the form B||An, for some n ∈ N,
and for some variableB. Thus all the examples may be easily translated to one-counter
automata, preserving the induced LTS up to isomorphism.

Unnormed processes. By now all the examples used normed processes. Without
normedness assumption, the answer to question (2.3) is negative, as witnessed by an
example similar to Example 8: the main difference is that A and Z can not vanish
silently.

32 CHAPTER 2. APPROXIMATIONS OF EQUIVALENCES AND PRE-ORDERS

Example 11.

X

Z

Y

ε

A

ε

ab b

A

a

X −→ Y Y −→ Y ||A

X
b−→ Z Y

b−→ ε

Z
a−→ Z A

a−→ ε

2.4 Lower bounds for stabilization levels

In this section we focus mostly on normed commutative context-free processes. We
show that long approximants

L
≈κ are not guaranteed to stabilize at level ω+ω and that

word approximants
W
≈κ do not necessarily stabilize at level ω. From our examples we

derive lower bounds of ω2 and ω + ω for the stabilization levels of approximants
L
≈κ

and
W
≈κ, respectively.
A simple but very useful tool is the following:

Lemma 4. If α=⇒β=⇒α′ and α ≈ α′ (resp. α ' α′) then α ≈ β (resp. α ' β).

Proof. Immediate using games. If Spoiler plays from α, Duplicator uses its response
from α′, precomposed with β=⇒α′. On the other hand, if Spoiler plays from β,
Duplicator moves α=⇒β and then copies the Spoiler’s transition. 2

Remark 1. Lemma 4 holds also for approximants induced by long/multiset/word weak/

branching bisimulation expansions.

As announced in Stríbrná’s PhD thesis [54], the following long-standing conjecture
is attributed to Jančar and Hirshfeld:

Conjecture 1.
L
≈ω+ω = ≈ over commutative context-free processes.

Our first theorem in this section falsifies this conjecture:

Theorem 1. Long weak bisimulation approximants
L
≈κ do not stabilize below level ω2

over normed commutative context-free processes: ≈ 6=
L
≈ω·k for all k ∈ N.

Proof.
We will show how to construct, for a given k, a commutative grammar and two

nonequivalent processes that are in relation
L
≈ω·k. For k = 1 the claim is trivial, e.g.

by Example 9. We first show how to construct a system with ≈ 6=
L
≈ω+ω . For this we

recycle Example 9 to which we add the rule X −→X||A. This modification does not
influence the approximant game and we have that X||Ak

L
≈ω Y ||Aj 6≈ X||Ak for any

k, j ∈ N.
To construct a counter-example to convergence at level ω + ω we combine two

copies of this system as indicated in Figure 2.1 below.

2.4. LOWER BOUNDS FOR STABILIZATION LEVELS 33

Figure 2.1: Combining two copies of the context-free grammar from Example 11 yields
X1

L
≈ω+ω Y1 6≈ X1.

X1

Z1

Y1

W1

b b

A

A S1

X0 Y0

εZ0

bb

AA

A

c

a

c

A

A

ε

a

X1 −→ Y1 X1
b−→ Z1

Y1
b−→W1 Y1 −→ Y1||A

Z1 −→W1 Z1 −→ Z1||A
W1

a−→ S1 S1 −→ S1||A
W1

c−→X0 S1
c−→ Y0

X0 −→ Y0 X0
b−→ Z0

Y0
b−→W0 X0 −→X0||A

Y0 −→ Y0||A Z0 −→ Z0||A
Z0 −→ ε

A −→ ε A
a−→ ε

The bottom part of the construction is the gadget as discussed previously. Observe
that variables X0, Y0, Z0 are not able to produce variables from the top part of the dia-
gram 2.4, those variables with an index 1. Thus we preserve that X0||An

L
≈ω Y0||Am

for any m,n ∈ N. Our aim is to show that indeed X1
L
≈ω+ω Y1 6≈ X1. For this it

suffices to show that the only possibility for Spoiler to win is to force the game from
(κ,X1, Y1) to end up in (κ′, X0||An, Y0||Am) where κ′ > ω, and to achieve that she
needs that κ > ω + ω.

The long weak bisimulation approximant game starts from the position

(ω + ω,X1, Y1)

and it goes through the upper square pattern X1, Y1, Z1,W1. By our previous discus-
sion of this gadget, we know that Spoiler, having chosen an ordinal ω + n, has to start
by X1

b
=⇒Z1||Am; Duplicator will respond to W1||An−2. Spoiler must continue to

play from the left hand side in order to prevent a perfect match to identical positions.
Moreover for the same reason she cannot move to aW1||Ai for i 6 n−2. Furthermore
if she makes a move Z1||Am

c
=⇒X0||Ai, while the other position still contains a W1,

Duplicator is able to match to the same position. So the only option left for Spoiler
is to force Duplicator to remove all variables A one by one by performing transition
labelled with a. Eventually, from a position (ω+2, Z1,W1) (or (ω+2,W1||A>0,W1),
Spoiler chooses one last transition labelled with a and thus forces Duplicator to rewrite
W1 to S1. Afterwards, Spoiler can force the game to the position (ω,X0||An, Y0||Am)

by choosing a transition labelled with c from either side. As X0 ≈ω Y0, we conclude

34 CHAPTER 2. APPROXIMATIONS OF EQUIVALENCES AND PRE-ORDERS

that X1 ≈ω+ω Y1. This completes the proof for k = 2.
The construction above can be extended to provide a counter-example for conver-

gence at level ω · k for any natural k by stacking k copies of the square gadget on top
of each other. This can also be modified to a system which contains only variables of
the norm zero. 2

Next we focus on word approximants and falsify a conjecture of Stríbrná [54] about
their convergence at level ω.

Theorem 2. Word weak bisimulation approximants do not stabilize below level ω+ ω

over normed commutative context-free processes.

Proof. We start by proving that ≈ 6=
W
≈ω . Consider the commutative context-free

grammar depicted in Figure 2.2.

Figure 2.2: Counter-example for finite approximability of
W
≈i

X

Z

Y

ε

L R

Q

ε

a a

L

L

a

a

Q

a

X
a−→ Z, X −→ Y

Y
a−→ ε, Y −→ Y ||L

Y −→R
Z −→ Z||L , Z −→ ε

L
a−→R, L −→ ε

L −→ L||Q
R −→ ε , R

a−→R

Q
a−→ ε, Q −→ ε

By Lemma 4, we know that Z||Ln||Qm ≈ Z and Ln+1||Qm ≈ Ln+1 for any two
naturals m,n. Moreover it is easy to see that Rr ≈ R for any r ∈ N+ which means
that we don’t need to consider positions with more than one variable R.

We claim that X
W
≈ω Y 6≈ X and base our proof on the following claims that are

proven individually after the main argument. For i, j, n ∈ N, n > 0 we have

Z 6
W
≈3 R||Li 6

W
≈3 L

j , (2.4)

Z
W
≈2n+1 L

n, (2.5)

Z 6
W
≈2n+2 L

n. (2.6)

In the word weak bisimulation approximant game from a position (κ , X , Y), Spoiler

2.4. LOWER BOUNDS FOR STABILIZATION LEVELS 35

must start with a move X a
=⇒Z||Ll||Qq ≈ Z, as otherwise his opponent is able to

match to the same position and thereby win. Possible responses for Duplicator from Y

are:

• To some Rr||Ln||Qm ≈ R||Ln, which allows Spoiler to win in 3 further rounds
by Claim 2.4.

• To some Y ||Ln||Qm ≈ Y ||Ln which allows Spoiler to silently replace the Y
by R in the next round and afterwards again win in 3 rounds by Claim (2.4).
Note that no silent response from Z||Ll||Qq to some position that contains R is
possible.

• To some Qm which allows Spoiler to win in one round by playing Z am+1

=⇒ Z.

• (proper response) To some Ln||Qm ≈ Ln, n ∈ N+ which allows Spoiler to win
but in not fewer than 2n+ 2 rounds by Claims (2.5) and (2.6).

The choice of n is made by Duplicator and therefore X
W
≈ω Y 6≈ X . Note that this

counter-example uses only a single observable transition label and all variables have
zero norm.

To construct a counter-example to convergence of word approximants at level ω+k

for finite k, the previous construction can be complemented by a "finite ladder", where
X and Y are renamed toX0 and Y0: For 0 < i 6 k add variablesXi, Yi, Ui, U

′
i ,Wi,W

′
i

and rules as indicated below.

Xi Ui U ′i Xi−1

Yi Wi W ′i Yi−1

a a a

a a a

a

2

It remains to prove claims (2.4) - (2.6). We first prove some auxiliary claims on
which we base our arguments for claims (2.4) - (2.6). For all m,n ∈ N+,

R||Ln 6
W
≈1 Q

m (2.7)

Ln 6
W
≈2 R 6

W
≈2 Z (2.8)

For (2.7), observe that Duplicator cannot respond to a move R am+1

=⇒R.
For (2.8), Spoiler moves from Ln (or Z) silently to Q and Duplicator can respond to
R or to ε. In the first case he loses in one more round by Claim (2.7), in the latter he
cannot respond to move Q a

=⇒ε from ε.

36 CHAPTER 2. APPROXIMATIONS OF EQUIVALENCES AND PRE-ORDERS

Claim (2.4): Z 6
W
≈3 RL

n 6
W
≈3 L

m.

Proof. For both parts Spoiler moves fromR||Ln silently toR. Duplicator must respond
either to Qk which is losing for him in one round by Claim (2.7), or to Lj ||Qk ≈ Lj

or Z||Lj ||Qk ≈ Z, which is losing for him in two rounds by Claim (2.8). 2

Claim (2.5): Z
W
≈2n+1 L

n for n ∈ N+.

Proof. By induction on n > 1. In order to make an induction step we will need stronger
induction hypothesis, namely: for any m > n hold Lm

W
≈2n+1 L

n and Z
W
≈2n+1 L

n.
Thus base cases are L

W
≈3 L

m and Z
W
≈3 L.

Base case L
W
≈3 L

m.
Wlog. assume that m > 0 minimizes k in L 6

W
≈k Lm i.e. we choose m in such a

way that it is in fervour of Spoiler as much as possible. Moreover we can assume that
Spoiler only makes optimal moves i.e. wins as quickly as possible. This means in
particular that she needs to change the equivalence class in the first move. Otherwise
Duplicator does not change his equivalence class as well and we get a contradiction
with a choice of m.
Thus from position (3 , L , Lm), she can move either:

• to R||Qq , or to Qq

• to Lm
′ ||Qq ≈ Lm′ , for 0 < m′ < m or

• to Lm
′ ||R||Qq ≈ Lm′ ||R for 0 < m′ < m.

In first case Duplicator moves to R||Qq , or to Qq and wins, thus Spoiler will not do
that. In second and third cases Duplicator stays in L. In the second case, because we
assume optimal moves, we must have L 6

W
≈i Ll for some i < k, which contradicts the

optimality of m. Thus Spoiler has to choose third option and
the game continues from a position (2 , Lm

′ ||R , L). Spoiler must again move from
Lm

′ ||R and change the class.

• If she makes a move labelled with a to R or ends in Qi then Duplicator can
match to the same position.

• Moreover Spoiler’s move to some R||Lm′′ or Lm
′′
,m′′ < m′ < m is surely

non-optimal.

• The only remaining option is to move silently to R. Duplicator will respond by
L=⇒L. Now recall that L

W
≈1 R.

Base case Z
W
≈3 L:

As Z can silently go to Ln, Spoiler needs to make her first move from Z. She has three
options to change the class from here:

2.4. LOWER BOUNDS FOR STABILIZATION LEVELS 37

(1) to some Ll||Qq ≈ Ll, or

(2) to R||Ll||Qq ≈ R||Ll, or

(3) to something equivalent to Z||R.

For any l, q ∈ N. In all cases Duplicator responds to L. In the first two cases, now we
can use previous claims L

W
≈3 L

m and L
W
≈2 R||Lm to conclude that this allows Dupli-

cator to survive another 2 rounds. If the second round starts in a position (2 , Z||R , L)

(or equivalent), Spoiler again can not move from L and has three options to change the
class: to something equivalent to Z which is non-optimal as it repeats the initial po-
sition. Alternatively she can go to R||Ll||Q1 ≈ R||Ll or to R||Qq . In both cases we
complete by the observation that obviously R||Ll

W
≈1 L

W
≈1 R.

For the induction step:
assume Lm

W
≈2n+1 L

n and Z
W
≈2n+1 L

n where m > n. We will show that

Lm
W
≈2(n+1)+1 L(n+1).

Just as in the base case, the only good move for Spoiler isLm a
=⇒Lm′ ||R for some n <

m′ < m. Duplicator in his response goes to Ln||R. Next one more time Spoiler has
the only one reasonable kind of move, to a position equivalent to Lm

′′
, where m′′ > n.

However now Duplicator responds to Ln and we use the induction assumption to the
pair Lm

′′ W
≈2n+1 L

n.

Observe that because
W
≈2n+1 is a congruence this implies alsoLm||R

W
≈2n+1 L

n||R
for m > n.

To show that Z
W
≈2(n+1)+1 L

(n+1) we assume wlog. that Spoiler initially moves
Z

a
=⇒Z||R, Duplicator responds by Ln+1 a

=⇒Ln||R. Now to prevent a perfect match
in the next round, Spoiler moves from Z||R to either Z or to Lm||R or Lm. In the
first case, Duplicator will remove the R and end up in Ln and we can use the induction
assumption, in the last two cases Duplicator stays in Ln||R or goes to Ln. Either way,
we can use the previous claims that Lm||R

W
≈2n+1 Ln||R and Lm

W
≈2n+1 Ln for

m > n. 2

Claim (2.6): Z 6
W
≈2n+2 L

n for n > 0.

Proof. By induction on n > 1. In order to make induction step we need stronger
induction hypothesis , namely: for any m > n, Lm 6

W
≈2n+2 L

n and Z 6
W
≈2n+2 L

n.

Base case: Z 6
W
≈4 L 6

W
≈4 L

m.

Spoiler plays Lm a
=⇒L||R (or Z a

=⇒L||R). Possible responses from L are

(1) to L||Qq or Qq;

(2) to R||Qq .

38 CHAPTER 2. APPROXIMATIONS OF EQUIVALENCES AND PRE-ORDERS

In the first case Spoiler wins in 3 more rounds by Claim 2.4.
In the second case Spoiler performs a move L||R=⇒Qq+1 and Duplicator responds to
either R||Qi or Qi with i 6 q. In both cases Spoiler wins in one round by Claim (2.7)
or playing a sequence of transitions labelled with aq+1 from Qq+1.

For the induction step we assume Lm 6
W
≈2n+2 L

n 6
W
≈2n+2 Z and show that both

Lm 6
W
≈2(n+1)+2 L

(n+1) and Z 6
W
≈2(n+1)+2 L

(n+1) hold. Spoiler moves from Lm (or Z)
using a transition labelled with a and she ends in a position Ln+1||R. Duplicator can
respond:

(1) to Ln+1||Qq or some Qq , from which Spoiler wins in 3 rounds by Claim 2.4, or

(2) to Ln
′ ||R||Qq ≈ Ln

′ ||R,n′ < n+ 1. In this case in the next round Spoiler per-
forms a move Ln+1||R=⇒Ln+1 and Duplicator responds either to Ln

′′ ||R||Qi

or Ln
′′ ||Qi with n′′ 6 n′ < n+1. In the first case, Spoiler wins in one round by

Claim (2.7). In the last case the game continues from (2n′′+2 , Ln+1 , Ln
′′6n)

and we can use the induction assumption for n′′ as big as possible namely
n′′ = n.

2

We conjecture that ω+ω lowerbound may be increased to ω2. However an example
should be much more complicated than the one for approximants induced by long weak
bisimulation expansion.

2.5 Decidability via approximation

We now use the approximation approach to show that two subclasses of commutative
context-free processes previously known in the literature have decidable weak equiva-
lence. We start by providing in Lemma 5 a general procedure which returns a witness
that two given processes are equivalent if they are, and that loops if they are not equiv-
alent. This allows us focus only on a procedure which proves that two given processes
are not equivalent. Note that Lemma 5 works also for branching equivalence. This will
be useful in the next chapter, where we will focus on a semi-decision procedure that
checks if two processes are not in branching equivalence.

In Subsection 2.5.1 we show decidability for the class introduced in [53] by proving
that the approximants induced by long weak bisimulation expansion stabilize at level ω,
i.e.

L
≈ω = ≈. Furthermore in Subsection 2.5.2 we reprove decidability for the subclass

introduced in [54]. Namely we show that the approximants induced by multiset weak
bisimulation expansion stabilize at level ω, i.e.

M
≈ω = ≈. In both cases we know due

to Section 2.3 that at finite levels the approximants are decidable relations, and hence
showing their stabilization at level ω suffices to get a negative decision procedure, due
to Lemma 6 below.

2.5. DECIDABILITY VIA APPROXIMATION 39

Lemma 5. There is a procedure which stops if two given (not necessarily normed)

commutative context-free processes are in weak (resp. branching) equivalence, and

loops otherwise.

Proof. We will exploit the fact that both equivalences are substitutive, i.e. both equiv-
alences are congruences. For the positive semi-decision procedure we use a standard
semi-linear representation, knowing that each congruence, including ≈ and ', is a
semi-linear, and thus Presburger-definable, subset of Nk × Nk [21, 32] (where k is
the number of variables). The algorithm guesses a Presburger formula ψ with 2k free
variables and then checks validity of a Presburger formula φψ that says that the set
defined by ψ is a weak/branching bisimulation containing the input pair of processes.
The formula φψ is constructed similarly as in Section 2.1.1, both for weak equivalence
and for branching equivalence. 2

The next lemma has a generic flavor as it says about an arbitrary hierarchy of de-
cidable approximants.

Lemma 6. Consider a subclass C of commutative context-free processes and suppose

that some weak/branching expansion induces a hierarchy of approximants that stabi-

lizes at level ω in the class C. Suppose also that all finite approximants are decidable.

Then there is a procedure which stops if two given processes from C are not weak

(resp. branching) equivalent, and loops otherwise.

Proof. Observe that if the approximation hierarchy (Rκ)κ∈Ord induced by some weak
(resp. branching) bisimulation expansion stabilizes at ω then α being not equivalent to
β implies that there is a finite ordinal κ such that a pair (α, β) is not in approximant
relation at level κ. Thus for the negative semi-decision procedure it suffices to check,
for consecutive finite approximants Rn, n ∈ N, if the pair (α, β) belongs to Rn. If
some approximant does not contain the pair (α, β) then the procedure stops. 2

Simplified grammars. Before embarking on the stabilization proofs, we will assume
from now on that grammars are in a convenient special form, expressively equivalent
to the general case: no death variables and no redundancy.

A variable A is death variable if it is equivalent to the empty process, A ≈ ε. One
may safely remove every death variable from a grammar, replacing its every occurrence
in transition rules of other variables by ε. For example, a transition rule B a−→AC

would be replaced by B a−→ C, and C −→A by C −→ ε. Death variables may be
easily detected, as these are exactly those variables that exhibit no observable transition
rules.

Recall that we only work with normed processes. For the second simplification we
need a notion of norm of a process.

40 CHAPTER 2. APPROXIMATIONS OF EQUIVALENCES AND PRE-ORDERS

Definition 18 (norm). By norm of a process α, denoted |α|, we mean the smallest

possible number of observable transitions that appears in some sequence to the empty

process. Formally, |α| is the length of the shortest word a1 . . . an ∈ Act∗ such that

α=⇒ a1−→ =⇒ . . . =⇒ an−→ =⇒ε.

For unnormed processes we define their norm as infinity.

Look at that, the norm is weak in the sense that silent transitions do not count. Norm
is additive, i.e. |(α||β)| = |α|+ |β|, and invariant under the equivalences investigated
by us, namely

if α ≈ β then |α| = |β|.

Indeed, if |α| < |β| then Spoiler wins weak bisimulation game with a sequence of
moves from α to ε that witnesses the norm of α.

A transition is α
ζ−→ β is norm preserving if |α| = |β|; in such case we write

α
ζ−→ 0β to point out that the change of norm caused by the transition in 0. In particu-

lar we will write −→ 0 for silent transitions, and =⇒0 for the transitive and reflexive
closure of −→ 0.

For variables X,Y such that X =⇒0Y =⇒0X we have X ≈ Y by Lemma 4. We
say that X is redundant because of Y , and vice versa. One can easily detect redundant
variables and therefore we can unify them. That is, we can assume wlog. that the
commutative context-free grammars do not contain redundant variables.

Sequences of responses. We write α v β if there is some γ such that α||γ = β (v
is thus the multiset inclusion of processes). Consider a pair or processes related by an
ω-approximant, α

X
≈ω β, for X ∈ {L,M,W}. By definition of weak bisimulation

approximant game, for any Spoiler’s move from α to α′, labelled by ζ, say, there is a
sequence

β1, β2, β3, . . . (2.9)

of processes such that α′
X
≈i βi for every i ∈ N . Clearly the sequence is not unique;

for instance, βk could be safely replaced with βl for l > k. By Dickson’s Lemma we
know that there is an infinite subsequence that is non-decreasing with respect to v:

βn1
v βn2

v βn3
v . . . for n1 < n2 < n3 <

Moreover, as ni > i, we have α′
X
≈i βni for every i ∈ N . Thus there is always

some sequence (2.9) that is non-decreasing with respect to multiset inclusion. Such
sequences are called sequences of responses.

2.5. DECIDABILITY VIA APPROXIMATION 41

2.5.1 Pure generators

Recall that we have assumed that there are no redundant variables. This assumption
guarantees that the set of all pairs (X,Y) of variables satisfying

X =⇒0Y ||α for some process α

is an asymmetric and transitive relation, and hence a partial ordering on variables.
Fix in the following any extension > of this partial order; thus X > Y whenever
X =⇒0Y ||α.

Definition 19. A generator is a variable X that allows a sequence X =⇒0X||α for

some process α, in which case we say that X generates α. Call a generator X pure if

X =⇒0α implies that α = α′||X for some α′: pure generators cannot vanish silently.

Stirling showed decidability of weak equivalence for normed processes with only
pure generators using a tableaux approach [53]. One motivation for this subclass is that
it still allows for infinite branching and that approximants induced by weak bisimula-
tion expansion do not converge at level ω, i.e. ≈ 6= ≈ω . In this section we show that
≈ =

L
≈ω and thus due to lemma 6 conclude decidability.

Fix in the sequel a normed commutative context-free grammar, with variables
X1 > X2 > . . . > Xk, and with pure generators only.

Lemma 7. For every process α, the set Succ = {α′|α=⇒0α
′} can be partitioned into

finitely many equivalences classes with respect to weak equivalence.

Proof. From Lemma 4 one concludes that if α=⇒0α||β then α ≈ α||β. In other
words if α contains variables which allow to generate β, then α and α||β are in the
same equivalence class with respect to the weak equivalence relation.

Above remark allows us to restrict ourselves to the subset Succ′ of Succ of pro-
cesses which are obtained without use of generating moves2. Observe that Succ′ and
Succ have the same number equivalence classes as generators cannot vanish along
=⇒0 moves. Our goal is to show that Succ′ is finite which immediately implies the
claim of the lemma.

Every derivation of α=⇒0α
′ is a sum of derivations from variables belonging to

α. If we prove that in silent norm preserving transitions without generating moves, we
can only derive finitely many processes from each variable occurrence, then we will
also prove that Succ′ is finite. We will show that this is indeed the case for all variables
by induction over the assumed order <.

Checking the induction assumption goes as follows: from the smallest variable Xk

using silent norm preserving transitions without generating we can derive only two
processes, namely Xk or ε.

2Generating moves are those via generating transitions i.e transitions induced by generating transition
rules of a form X −→X||α for some process α.

42 CHAPTER 2. APPROXIMATIONS OF EQUIVALENCES AND PRE-ORDERS

To make an induction step assume ci > 0 bounds the number of possible silent
norm preserving derivations from any variable in Xi . . . Xk and consider the variable
Xi−1. We want to prove that ci−1 is bounded. In case Xi−1 is a deadlock variable,
i.e. Xi−1 −→Xi−1 is the only applicable rule, we can trivially bound the number of
its derivations by 1. Otherwise, because we forbid generating moves we must have
that any rule Xi−1 −→ 0δ produces a multiset δ ∈ {Xi . . . Xk}⊗. The fact that there
are only finitely many rules that rewrite variable Xi−1 implies that we can bound the
number of its silent norm preserving derivations by

d · cli + 1,

where d is the number of rules for Xi−1 and l is the maximal size of any right hand
side of a rule rewriting Xi−1. 2

Theorem 3. ≈ =
L
≈ω for normed commutative context-free processes with only pure

generators.

Proof. For two non-equivalent processes α 6≈ β we define equivalence level of α and
β as the largest ordinal κ such that α

L
≈κ β. This is well defined as the smallest ordinal

κ such that α 6
L
≈κ β is never a limit ordinal.

Assume towards a contradiction that we have α
L
≈ω β 6

L
≈ω+1 α. Wlog. assume an

optimal initial move (i.e. a move that strictly decreases equivalence level) α
ζ

=⇒α′ of
Spoiler in the long weak bisimulation approximant game from the position (ω, α, β),
and a sequence of responses B′ = β′0, β

′
1, . . . (recall that wlog. it is non-decreasing

wrt. multiset inclusion.)
By Lemma 7, the set Succ = {α′′|α′=⇒0α

′′} contains finitely many equivalence
classes with respect to weak equivalence relation. Let the set Succ′ be a finite set of
representants of those classes in Succ.

This allows us to define a function f : B′ → Succ′ that maps β′i ∈ B′ to an
element in Succ′ that maximises their equivalence level κ:

β′i
L
≈κ f(β′i) and ∀γ∈Succ′∀λ∈Ord β′i

L
≈λ γ =⇒ κ > λ.

This function is well defined because the set Succ′ is finite.
Now consider an infinite subsequence B(γ) of B′ that contains all elements which

f maps to the process γ ∈ Succ′. By the pigeonhole principle such a subsequence
exists.

Take two elements β′i v β′j of B(γ) for arbitrary large i < j. We have

(1) γ
L
≈j β′j .

(2) β′i and β′j have the same norm.

2.5. DECIDABILITY VIA APPROXIMATION 43

The first fact holds because α′ ∈ Succ′ and equivalence levels of pairs of processes
(β′i, γ) and (β′j , γ) are larger or equivalent to equivalence levels of pairs of processes
(β′i, α

′) and (β′j , α), respectively. This is due to the definition of the function f .

To see why the second observation is true note that |α| 6= |β| implies

α 6
L
≈min {|α|,|β|}+1 β

as Spoiler only needs to decrease the smaller process to a deadlock which cannot be
mimicked by Duplicator on the other process because the norms differ. We know

β′i
L
≈i α′

L
≈j β′j , so |β′i| = |α′| = |β′j |

as otherwise i and j would be bounded by |α′|+ 1.

Consider the game from the position (j, α′, β′j) and a silent, norm preserving move
β′j =⇒0β

′
i made by Spoiler, which must be possible due to observation 2) and the fact

that β′i v β′j . Now by definition of the subsequence B(γ) we deduce that α′=⇒0γ

is an optimal response for Duplicator. Therefore by 1), we know that β′i
L
≈j−1 γ so

β′i
L
≈j−1 β′j by transitivity and the fact that β′j

L
≈j−1 γ. But now we have β′i

L
≈j−1

α′ for arbitrarily high j and therefore β′i
L
≈ω α′ which contradicts the optimality of

Spoiler’s very first move. 2

2.5.2 Unnormed processes over one letter alphabet

Consider the subclass of commutative context-free processes that satisfy the following
conditions:

(1) there is only one observable label, i.e. Actε = {ε, a}, and

(2) every variable has positive or infinite norm.

This class has been introduced in [54], where it was shown that for processes of this
kind, Jančar and Hirshfeld’s conjecture 1 holds, namely:

≈ =
L
≈ω+ω but ≈ 6=

L
≈ω .

Note that this class is not a subclass of the totally normed systems [23] as it allows
for variables of infinite norm. To illustrate ≈ 6=

L
≈ω we use the following context-free

grammar:

44 CHAPTER 2. APPROXIMATIONS OF EQUIVALENCES AND PRE-ORDERS

Example 12.

X

Z

Y

ε

A

ε

aa a

A

a

X −→ Y X
a−→ Z

Y
a−→ ε Y −→ Y ||A

Z
a−→ Z A

a−→ ε

We show that this class has decidable weak equivalence by showing that approx-
imants induced by multiset weak bisimulation expansion converge at level ω. Note
that multiset approximants coincide with word approximants since there is only one
observable label.

Theorem 4. ≈ =
M
≈ω for the subclass of commutative context-free processes with a

single observable label and no variables of norm 0.

Proof. First observe that the first restriction implies that all processes with infinite norm
must be equivalent and due to norm preservation cannot be equivalent to any process of
finite norm. The second restriction guarantees that there are only finitely many different
processes for any given finite norm. Whenever two processes have different but finite
norms, they are certainly not related by

M
≈2 as Spoiler may rewrite the smaller process

to a deadlock in one move without allowing his opponent to do the same on the other
process.

Assume towards a contradiction that α
M
≈ω β 6

M
≈ω+1 α. So for an optimal initial

move α w
=⇒α′ of Spoiler from the position (ω, α, β) there is a sequence of responses

βi. This sequence has to contain infinitely many of different processes as otherwise
our assumption β 6

M
≈ω+1 α would be false. By the pigeonhole principle, there must be

at least one variable X that grows indefinitely along this sequence. Take two elements
β′i < β′j , 2 < i < j from this sequence such that X occurs more often in β′j . By

observation 2) and the fact that β′i and β′j have different norms we know that β′i 6
M
≈2 β

′
j .

Because β′i
M
≈i α′

M
≈j β′j and i < j holds β′i

M
≈i α′

M
≈i β′j . From this and the

transitivity of
M
≈i we conclude that β′i

M
≈i β′j and because 2 < i also β′i

M
≈2 β

′
j which is

a contradiction. 2

Chapter 3

Bisimulation equivalence for
commutative context-free
processes

In this chapter we concentrate on normed commutative context-free processes only. We
will investigate both weak equivalence and branching equivalence.

Our main technical result is the proof of the following bounded response property

(formulated precisely in Theorem 5 in Section 3.1): if Duplicator has a matching re-
sponse, then he also has a response that leads to a process of size linearly bounded with
respect to the other (Spoiler’s) process. Importantly, we obtain an effective bound on
the linear coefficient, which enables us to prove (Theorem 6) decidability of branching
bisimulation equivalence. The proof of Theorem 5 is quite complex and involves a lot
of subtle investigations of combinatorics of silent transitions. The main purpose to do
that is to eliminate unnecessary silent transitions and to make Duplicators matching
responses small.

A major part of the proof works for weak equivalence equally well (and, as we
believe, also for any reasonable equivalence that lies between branching and weak
equivalence). However, for weak bisimulation we can merely show existence of the
linear coefficient witnessing the bounded response property, while we are not able to
obtain any effective bound. Nevertheless we strongly believe (and conjecture) that a
further elaboration of our approach will enable proving decidability of weak bisimu-
lation equivalence. In particular, we actually can reprove (once more) decidability of
weak equivalence in the pure-generators subclass defined in Section 2.5.1.

45

46 CHAPTER 3. BISIMULATION EQ. FOR COMM. CONTEXT-FREE PROC.

3.1 Decidability via bounded response property

It was known before that branching and weak equivalences are semi-decidable [15].
A brief explanation of the positive procedure can be found in Lemma 5 in Chapter 2 .
The main obstacle for a semi-decision procedure for inequivalence is that commutative
context-free processes are not finitely branching with respect to branching or weak
equivalence: a priori Duplicator has infinitely many possible responses to a Spoiler’s
move. The main insight of this chapter is that commutative context-free processes are
essentially finitely branching, in the following sense. Define the size of a process as its
multiset cardinality. For instance,

size(A4||B3||C) = 8.

Then Duplicator has always a response of size bounded linearly with respect to a
Spoiler’s process (as formulated in Theorem 5 below).

Formally we define two new expansions, both of them parametrized by constants
c. For sufficient large c those expansions define weak/branching bisimulation respec-
tively. Moreover approximants induced by those two expansions stabilize at level ω.
The main obstacle to use them as a tool to solve an equivalence problem is to esti-
mate the proper value of the constant c. We know how to do that in case of branching
equivalence. To solve weak equivalence, we still need a deeper insight.

Definition 20. Let B ⊆ V × V . A pair (α, β) satisfies c-weak bisimulation expansion
wrt. B if and only if for every ζ ∈ Actε:

if α
ζ−→ α′ then β

ζ
=⇒β′ such that (α′, β′) ∈ B and size(β′) 6 c · size(α′)

if β
ζ−→ β′ then α

ζ
=⇒α′ such that (α′, β′) ∈ B and size(α′) 6 c · size(β′).

Definition 21. Let B ⊆ V × V . A pair (α, β) of processes satisfies the c-branching
bisimulation expansion wrt. B if for every ζ ∈ Actε:

if α
ζ−→ α′ then β=⇒β̄ ζ−→ β′ such that (α, β̄) ∈ B, (α′, β′) ∈ B and

size(β′) 6 c · size(α′) ∧ size(β̄) 6 c · size(α); .

if β
ζ−→ β′ then α=⇒ᾱ ζ−→ α′ such that (β, ᾱ) ∈ B, (β′, α′) ∈ B and

size(α′) 6 c · size(β′) ∧ size(ᾱ) 6 c · size(β); .

In a natural way, using the above expansions we define new equivalences, namely
c-branching equivalence and c-weak equivalence, denoted 'c and ≈c, respectively, as
the union of all c-weak/branching bisimulations. The important fact is that there is a
strict connection between c-weak/branching equivalences and standard weak/branching
equivalences as stated in Theorems 5 and 7.

3.1. DECIDABILITY VIA BOUNDED RESPONSE PROPERTY 47

Furthermore, in a natural way we get new approximants. To do that we use abstract
approximants (cf. Definition 11 in Section 1.1.4) and instantiate them with c-weak
bisimulation expansion and c-branching bisimulation expansion, respectively. We de-
note them ≈cκ, 'cκ as one could expect.

The following example serves as an illustration what we get using c-expansions:

Example 13. Consider weak equivalence for the commutative context-free processes

from Example 1:

P −→ ε P −→ P ||A P
b−→ ε P −→ Q

Q −→ ε Q −→ Q||A A
a−→ ε A −→ ε

We have P 6≈ P ||Q but P ≈ω P ||Q, i.e. P ≈n P ||Q for all n < ω. Indeed, if for

instance Spoiler starts with

P ||Q b−→Q

then Duplicator can respond with P =⇒P ||Ak b−→Ak for an arbitrarily large k.

On the other hand≈ coincides with≈c for c = 1, i.e., Duplicator can respond with

a process of size at most equal to the size of Spoiler’s process. Intuitively, this is due to

an observation that two processes are equivalent iff

• they have the same number of occurrences of P ;

• Q occurs in both, or in none of them;

• in the latter case, the number of occurrences of A is the same.

Therefore Duplicator, conforming to the size restriction, can keep this invariant. (Thus

≈ coincides with ≈c for any c > 1.)

In consequence P 6≈c P ||Q. In agreement with Lemma 8 it is not true that P ≈cn
P ||Q for all n ∈ N, for instance for c = 1 it holds that P 6≈c3 P ||Q.

For convenience we use in the sequel a new symbol ≡ to stand for any of the two
equivalences, ' or ≈. Symbol ≡cκ stands for any of the two c-approximants.

Lemma 8. For any c ∈ N, the approximants stabilize at level ω, i.e. ≡cω = ≡c. More-

over for any n ∈ N, ≡cn is computable.

To prove the first statement let’s recall that from any position after any Spoiler move
Duplicator has only finitely many available responses. Thus we can apply König’s
Lemma and conclude that if Spoiler wins then the tree of a game is finite. For the
second statement observe that for any fixed c, both c-expansions can be expressed in
Presburger arithmetic, similarly as it is done for other expansions in Section 2.1.1.

Let the size of a commutative context-free grammar be the sum of sizes of all
production rules. Our main technical result is an efficient estimation of the constant c
in Definition 21, with respect to the size of a commutative context-free grammar:

48 CHAPTER 3. BISIMULATION EQ. FOR COMM. CONTEXT-FREE PROC.

Theorem 5 (bounded response property of '). Given a normed commutative context-

free grammar, one can compute c ∈ N such that branching equivalence coincides with

c-branching equivalence, ' = 'c, in the labelled transition system induced by the

grammar.

The proof of Theorem 5 is deferred to Sections 3.2–3.4. The theorem leads us directly
to decidability:

Theorem 6. Branching equivalence' is decidable over normed commutative context-

free processes.

Proof. The decision procedure starts with computing c ∈ N, according to Theorem 5,
such that branching equivalence coincides with c-branching equivalence. Then we run
two semi-decision procedures (along the lines of Section 2.5): the positive one for
branching equivalence and the negative one for c-branching equivalence.

For the positive side we use the decision procedure from Lemma 5. For the negative
side, we observe that due to Lemma 8 and Theorem 5, the assumptions of Lemma 6
are satisfied. 2

For weak equivalence we obtain a result weaker than Theorem 5, as we are not able
to prove that the coefficient c is computable:

Theorem 7 (bounded response property of≈). For every normed commutative context-

free grammar, there is c ∈ N such that weak equivalence coincides with c-weak equiv-

alence, ≈ = ≈c, in the labelled transition system induced by the grammar.

Theorem 7 follows, similarly as Theorem 5, from our results in Sections 3.2–3.4. We
note that Theorem 7 does not imply decidability of weak equivalence.

3.1.1 Proof strategy

The rest of Chapter 3 is devoted to the proofs of Theorems 5 and 7. Consider a fixed
normed commutative context-free grammar from now on. In Section 3.2 for a given
process α, and with respect to an investigated equivalence, we define a notion of normal
form nf(α). Moreover we provide linear lower and upper bounds on its size:

size(α) 6 size(nf(α)) 6 c · size(α) (3.1)

(the lower bound holds assumed that α is minimal wrt. multiset inclusion in its equiva-
lence class). The results of Section 3.2 apply both to branching and weak equivalence
(as well as to other variants of bisimulation that lay between branching and weak equiv-
alence, cf. [17]). However, the content of Section does not provide an effective bound
on the linear coefficient c.

3.2. NORMAL FORM BY SQUEEZING 49

The computable estimation of the coefficient c is derived in Section 3.3, in case of
branching equivalence. Finally, in Section 3.4 we show how the bounds (3.1) are used
to prove Theorem 5. Section 3.4 contains also the proof of Theorem 7.

As observed e.g. in [53], a crucial obstacle in proving decidability are generating

transition rules of the form X −→X||Y , as they may be used by Duplicator to reach
silentlyX||Y m for arbitrarily largem. A great part of our proofs is an analysis of com-
binatorial complexity of generating transition rules and, roughly speaking, elimination
of ’unnecessary’ generations.

Weak equivalence. Branching equivalence is more discriminating than weak equiv-
alence. The whole development of Section 3.2 is still valid if weak equivalence is
considered in place of branching equivalence. Furthermore, except one single case,
the entire proof of estimation of the coefficient in Section 3.3 remains valid too. In-
terestingly, this single case is obvious in the pure-generators subclass, and thus our
proof remains valid for weak equivalence in this subclass. We conjecture that the sin-
gle missing case is provable for weak equivalence and thus Theorem 5 holds for weak
equivalence just as well. This would imply decidability of weak equivalence.

3.2 Normal form by squeezing

The results of this section are quite general and apply equally well to branching equiv-
alence ' and to weak equivalence ≈ over commutative context-free grammars. (This
will not be however the case in later sections.) We will thus continue using the symbol
≡ to stand for either ' or ≈ in this section. Actually the only place where we need
to distinguish between weak and branching equivalence is Lemma 15 that speaks of
matching Duplicator’s responses. Furthermore, we claim that all the results of Sec-
tion 3.2 apply equally well to intermediate notions of bisimulation, laying between
branching and weak equivalence, as introduced in [17].

In the sequel we will use, sometimes implicitly, the well-known fact that both
branching and weak equivalences are substitutive over commutative context-free pro-
cesses, i.e.

α ≡ β =⇒ α||γ ≡ β||γ.

For the rest of Section 3.2 fix an arbitrary normed commutative context-free grammar.

3.2.1 Normal forms

In Section 3.2 we develop a framework useful for the proofs of Theorems 5 and Theo-
rem 7, to be given in the following sections.

An important role in our development will be played by normal forms of processes
that identify the equivalence classes uniquely. The normal forms are defined using the

50 CHAPTER 3. BISIMULATION EQ. FOR COMM. CONTEXT-FREE PROC.

linear well-founded order � on processes1, as defined in Definition 25 in Section 3.2.3
below. We prefer to postpone the definition of�, in order to avoid inessential technical
details at this early stage.

Definition 22 (normal form). For any process α let nf(α) denote the smallest process

with respect to �, which is equivalent to α.

Clearly α ≡ nf(α) and thus we conclude that bisimulation equivalence is charac-
terized by syntactic equality of normal forms:

Lemma 9. α ≡ β if and only if nf(α) = nf(β).

The main contribution of Section 3.2 is, roughly speaking, providing lower and
upper bound on the size of nf(α), relative to the size of α, (cf. Lemmas 21 and 22 ap-
pearing at the end of this section). The technical tool will be an operation called below
squeeze (defined in Section 3.2.4), which transforms a process α into an equivalent
one, squeeze(α) ≡ α. We will prove that iterative application of squeeze eventually
converges to the normal form:

α ≡ squeeze(α) ≡ squeeze2(α) ≡ . . . ≡ squeezei(α) = nf(α),

for some i depending on α. The estimations on the size of normal form will follow
easily from the fact that we will be able to control the increase of size of squeeze at
every iteration.

3.2.2 Decreasing transitions

In the sequel we will pay special attention to norm preserving ε-transitions. Moreover
we say that a transition α

ζ−→ β is norm reducing if |α| = |β|+ 1.

Definition 23. We call the transition α
ζ−→ β decreasing if either ζ ∈ Act and the

transition is norm reducing, or ζ = ε and the transition is norm preserving.

Keep in mind that every variable has a sequence of decreasing transitions leading
to the empty process ε.

Lemma 10 (decreasing response). Whenever α ≡ β and α
ζ−→ α′ is decreasing then

any Duplicator’s matching sequence of transitions from β contains exclusively decreas-

ing transitions.

Proof. Follows from the following simple observations: ≡ is norm preserving; for
a 6= ε, the transition relation a−→ may decrease the norm by at most one; the transition
relation ε−→ never decreases the norm. 2

1We deliberately use the same symbol as for branching pre-order, hoping that no confusion will result.
Pre-orders are not investigated at all in Chapter 3.

3.2. NORMAL FORM BY SQUEEZING 51

As we have discussed in Section 2.5, we may assume wlog. that there are no redundant
variables, i.e. no two distinct variables X,Y satisfy X =⇒0Y =⇒0X . Relying on this
assumption, we may define a partial order induced by decreasing transitions.

Definition 24. For variables X,Y , let X >decr Y if there is a sequence of decreasing

transitions leading fromX to Y . Let> denote an arbitrary total order extending>decr.

Look at that we do not assume that X > Y =⇒ |X| > |Y |. Indeed, the order >
may be chosen in an arbitrary way. In Section 3.2 it is only relevant to have some fixed

linear order on variables. In the next sections we will alter between different orders,
but only those extending >decr.

In the sequel we assume that there are n variables {X1, . . . , Xn}, ordered:

X1 > X2 > . . . > Xn.

If α ∈ {X1, . . . Xk}⊗ and β ∈ {Xk+1, . . . , Xn}⊗, for k ∈ {0, . . . , n}, we say that
k separates α and β. (Note that there may be more than one k separating a given
pair of processes.) If some such k exists, we say that α and β are separated. By
α · β we mean concatenation, that is the composition of processes α, β under the
assumption that α and β are separated. Thus formally speaking, concatenation is a
partially defined operation, and whenever we write α · β we implicitly assume that α
and β are separated.

Directly from the definition of > we deduce:

Lemma 11 (decreasing transition). If a decreasing transition

Xa1
1 · . . . ·Xan

n
ζ−→Xb1

1 · . . . ·Xbn
n

is performed by Xk, for k ∈ {1, . . . , n}, then b1 = a1, . . . , bk−1 = ak−1.

Let’s recall Definition of the generator (Definition 19). Note that generating transi-
tions are decreasing.

Lemma 12 (decreasing transition cont.). If a decreasing transition, as in Lemma 11,

is not generating then bk = ak − 1.

Following [53], we say that X generates Y if X =⇒0X||Y . Thus if X =⇒0X||δ̄
then X generates every variable that appears in δ̄. In particular, X may generate itself.
Note that each generated variable is of norm 0. More generally, we say that α generates
β if α=⇒0α||β. This is the case precisely iff every variable occurring in β is generated
by some variable occurring in α.

As a direct corollary of Lemma 4 we obtain:

Lemma 13. If α generates β then α ≡ α||β̄ for any β̄ v β.

52 CHAPTER 3. BISIMULATION EQ. FOR COMM. CONTEXT-FREE PROC.

Lemma 13 will be useful in the sequel, as a tool for eliminating unnecessary tran-
sitions and thus decreasing the size of a resulting process.

3.2.3 Unambiguous processes

Once we have a fixed ordering on variables, a process Xa1
1 · . . . ·Xan

n may be equiv-
alently presented as a sequence of exponents (a1, . . . , an) ∈ Nn. In this perspective,
v is the point-wise order. The sequence presentations induce additionally the lexico-
graphic order on processes, denoted �.

Definition 25. We define the order � on processes as follows:

Xa1
1 · . . . ·Xan

n ≺ X
b1
1 · . . . ·Xbn

n iff ∃k. (ak < bk and ∀i < k. ai = bi).

The same may be written briefly using concatenation: α ≺ β if α = γ ·Xa
k · α′,

β = γ ·Xb
k · β′, and a < b.

For instance, the decreasing non-generating transitions α
ζ−→ β always go strictly

down the lexicographical order, i.e. α � β.

We will exploit the fact that the order � is total, and thus each equivalence class
exhibits the least element. The least process in the equivalence class of α will serve as
the normal form of α, denoted nf(α) (cf. Definition 22 in Section 3.2.1).

The sequence presentation allows us to speak naturally of prefixes of a process: the
k-prefix of Xa1

1 · . . . ·Xan
n is the process Xa1

1 · . . . ·X
ak
k , for k = 0 . . . n.

We now introduce one of the core notions used in the proof: unambiguous pro-

cesses and their greatest extensions.

Definition 26 (unambiguous processes). A process Xa1
1 · . . . ·Xan

n , is called k-unam-
biguous if for every i ∈ {1, . . . , k}, α, β ∈ {Xi+1, . . . , Xn}⊗ and b, c ∈ N, if b 6= c

and

Xa1
1 · . . . ·X

ai−1

i−1 ·X
b
i · α ≡ Xa1

1 · . . . ·X
ai−1

i−1 ·X
c
i · β (3.2)

hen b, c > ai. When k = n we write simply unambiguous.

Note that being k-unambiguous is a property of the k-prefix: a process is k-unam-
biguous iff its k-prefix is so.

Observe that an unambiguous process is necessarily the least one wrt. � in its
equivalence class, as the definition disallows the equivalence (3.2) to hold for ai =

b > c. On the other hand, it is not immediately clear whether the opposite implication
holds, i.e. whether every equivalence class contains some unambiguous process. In the
sequel we will show that this is actually the case.

3.2. NORMAL FORM BY SQUEEZING 53

Example 14. Consider the following grammar:

X1
a−→ X1 X2

b−→ X3 X3
b−→ ε

X1 −→ ε X2 −→ X3 X3 −→ ε

and an order X1 > X2 > X3 on variables. We observe that X2
1 ≈ X1, therefore

the process X2
1 is not (1-)unambiguous. On the other hand X1 6≈ α for any α ∈

{X2, X3}⊗ (because neither X2 nor X3 can perform an a transition), so X1 is un-

ambiguous. Furthermore X1 ·X2 ≈ X1 ·X2
3 , hence X1 ·X2 is not (2-)unambiguous.

Finally we observe that X1 ·X2
3 6≈ X1 ·X3. Therefore X1 ·X2

3 is unambiguous, but

also X1 ·X3 is so.

Observe that a prefix of a k-unambiguous process is k-unambiguous as well. More-
over, k-unambiguous processes are downward closed wrt. v: whenever α v β and β
is k-unambiguous, then α is k-unambiguous as well.

Directly by Definition 26, if γ = Xa1
1 · . . . ·X

ak−1

k−1 is (k − 1)-unambiguous then
it is automatically k-unambiguous (in fact j-unambiguous for any j > k). This corre-
sponds to ak = 0. We will be especially interested in the greatest value of ak possible,
as formalized in the definition below.

Definition 27 (the greatest extension). The greatest k-extension of a (k − 1)-unambi-

guous process γ ∈ {X1 . . . Xk−1}⊗ is that process among k-unambiguous processes

γ ·Xa
k that maximizes a.

Clearly the greatest extension does not need exist in general, as illustrated below.

Example 15. Consider the processes from Example 14. The process X1 is the greatest

1-extension of the empty process as X2
1 is not 1-unambiguous. X1 is also its own

greatest 2-extension. Furthermore, X1 does not have the greatest 3-extension. Indeed,

X1X
a
3 is not equivalent to X1X

b
3 , for a 6= b, therefore X1X

a
3 is 3-unambiguous for

any a.

Definition 28 (unambiguous prefix). By an unambiguous prefix of a process

Xa1
1 · . . . ·Xan

n

we mean any k-prefix Xa1
1 · . . . ·X

ak
k that is k-unambiguous, for k = 0 . . . n. The

maximal unambiguous prefix is the one that maximizes k.

Example 16. For the grammar from Example 14, the maximal unambiguous prefix of

X1 ·X2
2 is X1, and the maximal unambiguous prefix of X2

1 ·X2 is the empty process.

54 CHAPTER 3. BISIMULATION EQ. FOR COMM. CONTEXT-FREE PROC.

3.2.4 Squeezes

The following lemma is fundamental for our subsequent development. The rough idea
is as follows. For an unambiguous α consider a sequence of decreasing transitions
from α · β, for an arbitrary β. The resulting process is necessarily of the form α′||β′,
where α′ is obtained from α by a subsequence of transitions, and β′ is obtained from
β by the remaining subsequence of transitions. The lemma says that up to equivalence,
the same process is reached by the latter subsequence of transitions.

Lemma 14. Consider a process α · β, where α is unambiguous, and a sequence of

decreasing transitions:

α · β ζ1−→ . . .
ζl−→ α′||β′′ (3.3)

with α′ and β′ originating from α and β, respectively, i.e.

α
ζj1−→ . . .

ζjk−→ α′ and β
ζi1−→ . . .

ζim−→ β′, (3.4)

for some sequences j1 < . . . < jk and i1 < . . . < im of indices that partition the

sequence 1, 2, . . . , l. Suppose that

α′||β′ ≡ α||γ

for some γ. Then α′ ≡ α and hence α′||β′ ≡ α · β′.

Proof. Our goal is to show the following two facts:

• α and β′ are separated (in other words, β′ contains only variables which are
smaller than all variables from α with respect to >), and

• α′ ≡ α.

Indeed, in this case α · β′ is well defined and α′||β′ ≡ α · β′ due to substitutivity.

Let’s prove the first item first. Observe that each variableX occurring in the process
β′ is an effect of a sequence of decreasing transitions originating from some variable
Y occurring in the process β, hence Y > X . Thus α and β′ are separated since α and
β are.

Now it remains to prove the second item, namely α′ ≡ α. Extend the sequence of
transitions (3.3) with

α′||β′=⇒0ᾱ
′||β′

induced by a sequence
α′=⇒0ᾱ

′

3.2. NORMAL FORM BY SQUEEZING 55

leading from α′ to a v-minimal process ᾱ′ v α′ which is equivalent to α′. By substi-
tutivity ᾱ′||β′ is equivalent to α′||β′, and thus also to α||γ:

ᾱ′||β′ ≡ α||γ. (3.5)

We claim that ᾱ′ = α, which immediately implies α′ ≡ α.
Towards contradiction, suppose ᾱ′ 6= α. Let k be the first coordinate on which ᾱ′

doesn’t agree with α. In other words:

α = θ ·Xa
k · ω ᾱ′ = θ ·Xa′

k · ω′ and a 6= a′,

for some k, a, a′ and processes θ, ω, and ω′. We consider two cases.
First suppose a > a′. As α and β′ are separated, and a > 0, we know that all

variables appearing in β′ are smaller than Xk. Thus ᾱ′||β′ may be presented as

ᾱ′||β′ = θ ·Xa′

k · (ω′||β′),

Recall that the process α = θ ·Xa
k · ω is unambiguous. By the very definition of un-

ambiguous processes, as a′ < a then the process ᾱ′||β′ can not be equivalent to α||γ,
which contradicts (3.5).

As the last remaining case, suppose a < a′. Because in the sequence of transitions
α=⇒ᾱ′ we use only decreasing transitions, and because k is the first coordinate on
which ᾱ′ differs from α, by Lemmas 11 and 12 we deduce that Xk was created via
some generating transition. Thus θ ·Xa

k generates Xk, and by Lemma 13 we conclude
that

θ ·Xa′

k ≡ θ ·Xa
k .

This means that ᾱ′ = θ ·Xa′

k · ω′ ≡ θ ·Xa
k · ω′ and ᾱ′ = θ ·Xa

k · ω′ which is in
contradiction with v-minimality of ᾱ′. 2

The following simple example illustrates the reasoning in the proof above.

Example 17. Consider the grammar from Example 1 with an order P > Q > A.

Clearly process P is the only one which can perform transition labelled with b and

no other variable can reach P via a sequence of transitions, thus P is unambiguous.

Instantiate Lemma 14 with α = P , β = Q, and a sequence of decreasing transitions

P ·Q=⇒P ·Q ·A9 a−→ P ·Q ·A8 −→ P ·A8,

with all A’s produced using the transition rule P −→ P ||A. Clearly the assumption of

Lemma 14 holds as P ·A8 w P .

Then Lemma 14 says that P ·A8 ≡ P . Indeed, this must be true as P generates

A. This simple example has an advantage of being general enough: in Lemma 14, all

56 CHAPTER 3. BISIMULATION EQ. FOR COMM. CONTEXT-FREE PROC.

variable occurrences in α′ that do not belong to α are actually generated by α.

Lemma 15. Under the assumptions of Lemma 14, if the sequence of transitions (3.3)
is a matching Duplicator’s move (which means in particular that all symbols ζi are ε,

except possibly one), then the subsequence of transitions originating from β:

α · β
ζi1−→ . . .

ζim−→ α · β′ (3.6)

is also a matching Duplicator’s move.

Proof. For weak equivalence it is sufficient that the last process α · β′ in (3.6) is equiv-
alent to the last process in (3.3). In case of branching equivalence we need to inspect
also the second last process in (3.6). We know however that the sequence in (3.3),
being a matching Duplicator’s response, has the form:

α · β=⇒ ζ−→ α′||β′ (3.7)

(i.e. ζ1 = . . . = ζl−1 = ε). Recall that α′ is equivalent to α, by Lemma 14. As the last
transition in (3.7) is the only one in the sequence that may change equivalence class,
and α′||β′ is equivalent to α · β′, the process obtained by transitions originating from
β, we claim that the last transition necessarily originates from β, i.e.

α · β=⇒α′||β′′ ζ−→ α′||β′

for some β′′. Thus restricting to only transitions originating from β we obtain

α · β=⇒α · β′′ ζ−→ α · β′.

The sequence is necessarily a matching Duplicator’s response as α · β′′ is equivalent
to α′||β′′. 2

A direct conclusion from Lemmas 14 and 15 is the following result that speaks
about an interplay between composition and concatenation with an unambiguous pro-
cess. Consider an unambiguous γ and suppose that the following two processes are
equivalent:

γ · α ≡ (γ||β). (3.8)

Then for any decreasing Spoiler’s move from the right process originating from β,
there is a matching Duplicator’s move from the left one that only engages α. The
precise formulation follows.

Lemma 16. Let γ be a k-unambiguous process and let α, β be arbitrary processes

satisfying (3.8). Then for any decreasing transition β
ζ−→ β′, giving rise to a Spoiler’s

3.2. NORMAL FORM BY SQUEEZING 57

move

γ||β ζ−→ γ||β′

there is a sequence of decreasing transitions:

α
ζ1−→ . . .

ζn−→ α′

that gives rise to a matching Duplicator’s move

γ · α ζ1−→ . . .
ζn−→ γ · α′,

as required by the definition of branching or weak bisimulation expansion.

Proof. Consider a matching Duplicator’s move (all transitions are necessarily decreas-
ing by Lemma 10):

γ · α ζ1−→ . . .
ζn−→ γ′ · α′. (3.9)

As the move is matching, we know that

γ′ · α′ ≡ γ||β′.

The process γ is unambiguous and γ||β′ w γ, which allows us to apply Lemma 14, to
obtain a subsequence of (3.9)

α
ζi1−→ . . .

ζim−→ ᾱ

such that γ · ᾱ ≡ γ′ · α′. Then by Lemma 15 we learn that the subsequence is a
matching Duplicator’s move. 2

The lemma to follow applies Lemma 16 to specially chosen of unambiguous pro-
cesses, namely to the greatest k-extensions γ ·Xa

k of unambiguous processes γ.

Lemma 17 (squeezing out). Suppose γ is a (k − 1)-unambiguous process with the

greatest k-extension γ ·Xa
k . Then for some process δ it holds:

γ ·Xa+1
k ≡ γ ·Xa

k · δ. (3.10)

Proof. By δ, δ′, etc. we denote below processes from {Xk+1 . . . Xn}⊗.

As a is the maximal extension of γ, there is some b > a and some processes δ, δ′

such that
γ ·Xb

k · δ ≡ γ ·Xa
k · δ′.

58 CHAPTER 3. BISIMULATION EQ. FOR COMM. CONTEXT-FREE PROC.

Consider an arbitrary sequence of decreasing transitions

Xb
k · δ

ζ1−→ . . .
ζm−→Xa+1

k .

By Lemma 16 applied to the unambiguous process γ ·Xa
k , there is a sequence of

matching (necessarily decreasing) transitions

δ′
ψ1−→ . . .

ψl−→ δ′′,

for some δ′′, such that
γ ·Xa+1

k ≡ γ ·Xa
k · δ′′.

This completes the proof. 2

Definition 29. If a (k−1)-unambiguous process γ ∈ {X1 . . . Xk−1}⊗ has the greatest

k-extension, say γ ·Xa
k , then any δ ∈ {Xk+1 . . . Xn}⊗ satisfying (3.10) is called a γ-

squeeze of Xk.

By the very definition, Xk has a γ-squeeze only if γ has the greatest k-extension.
Lemma 17 shows the opposite: if γ has the greatest k-extension then Xk has a γ-
squeeze, that may depend in general on γ and k. The squeeze is however not uniquely
determined and in fact Xk may admit many different γ-squeezes. In the sequel assume
that for each (k − 1)-unambiguous γ ∈ {X1 . . . Xk−1}⊗ and Xk, some γ-squeeze of
Xk is chosen; this squeeze will be denoted by δk,γ .

Example 18. Consider one more time the grammar from Example 1, with the order

P > Q > A. Observe that Q2 ≡ Q which means that Q2 is not an unambiguous

process and thus can be squeezed. If we fix γ = P 3, say, then one possible γ-squeeze

of Q is the empty one: P 3 ·Q2 ≡ P 3 ·Q · ε, but there are many others, for instance

P 3 ·Q2 ≡ P 3 ·Q ·An, for any n > 0. The same squeezes are fine for any other

γ ∈ {P}⊗.

Definition 30 (squeezing step). For a given process α, assuming it is not n-unambi-

guous, let γ be its maximal unambiguous prefix. Thus there is k 6 n such that

α = γ ·Xa
k · δ,

γ ∈ {X1 . . . Xk−1}⊗, δ ∈ {Xk+1 . . . Xn}⊗, and γ Xa
k is not k-unambiguous. Note

that a is surely greater than 0. We define squeeze(α) by

squeeze(α) = γ ·Xa−1
k · δk,γ · δ.

Otherwise, i.e. when α is n-unambiguous, for convenience put squeeze(α) = α.

3.2. NORMAL FORM BY SQUEEZING 59

By Lemma 17 and by substitutivity of ≡ we conclude that α ≡ squeeze(α) and if
α is not unambiguous then squeeze(α) ≺ α.

3.2.5 Bounds on normal forms

For an arbitrary partial order � on processes, a process α is called �-minimal if it is
minimal with respect to � in its equivalence class (in other words, there is no β�αwith
β ≡ α). In the sequel in this section we will often refer to v-minimal processes, and
to �-minimal ones. Clearly in every equivalence class there is exactly one �-minimal
process, the normal form of processes from that class. In the following sections we
will use the notion of �-minimality also for other orders than � and v.

For a process α, by a �-minimization of α we mean any �-minimal process β with
β ≡ α and β � α. In particular, if α is �-minimal then it is its own minimization,
in fact the unique one. Clearly, if the order is well-founded then every process has
some �-minimization. All orders considered in this chapter are refinements of the
lexicographical order � and are thus well-founded.

Due to Lemma 17 we learn that every equivalence class contains an unambiguous
processes:

Lemma 18. A process α is unambiguous if and only if it is �-minimal.

Proof. One implication does not refer to squeezes. Suppose α is not the least process
in its equivalence class. That is, for some i 6 n we have α = γ ·Xa

i · ᾱ and there
is some β = γ ·Xb

i · β̄ ≡ α with b < a. Thus, according to the definition, α is not
unambiguous.

The other implication is easily provable building on the development of this section.
If α is not unambiguous then it is not the least one in its equivalence class wrt. � as
α ≡ squeeze(α) and squeeze(α) ≺ α.

2

It follows that the squeezing step, applied in a systematic manner sufficiently many
times on a process α, leads to the normal form process nf(α).

Lemma 19 (normal form via squeezing). Let α be an arbitrary process. Then con-

secutive applications of the squeezing step eventually stabilize at nf(α), i.e. for some

m > 0, squeezem(α) = nf(α).

Finally we formulate lower and upper bounds on the size of nf(α), with respect
to the size of α, that will be crucial for the proof of Theorem 5. The first one, stated
in Lemma 21, applies uniquely to v-minimal processes. The following lemma is the
technical preparation:

Lemma 20. If α is v-minimal then size(α) 6 size(ᾱ), for any v-minimization ᾱ of

squeeze(α).

60 CHAPTER 3. BISIMULATION EQ. FOR COMM. CONTEXT-FREE PROC.

Proof. If α is unambiguous the proof is trivial, therefore assume otherwise. According
to Definition 30, let α = γ ·Xa

k · δ and let

squeeze(α) = γ ·Xa−1
k · (δk,γ ||δ). (3.11)

Consider any ᾱ v squeeze(α) such that ᾱ ≡ squeeze(α). First we observe that γ is
necessarily a (k − 1)-prefix of ᾱ as α is (k − 1)-unambiguous and α ≡ ᾱ. Therefore

ᾱ = γ ·Xb−1
k · (δ̄k,γ ||δ̄)

for some b 6 a and δ̄k,γ v δk,γ and δ̄ v δ. We observe that δ̄k,γ is necessarily non-
empty, as α is v-minimal and α ≡ ᾱ. For size(α) 6 size(ᾱ) it is thus sufficient to
demonstrate that

b = a and δ̄ = δ.

Towards a contradiction assume the opposite, i.e. either b < a, or δ̄ < δ. As α ≡ ᾱ,
i.e.,

γ ·Xa
k · δ ≡ γ ·Xb−1

k · (δ̄k,γ ||δ̄),

knowing that a > b− 1 we deduce that the process γ ·Xb may not be k-unambiguous.
Thus we may apply squeeze(_) to γ ·Xb · δ̄ to obtain

squeeze(γ ·Xb
k · δ̄) = γ ·Xb−1

k · (δk,γ ||δ̄).

By Lemma 4 applied to

squeeze(α) = γ ·Xa−1
k · (δk,γ ||δ) =⇒0

γ ·Xb−1
k · (δk,γ ||δ̄) =⇒0γ ·Xb−1

k · (δ̄k,γ ||δ̄) = ᾱ

we deduce squeeze(α) ≡ γ ·Xb−1
k · (δk,γ ||δ̄), i.e.,

squeeze(α) ≡ squeeze(γ ·Xb
k · δ̄).

Since always α ≡ squeeze(α) we obtain

α = γ ·Xa
k · δ ≡ squeeze(α) ≡ squeeze(γ ·Xb

k · δ̄) ≡ γ ·Xb
k · δ̄,

with either b < a or δ̄ < δ, thus contradicting the v-minimality of α. This completes
the proof. 2

Lemma 21 (lower bound). If α is v-minimal then size(nf(α)) > size(α).

Proof. Lemma is a corollary of Lemma 20, once one observes that the same normal

3.2. NORMAL FORM BY SQUEEZING 61

form is obtained by consecutive applications of the following non-deterministic modi-
fication of the squeezing step:

• the minimization-squeezing step:
replace α by any v-minimization of squeeze(α).

Indeed, as minimization preserves the equivalence class, the unambiguous process ob-
tained at the end, starting from a process α, is necessarily nf(α). 2

Contrarily to Lemma 21, the upper bound holds for all processes.

Lemma 22 (upper bound). There is a constant c, depending only on the grammar, such

that size(nf(α)) 6 c · size(α) for any process α.

Proof. Let α be an arbitrary process. We claim that the size of nf(α) is bounded by:

size(nf(α)) 6 size(α) · size(δk1,γ1) · . . . · size(δkn,γn) (3.12)

for some unambiguous processes γ1 . . . γn. Indeed, let γk be the (k− 1)-unambiguous
process witnessing the squeezing step for Xk (if any). The size of the process, during
all squeezing steps for Xk, increases at most size(δkk,γk) times.

However, in general, there may be infinitely many different processes δk,γ used
in the squeezing steps for different processes α, as there may be in general infinitely
many unambiguous processes γ. We will argue that for the purpose of estimating the
size of nf(α) for all processes α, it is sufficient to take into account only a finite subset
of unambiguous processes. We will rely on the following simple observation. Let
γ, γ′ ∈ {X1 . . . Xk−1}⊗, for some k 6 n, be both (k − 1)-unambiguous and γ v γ′,
respectively. Let the greatest k-extensions of γ and γ′ be γ ·Xa

k and γ ·Xa′

k . The
exponents necessarily satisfy a > a′. The crucial observation is that whenever a = a′

then every γ-squeeze, like δk,γ , is also a γ′-squeeze. Indeed:

γ ·Xa+1
k · δ ≡ γ ·Xa

k · δk,γ · δ implies γ′ ·Xa+1
k · δ ≡ γ′ ·Xa

k · δk,γ · δ,

since ≡ is substitutive. In other words: one may safely assume δk,γ′ = δk,γ whenever
γ v γ′ and a 6 a′.

Now we easily obtain the estimation. For every k ∈ {1 . . . n}, consider all pairs
(γ, a), where γ ∈ {X1 . . . Xk−1}⊗ is any (k − 1)-unambiguous process that exhibits
the greatest extension γXa

k (note that only such processes γ witness a squeezing step).
Choose those among them that are minimal wrt. v on the first coordinate, and wrt. 6
on the second one. By Dickson’s Lemma there are only finitely many such minimal
pairs. The set of all processes δk,γ , for all chosen minimal pairs (γ, a), jointly for all
k, has an element which is maximal wrt. size; denote this maximal size by s. The size

62 CHAPTER 3. BISIMULATION EQ. FOR COMM. CONTEXT-FREE PROC.

of any process δki,γi in (3.12) is dominated by s and thus we obtain:

size(nf(α)) 6 size(α) · sn (3.13)

which completes the proof by putting c = sn. Keep in mind that c only depends on a
grammar, and does not depend on a process α. 2

Concerning the upper bound, in the following section we demonstrate a sharper
result, with the constant c estimated effectively. However, the estimation will be only
shown for branching equivalence.

3.3 Effective bound on normal forms

In this section we only consider branching equivalence '. In particular, the notion of
normal form is understood with respect to '. Fix an arbitrary normed commutative
context-free grammar and denote its size by d.

Contrarily to the previous section, where the linear order > on variables was fixed,
in this section we consider all linear orders on variables that extend >decr (cf. Defini-
tion 24); such orders we call briefly admissible. Note however that the whole devel-
opment of Section 3.2 strongly depends on the choice of >. In particular, the normal
form of a process may change if one changes the order. Thus in this section we will
have to be careful enough to explicitly specify the order we use, whenever we apply
any notation or result of Section 3.2.

Concerning the notation, we will use indexed variable namesX1, X2, . . . , Xn as in
Section 3.2, assuming that the indexing is consistent with a currently used admissible
order:

X1 > X2 > . . . > Xn.

The following lemma is the main result of this section. The lemma will be used in
Section 3.4 for the proof of Theorem 5.

Lemma 23 (upper bound). For every admissible order >, and for every process α,

size(nf(α)) 6 dn−1 · size(α).

Lemma 23 is a direct corollary of Lemma 24 which says that whatever admissible
order is chosen, squeezing does not increase a weighted measure of size, defined as:

d-size(Xa1
1 . . . Xan

n) = a1 · dn−1 + a2 · dn−2 + . . .+ an−1 · d+ an.

(The measure of size clearly depends on the choice of >.)

Lemma 24. For every k ∈ {1 . . . n}, for every admissible order > and (k− 1)-unam-

biguous γ ∈ {X1 . . . Xk−1}⊗ that has the greatest k-extension, the variable Xk has a

3.3. EFFECTIVE BOUND ON NORMAL FORMS 63

γ-squeeze δ with d-size(δ) 6 d-size(Xk).

(Keep that even the variable Xk, as well as the property of being (k − 1)-unam-
biguous, depend on the choice of >.) Indeed, whatever an admissible order > is cho-
sen, Lemma 24 together with Lemma 19 imply d-size(nf(α)) 6 d-size(α) and then
Lemma 23 follows:

size(nf(α)) 6 d-size(nf(α)) 6 d-size(α) 6 dn−1 · size(α).

All the rest of this section is devoted to the proof of Lemma 24.

3.3.1 Proof of Lemma 24

The proof is by induction on n − k. The induction basis is for k = n. Whatever an
admissible order is chosen, if k = n then it trivially holds that d-size(δ) 6 d-size(Xk),
as the only possible γ-squeeze δ of Xn is the empty process, whose weighted size is 0.

For the induction step, fix some k and an admissible order >, assuming that the
lemma holds for all greater values of k, for all admissible orders.

Then fix a (k − 1)-unambiguous process γ ∈ {X1 . . . Xk−1}⊗, assuming that γ
has the greatest k-extension, say γ ·Xa

k . The assumption guarantees existence of some
γ-squeeze of Xk, that is a process δ satisfying

γ ·Xa+1
k ' γ ·Xa

k · δ. (3.14)

The proof is split into three cases:

• a > 0,

• a = 0 and Xk has a γ-squeeze δ such that Xk =⇒0δ,

• a = 0 and Xk has no γ-squeeze δ such that Xk =⇒0δ.

Case 1: a > 0 In this case we will not refer to the induction assumption at all.

The idea behind that proof is based on the fact that a > 0, and thus, roughly
speaking, Xk does not vanish during squeezing. From this we deduce that variables
generated by Xk do not appear in some squeeze δ of Xk. Bounding the number of
occurrences of other variables in δ is an easy conclusion from Claim 1, formulated
below.

Claim 1. The variable Xk has a γ-squeeze η such that γ ·Xa+1
k =⇒0γ ·Xa

k · η.

Proof. Choose an arbitrary γ-squeeze of Xk, say δ. Consider the pair (3.14) and
an arbitrary non-generating decreasing transition rule Xk

ζ−→ ω (due to normedness

64 CHAPTER 3. BISIMULATION EQ. FOR COMM. CONTEXT-FREE PROC.

assumption every variable has such a transition rule). The transition rule gives rise to a
Spoiler’s move

γ ·Xa
k · δ

ζ−→ γ ·Xa−1
k · (δ||ω),

matched by some sequence of transitions of the form

γ ·Xa+1
k =⇒0α

ζ−→ α′.

We claim that
α = γ ·Xa

k · η and α′ = γ ·Xa−1
k · η′,

for some processes η and η′. The claim follows due to the equivalences

α ' γ ·Xa
k · δ and α′ ' γ ·Xa−1

k · (δ||ω),

using the fact that γ ·Xa
k is k-unambiguous. Thus η is a γ-squeeze of Xk:

γ ·Xa
k · η ' γ ·Xa

k · δ ' γ ·Xa+1
k ,

and γ ·Xa+1
k =⇒0γ ·Xa

k · η as required. 2

Remark 2. Actually it follows easily that Xk =⇒0η. We will however not need this

property in the remaining part of the proof.

Consider the sequence of transitions γ ·Xa+1
k =⇒0γ ·Xa

k · η and assume that all
transitions originating from γ precede all transitions originating from Xa+1

k . Distin-
guish the very first transition of Xk, say Xk −→ 0φ, that decreases the exponent from
a+ 1 to a:

γ ·Xa+1
k =⇒0γ ·Xa+1

k · θ −→ 0γ ·Xa
k · (φ||θ) =⇒0γ ·Xa

k · η. (3.15)

Note that by Lemma 4 we have:

γ ·Xa+1
k ' γ ·Xa

k · (θ||φ). (3.16)

Furthermore, as γ ·Xa+1
k generates θ, namely γ ·Xa+1

k =⇒0γ ·Xa+1
k · θ, and a > 0,

we observe that γ ·Xa
k generates θ as well, and hence

γ ·Xa
k ' γ ·Xa

k · θ.

This allows us to obtain, using substitutivity and the equation (3.16), a γ-squeeze of
Xk of size at most d:

γ ·Xa+1
k ' γ ·Xa

k · (θ||φ) ' γ ·Xa
k · φ.

3.3. EFFECTIVE BOUND ON NORMAL FORMS 65

Knowing that φ ∈ {Xk+1 . . . Xn}⊗ and size(φ) < d, we easily deduce the required
bound on the weighted size of φ:

d-size(φ) 6 d · dn−k−1 = dn−k = d-size(Xk).

The proof of Case 1 is thus completed.

Case 2.1: a = 0 and Xk has a γ-squeeze δ such that Xk =⇒0δ This is the only
case that we are not able to adapt to weak equivalence.

Recall that we have a fixed admissible order >, for which we should provide an
estimation on the size of a γ-squeeze δ of Xk. The idea of the solution for this case
is to do a proof for an admissible order >′ different than >, knowing that both orders
are k-consistent, which means that they agree on k greatest elements. For instance, the
two orders on the set {A,B,C,D,E}:

A > B > C > D > E and A >′ B >′ D >′ E >′ C

are 2-consistent but not 3-consistent. The estimation on the size of a γ-squeeze δ will
transfer easily to the original order >, as we will actually prove that size(δ) 6 d. Our
proof will base on the simple observation that if two orders are k-consistent then for
l 6 k, l-unambiguous prefixes with respect to both orders are the same, as well as
squeezes of Xl.

The modified order, denoted >′, is any one that satisfies the following conditions:

(1) >′ is k-consistent with >, and

(2) all variables generated by Xk are smaller with respect to >′ than all variables
not generated by Xk.

Look at that, the second condition is satisfiable: whenever Y is generated by Xk and
Z is not, then there exists no sequence of decreasing transitions from Y to Z, thus
Y >decr Z is impossible. From now on we work with the order >′, so indexing of
variables Xi, squeezes, normal forms, etc. are implicitly understood to be defined with
respect to that order.

To make the notation more readable, we will constantly use symbols α, α′, etc. for
processes containing exclusively variables smaller than Xk that are not generated by
Xk, and symbols β, β′, etc. for those containing exclusively variables generated byXk.

Let δ be a γ-squeeze of Xk such that Xk =⇒0δ. In the sequence of transitions
Xk =⇒0δ, distinguish the transition that makes Xk disappear, induced by a transition
rule Xk −→ 0ω, say. We may thus write:

γ ·Xk =⇒0γ ·Xk · β̂ −→ 0γ · (ω||β̂) =⇒0γ · δ. (3.17)

66 CHAPTER 3. BISIMULATION EQ. FOR COMM. CONTEXT-FREE PROC.

for some process β̂. Let nf(γ ·Xk) = γ · α · β. As the first step we prove the follow-
ing:

Lemma 25. nf(γ · ω) = γ · α · β̄ for some process β̄.

Proof. As the first step we compute nf(γ · (ω||β̂)). Knowing that δ is a γ-squeeze of
Xk, we may apply Lemma 4 to (3.17) to obtain

γ ·Xk ' γ · (ω||β̂)

and thus
nf(γ · (ω||β̂)) = nf(γ ·Xk) = γ · α · β.

Now we claim that normal forms of the processes

γ · ω and γ · (ω||β̂) (3.18)

differ only on variables generated byXk, which immediately proves the lemma. Indeed
the processes themselves (3.18) differ only on variables generated byXk (i.e. variables
appearing in β̂). Recall that the order on variables has been chosen so that the variables
generated by Xk are smaller than other variables. As normal form is obtained by
consecutive squeezing (cf. Lemma 19), the normal forms of processes (3.18) may only
differ on variables generated by Xk, as required. 2

Recall that nf(γ ·Xk) = γ · α · β and consider branching bisimulation game from
the pair of processes

γ ·Xk ' γ · α · β.

Suppose the first Spoiler’s move is γ ·Xk −→ 0γ · ω, answered by a matching Dupli-
cator’s move:

γ · α · β=⇒0τ
′ −→ 0τ.

The sequence of transitions satisfies assumptions of Lemma 14: γ · α is unambiguous
and

τ ' γ · ω ' γ · α · β̄

for some β̄ (the latter equivalence follows by Lemma 25). We apply Lemma 14 to-
gether with Lemma 15 and deduce that Duplicator has a matching move engaging only
variables generated by Xk, thus of the form:

γ · α · β=⇒0γ · α · (β′||Y) −→ γ · α · (β′||θ). (3.19)

Finally we use (3.19) to provide a γ-squeeze of Xk of size at most d. Recall

3.3. EFFECTIVE BOUND ON NORMAL FORMS 67

that (3.19) is a matching Duplicator’s move, i.e.

γ · α · (β′||Y) ' γ ·Xk γ · α · (β′||θ) ' γ · ω. (3.20)

Using these two equivalences we derive the following sequence of equivalences:

γ ·Xk ' γ ·Xk · θ ' γ · α · (β′||Y ||θ) ' γ · α · (β′||θ||Y) ' γ · (ω||Y).

The first one is due to the fact that θ is generated by Xk. The second one is by sub-
stitutivity, using the first equivalence in (3.20). The third one is simply commutativity
of composition, and the last one is by substitutivity again, this time using the second
equivalence in (3.20).

The process ω, being the right-hand side of a transition rule, is of size smaller than
d. Hence ω||Y is a γ-squeeze of size at most d. This completes the proof of Case 2.1.

Case 2.2: a = 0 and Xk has no γ-squeeze δ such that Xk =⇒0δ We start with a
lemma that only holds under assumptions of Case 2.2:

Lemma 26. No v-minimal γ-squeeze of Xk contains a variable generated by Xk.

Proof. Suppose the contrary, namely

γ ·Xk ' γ · (δ′||Y), (3.21)

with δ′||Y ∈ {Xk+1 . . . Xn}⊗, Y generated by Xk, and δ′||Y being v-minimal. Con-
sider branching bisimulation game for the pair (3.21), and suppose Spoiler performs
an arbitrary sequence of silent decreasing transitions Y =⇒0ε from Y to the empty
process ε, giving rise to the sequence of Spoiler’s moves

γ · (δ′||Y) =⇒0γ · δ′ (3.22)

from the right process. Observe that due to v-minimality of δ′||Y , the Spoiler’s tran-
sitions surely change the equivalence class, i.e.

γ · (δ′||Y) 6' γ · δ′ (3.23)

as otherwise δ′ < δ′||Y would be a γ-squeeze of Xk smaller than δ′||Y .

By Lemma 16 we know that there is a sequence of matching Duplicator’s responses
to (3.22) that does not engage γ at all:

γ ·Xk =⇒0γ · ω (3.24)

68 CHAPTER 3. BISIMULATION EQ. FOR COMM. CONTEXT-FREE PROC.

(i.e. Xk =⇒0ω). Knowing γ · ω ' γ · δ′, by (3.23) we deduce

γ ·Xk 6' γ · ω. (3.25)

ThusXk does not appear in ω, as otherwise (3.24) and (3.25) would be in contradiction
with Lemma 13.

As γ · ω ' γ · δ′, we may substitute γ · ω in place of γ · δ′ in (3.21), to obtain a
γ-squeeze of Xk

γ ·Xk ' γ · (ω||Y),

such thatXk −→ 0Xk · Y =⇒0ω||Y . This is in contradiction with the assumption that
no γ-squeeze is reachable from Xk by =⇒0. Thus the lemma is proved. 2

Recall that we have a fixed admissible order >, for which we should provide an
estimation on the weighted size of a γ-squeeze δ of Xk. As in Case 2.1, we will use
in the proof an admissible order >′ different than >, namely an arbitrary admissible
order >′ fulfilling the following conditions:

(1) >′ is k-consistent with >,

(2) all variables generated by Xk are smaller with respect to >′ than all variables
not generated by Xk, and

(3) the orders > and >′ coincide on variables not generated by Xk.

The first two conditions are exactly as before, the last one is added. Similarly as be-
fore, the conditions are satisfiable. Moreover, the estimation on the weighted size of
a γ-squeeze with respect to >′ easily transfers to the original order >. Indeed, by
Lemma 26, a v-minimal squeeze contains only variables not generated by Xk, and
these variables are placed higher in the order >′ than in the order >, thus their contri-
bution to the weighted size with respect to the order >′ is not smaller than with respect
to >.

From now on we work with the order >′ instead of >, and thus indexing of vari-
ables, squeezes, normal forms, etc. are implicitly understood to be defined with respect
to that order.

Let nf(γ ·Xk) = γ · α. By Lemma 26 we know that no variable appearing in α is
generated by Xk. We are aiming at showing that the d-size(α) 6 d-size(Xk).

Case 2.2 is the only one which requires referring to the induction assumption. We
will invoke the induction assumption for variables smaller than Xk, and the same ad-
missible order >′ on variables. To this aim, we will start by considering branching
bisimulation game starting with a decreasing non-generating Spoiler’s move, as out-
lined below.

3.3. EFFECTIVE BOUND ON NORMAL FORMS 69

Let Xm be the the smallest variable occurring in α, i.e. α = α′||Xm (note that Xm

may occur in α′). Consider the branching bisimulation game for

γ ·Xk ' γ · α

and the first Spoiler’s move from the right process induced by some decreasing non-
generating transition rule of Xm, say Xm

ζ−→ ω:

γ · (α′||Xm)
ζ−→ γ · α′ · ω.

By Lemma 16 we know that there is a matching Duplicator’s response that does not
engage γ. As no γ-squeeze of Xk is reachable from Xk by =⇒0, the response has
necessarily the following form

γ ·Xk =⇒0γ ·Xk · η
ζ−→ γ · (σ||η),

where η is generated by Xk and Xk disappears in the last transition:

Xk =⇒0Xk · η and Xk
ζ−→ σ.

Indeed, otherwise the second last process in the sequence forming a matching Duplica-
tor’s move would be a γ-squeeze of Xk, forbidden by the assumption of Case 2.2. We
have γ · (σ||η) ' γ · α′ · ω and thus also

nf(γ · (σ||η)) = nf(γ · α′ · ω). (3.26)

Now we are going to deduce from equality (3.26) how the weighted sizes of nf(γ · σ)

and nf(γ · α′) are related, in order to conclude that the weighted size of α is as required.

Let’s inspect the m-prefix of the left processes in (3.26). Process η can not con-
tribute to the m-prefix of the normal form. Indeed, η contains only variables generated
by Xk, which are necessarily smaller than Xm, as Xm is not generated by Xk, since it
appears in nf(γ ·Xk). Thus if we restrict to the m-prefixes we have the equality

m-prefix(nf(γ · (σ||η))) = m-prefix(nf(γ · σ)). (3.27)

Similarly, let’s inspect the m-prefix of the right process in (3.26). Again, ω can not
contribute to the m-prefix of the normal form, thus if we restrict to the m-prefixes we
have the equality

m-prefix(nf(γ · α′ · ω)) = m-prefix(nf(γ · α′)).

As γ · α is the normal form, γ · α′ is unambiguous and thus we have nf(γ · α′) = γ · α′.

70 CHAPTER 3. BISIMULATION EQ. FOR COMM. CONTEXT-FREE PROC.

From this we derive that

m-prefix(nf(γ · α′ · ω)) = m-prefix(nf(γ · α′)) = m-prefix(γ · α′) = γ · α′ (3.28)

Combine the equalities (3.27), (3.28) and (3.26) to obtain:

γ · α′ = m-prefix(nf(γ · σ)) (3.29)

and to observe that

d-size(γ · α′) = d-size(m-prefix(nf(γ · σ))) 6 d-size(nf(γ · σ)). (3.30)

Now we will use induction assumption for the variables smaller than Xk, to derive
that every variable Xi smaller than Xk (i.e. for i > k) has a γ-squeeze of weighted
size smaller than Xi. As normal form is obtained via a sequence of squeezes, and γ is
unambiguous, the induction assumption implies that

d-size(nf(γ · σ)) 6 d-size(γ · σ)

which leads to the following estimation:

d-size(nf(γ · σ)) 6 d-size(γ) + d-size(σ) 6 d-size(γ) + size(σ) · dn−k−1 (3.31)

The inequalities (3.30) and (3.31) jointly imply:

d-size(γ · α′) 6 d-size(γ) + size(σ) · dn−k−1,

and removing γ from both sides of the inequality, we get:

d-size(α′) 6 size(σ) · dn−k−1 6 (d− 1) · dn−k−1.

Recalling that α = α′ ·Xm:

d-size(α) = d-size(α′ ·Xm) 6 size(σ) · dn−k−1 + dn−m

6 (d− 1) · dn−k−1 + dn−k−1 = dn−k = d-size(Xk)

which is the required bound. As Case 2.2 is the last one, we have thus completed the
proof of Lemma 24.

Remark 3. Lemma 24 is formulated for' but the major part of the proof either works

for weak equivalence directly, or may be adapted. The only case that we can not adapt

to weak equivalence is Case 2.1. Importantly, under the pure-generators restriction the

proof of this subcase is straightforward.

3.4. PROOF OF THE BOUNDED RESPONSE PROPERTY 71

Consider a γ-squeeze γ ·X ≈ γ · δ such that X =⇒0δ. We can easily produce a

new squeeze with size bounded by d. Indeed, the variable X may not be a generator,

and thus must vanish in the very first transition of the sequence X =⇒0δ:

γ ·X −→ 0γ · ω=⇒0γ · δ,

due to a non-generating transition rule X −→ ω. By Lemma 4 we deduce γ ·X ≈
γ · ω, which means that already ω is a γ-squeeze of X of size at most d.

We claim that our proof, after slight adaptations in Cases 1 and 2.2, shows decid-

ability of weak equivalence in the pure-generators subclass.

3.4 Proof of the bounded response property

This section contains finally the proofs of two main results announced in Section 3.1,
namely Theorem 5 and Theorem 7. The two theorems state the bounded response
property for branching and weak equivalences, respectively; moreover the former one
claims a response of an effectively bounded size.

3.4.1 Proof of Theorem 7

In case of weak equivalence ≈, the bounded response property follows easily from
the estimations given in Lemmas 21 and 22. Fix a normed commutative context-free
grammar and an admissible order on variables. Consider α ≈ β, a Spoiler’s move
α

ζ−→ α′ and a matching Duplicator’s response:

β=⇒0
ζ−→ =⇒0β

′,

with α′ ≈ β′. Extend the Duplicator’s response with

β=⇒0
ζ−→ =⇒0β

′=⇒0β̄
′,

for an arbitrary v-minimal β̄′. Then using Lemma 21, Lemma 22, and the equality
nf(α′) = nf(β̄′), we obtained the required bound:

size(β̄′) 6 size(nf(β̄′)) = size(nf(α′)) 6 c · size(α′),

for a constant c from Lemma 22.

3.4.2 Proof of Theorem 5

From now on we focus on branching equivalence ' only. Compared to weak equiv-
alence, the case of branching equivalence is slightly more subtle. As previously, con-

72 CHAPTER 3. BISIMULATION EQ. FOR COMM. CONTEXT-FREE PROC.

sider a fixed grammar and a fixed admissible order on variables.

Before showing how Theorem 5 follows from Lemmas 21 and 23, we will need a
definition and a lemma. Define a partial order � as a refinement of the lexicographical
order �:

α� β iff α � β and α=⇒0β.

In the sequel we will consider �-minimal processes (cf. definition of �-minimality and
�-minimization in Section 3.2). Due to the following apparent inclusions of partial
orders:

v ⊆ � ⊆ �

we have the following dependencies between minimal processes:

� -minimal =⇒ �-minimal =⇒ v -minimal. (3.32)

Lemma 27. If α is �-minimal and α=⇒0β ' α then α v β.

Proof. We will show that

β = α||δ for some δ generated by α. (3.33)

For the sake of contradiction assume the contrary and consider the shortest se-
quence of transitions α=⇒0β such that β ' α and β fails to satisfy (3.33). Consider
the last transition, say

α||δ −→ 0β,

performed necessarily by a variable, say X , that appears in α but not in δ. This last
transition has the following form

α||δ −→ 0α
′||δ,

due to a transition α −→ 0α
′.As the latter transition is necessarily decreasing and non-

generating, α′ ≺ α. Recall that α ' α′||δ and α � α′||δ. By Lemma 13 we know
that those variables in δ that are generated by a variable different than X may be safely
cancelled via a sequence of silent transitions =⇒0 while preserving the equivalence
class. Hence

α=⇒0α
′ · δ′ ' α, (3.34)

where all variables appearing in δ′ v δ are generated by X , and thus smaller than X
wrt. <. Knowing that α′ ≺ α we obtain

α′ · δ′ ≺ α. (3.35)

3.4. PROOF OF THE BOUNDED RESPONSE PROPERTY 73

The facts (3.34) and (3.35) jointly contradict �-minimality of α. 2

From now on, the remaining part of Section 3.4 is devoted to proving Theorem 5,
using Lemmas 21 and 23 together with Lemma 27.

Consider α ' β, a Spoiler’s move α
ζ−→ α′ and a Duplicator’s response:

β=⇒0β1
ζ−→ β2, (3.36)

with α ' β1 and α′ ' β2. We will show that Duplicator has a matching response
where β1 and β2 are of size bounded by c · size(α) and c · size(α′), respectively, where
c = (dn−1 + dn + d), n is the number of variables and d is the size of the grammar2.

We can not simply extend this response analogously as for weak equivalence, and
we have to estimate the size of the process β2 resulting from the last transition. The
basic idea of the proof is essentially to eliminate some unnecessary generation done by
the transitions β=⇒0β1, without affecting executability of the transition β1

ζ−→ β2.

As the first step we observe that without loosing generality we could assume that
the response (3.36) starts in a �-minimal process. Indeed, if we prove our claim in
this case, then we easily obtain a matching response, of required size bound, from an
arbitrary β by adjoining at the beginning of a matching response from β̄,

β̄=⇒0β1
ζ−→ β2, (3.37)

a sequence of transitions β=⇒0β̄, for some �-minimization β̄ of β, thus obtaining

β=⇒0β̄=⇒0β1
ζ−→ β2. (3.38)

As β ' β̄, we know that the response from β is really matching: α ' β1 and α′ ' β2.

Thus from now on we consider a pair α ' β̄, with β̄ a �-minimal process, instead
of arbitrary α ' β, together with a matching Duplicator’s response (3.37). Note that
by Lemma 27 we know that β̄ v β1.

As the second step, we extend (3.38) with any sequence β2 =⇒0β̄2 leading to a
v-minimal process β̄2 v β2 which is equivalent to β2. Our knowledge by now may be
outlined with the following diagram (the subscript in =⇒0 is omitted):

β̄ v
' +3 β1

ζ

��
β̄2 β2v

'ks

Both left-most processes in the diagram are size bounded. Indeed, as both β̄ and β̄2 are

2Note that α′ is at most d times larger that α.

74 CHAPTER 3. BISIMULATION EQ. FOR COMM. CONTEXT-FREE PROC.

v-minimal, Lemma 21 applies:

size(β̄) 6 size(nf(β)) = size(nf(α)) and size(β̄2) 6 size(nf(β2)) = size(nf(α′)).

Then applying Lemma 23 to α and α′ we obtain:

size(β̄) 6 size(α) · dn−1 and size(β̄2) 6 size(α′) · dn−1. (3.39)

As the third and the last step of the proof, we claim that β1 and β2 may be replaced
by processes of size bounded, roughly, by the sum of sizes of β̄ and β̄2.

Claim 2. There are some processes β′1 ' β1 and β′2 ' β2 such that

β̄=⇒0β
′
1

ζ−→ β′2 (3.40)

and

size(β′1), size(β′2) < size(β̄) + size(β̄2) + d. (3.41)

The claim is sufficient for Theorem 5 to hold, by inequalities (3.39). Thus to com-
plete the proof we only need to demonstrate the claim. The idea underlying the proof
of the claim is illustrated in the following diagram:

β̄

v
v
' +3 β1

ζ

��v
'

{�
β′1

ζ

��

β2

v
'

{�
β̄2 β′2v

'ks

We will use now an intuitive colouring argument. Let us colour uniquely every
variable occurrence in β1 and let every transition preserve the colour of the left-hand
side variable of a transition rule that is used. Obviously at most size(β̄2) of these
colours will still be present in β̄2, name them surviving colours. Suppose the β1

ζ−→ β2

transition be induced by a transition rule X
ζ−→ δ and colour the occurrence of X in

β1 involved in this transition, say, brown.

Let β′1 v β1 contain sufficiently many variables occurrences from β1 so that β̄ v
β′1 and all occurrences coloured a surviving colour or brown are included. Clearly

β̄ v β′1 v β1.

One easily observes that after firing the brown transition X
ζ−→ δ from β′1 we get a

3.4. PROOF OF THE BOUNDED RESPONSE PROPERTY 75

process β′2 such that
β̄2 v β′2 v β2,

because all surviving coloured variables are still present. We now only need to check
that all the requirements are satisfied by β′1 and β′2.

By Lemma 4 we have β′1 ' β1 and β′2 ' β2. Clearly there is a sequence β1 =⇒0β
′
1,

that simply cancels superfluous variable occurrences, hence the condition (3.40) is full-
filled.

Finally we obtain the size estimation size(β′1) 6 size(β̄) + size(β̄2) + 1 as in β′1
there can be at most size(β̄2) + 1 surviving and brown coloured variables occurrences,
except for those that come from β̄. This easily implies the required size estimation for
size(β′2). Thus the required condition (3.41) is shown to hold.

76 CHAPTER 3. BISIMULATION EQ. FOR COMM. CONTEXT-FREE PROC.

Chapter 4

Simulation pre-order over
one-counter automata

In this chapter we investigate weak and branching pre-orders over one-counter au-
tomata (recall that we restrict ourselves to automata without zero test). Whenever we
write ’automaton’ below we mean a one-counter automaton without zero tests.

Observe that we may safely assume in a weak simulation game that Spoiler’s au-
tomaton1 has no ε-transition rules (cf, Lemma 28). Indeed, the crucial fact is that every
Spoiler’s silent move can be matched by a Duplicator’s silent self-loop.

The main result to be shown in this section is the following:

Theorem 8. The weak pre-order is effectively semilinear, and thus decidable, for one-

counter automata without zero tests.

The proof of Theorem 8 is split into two main parts, treated in detail in Sections 4.1
and 4.2, respectively. The first part is elimination of silent transitions in Duplicator’s
automaton; in Section 4.1 (Theorem 10) we show how to replace Duplicator’s automa-
ton N by an ω-automaton2 N ′. The ω-automata have no ε-transition rules. On the
other hand, they may have ω-transition rules that increase the counter arbitrarily . The
second part of the proof of Theorem 8 focuses on proving decidability of simulation
pre-order3 between an automaton and an ω-automaton (Theorem 11 in Section 4.2).

The latter result bases on yet another non-standard hierarchy of approximants. De-
cidability comes from the very surprising result that the hierarchy of these approxi-
mants always stabilizes at ω. This is in contrast with the approximants induced by

1We can silently assume that there are two copies of the automaton, one which belongs to Spoiler and
one for Duplicator.

2We use here a short name ω-automata, instead of the more appropriate but long expression ’one-counter
automata with ω-transitions but without ε-transition rules’. These automata should not be confused with
automata over ω-words.

3Recall that in systems without ε-transitions, weak and branching simulation coincide. In the literature a
term strong simulation pre-order is often used.

77

78 CHAPTER 4. SIMULATION PRE-ORDER OVER 1-COUNTER AUTOMATA

standard weak simulation expansions, which do not stabilize at level ω, as we have
shown in Section 2.3. As an immediate corollary we obtain:

Corollary 1. The weak simulation equivalence 4 ∩ 4−1 is effectively semilinear, and

thus decidable, for one-counter automata without zero tests.

After proving Theorem 8, in Section 4.3 we show that the hierarchy of approxi-
mants induced by weak simulation expansion stabilizes actually at level ω · ω. Finally
in Section 4.4 we sketch how, using similar methods, one can compute branching pre-
order over one-counter automata. Thus we prove:

Theorem 9. Branching pre-order � and branching simulation equivalence � ∩ �−1

are semilinear, and thus decidable, over one-counter automata without zero tests.

4.1 Reduction to ω-automata

From now on we can assume wlog. that Spoiler’s automaton has no ε-transitions rules,
due to the following lemma:

Lemma 28. For two given automata M = (QM ,Act, δM) and N = (QN ,Act, δN),

one can compute an automaton M ′ = (QM ,Act ∪ {µ}, δ′M) without silent transitions

rules, and an automaton N ′ = (QN ,Act ∪ {µ}, δ′N), such that for all (p,m, q, n) ∈
QM × N×QN × N,

pm 4κ qn wrt. M,N ⇐⇒ pm 4κ qn wrt. M ′, N ′.

(Note that we explicitly specify which pair of automata is involved in the game. In the
sequel we will continue using this notation whenever a risk of confusion appears.)

Proof. Automaton M ′ is obtained from M by renaming ε labels to µ. Automaton N ′

is obtained from N by adding in each state q ∈ QN a µ-labeled self-loop q
µ,0−→ q.

Consider weak simulation approximants game from a position (κ, pm, qn) wrt.M,

N , and the same game wrt. M ′, N ′. If Duplicator wins in the game wrt. M ′, N ′ then
his strategy may be used in the game wrt. M,N (implicit silent self-loops are used
by Duplicator). On the other hand, if Duplicator wins the game wrt. M,N , then the
winning strategy may be modified to always match a silent move of Spoiler with a silent
self-loop, and thus postponing choices of Duplicator. The modified winning strategy
may be used in the game wrt. M ′, N ′. 2

As a corollary we deduce:

pm 4 qn wrt. M,N ⇐⇒ pm 4 qn wrt. M ′, N ′.

The same fact holds for branching pre-order too.

4.1. REDUCTION TO ω-AUTOMATA 79

Due to Lemma 28 we may get rid of silent transition rules in Spoiler’s automaton.
The aim of the remaining part of Section 4.1 is to get rid of silent transition rules in the
Duplicator’s automaton too. The price to pay will be the shift to a more general class
of ω-automata, as defined below.

The ω-automata are like one-counter automata, with two differences. First, there
exist dedicated transition rules with symbolic effect ω, which allow to arbitrarily in-
crease the counter in a single transition. Second, we assume that ω-automata do not
use ε-transition rules. As we prove in this section, checking weak pre-order between
two automata can be reduced to checking the simulation pre-order between an automa-
ton without silent transition rules, and an ω-automaton.

Definition 31. An ω-automaton N = (Q,Act, δ) is given by a finite set of control-

statesQ, a finite set of actions Act and transition rules δ ⊆ Q×Act×{−1, 0, 1, ω}×Q.

It induces an LTS, with processesQ×N, that allows a transition pm a−→ p′m′ if either

(p, a, d, p′) ∈ δ and m′ = m+ d ∈ N, or (p, a, ω, p′) ∈ δ and m′ > m.

Every automaton without silent transition rules is clearly an ω-automaton. Unlike
the former one, the latter one can induce an infinitely branching labelled transition
system, since each ω-transition (p, a, ω, p′) introduces transitions4 pm

a−→ p′m′ for
any two naturals m′ > m.

It is easily verified that both one-counter automata and ω-automata satisfy the fol-
lowing monotonicity properties.

Proposition 3 (Monotonicity of 4). pm ζ−→ p′m′ implies p(m+ d)
ζ−→ p′(m′ + d)

for all d ∈ N. Moreover, pm 4 qn implies pm′ 4 qn′ for m′ 6 m, n′ > n.

The following theorem justifies our focus on weak simulation game, where Dupli-
cator plays on processes of an ω-automaton.

Theorem 10. Checking weak pre-order between two automata can be reduced to

checking the simulation pre-order between an automaton without ε-transition rules

and an ω-automaton. Formally, for two automata M and N , with states QM and QN
respectively, one can effectively construct M ′ an automaton without ε-transition rules

with states QM ′ ⊇ QM , and an ω-automaton N ′ with states QN ′ ⊇ QN , such that for

each pair (p, q) ∈ QM ×QN of original control states and any ordinal κ the following

hold:

(1) pm 4 qn wrt.M,N iff pm 4qn wrt. M ′, N ′;

(2) if pm 4κ qn wrt.M,N then pm 4κ qn wrt. M ′, N ′.

The idea of the proof is to look for counter-increasing cyclic paths via ε-labelled tran-
sitions in the control graph and to introduce ω-transition rules accordingly. For any

4Transition in LTS induced by ω-transition rules are called ω-transitions.

80 CHAPTER 4. SIMULATION PRE-ORDER OVER 1-COUNTER AUTOMATA

path that reads a single visible action and visits a ”generator” state that is a part of a
silent cycle with positive effect, we add an ω-transition rule. For all of the finitely many
non-cyclic paths that read a single visible action we introduce direct transition rules.
The remaining part of Section 4.1 is devoted to the detailed presentation of the proof.

4.1.1 Proof of Theorem 10

The reduction will be done in two steps. First (Lemma 30) we reduce weak simu-
lation for one-counter automata to simulation between a one-counter automaton and
yet another auxiliary model, called guarded ω-automaton. The latter differs from ω-
automaton in that each transition rule may change the counter by more than one and
is guarded by an integer, i.e. can only be applied if the current counter value exceeds
the guard attached to it. In the second step (Lemma 31) we normalize the effects of all
transition rules to {−1, 0, 1, ω} and eliminate all integer guards and thereby construct
an ordinary ω-automaton for Duplicator.

Before we start recall that wlog. we assume that every process s allows a silent loop
s

ε−→ s. Thus even if ε-loops are not defined explicitly in an automaton, Duplicator
can use them during the game.

Definition 32. A path in an automaton (resp. ω-automaton) N = (Q,Act, δ) is a

sequence

π = (s0, ζ0, d0, t0) (s1, ζ1, d1, t1) . . . (sk, ζk, dk, tk) ∈ δ∗

of transition rules, where si+1 = ti for all i < k. We call π cyclic if si = tj for some

0 6 i < j 6 k and write iπ for its prefix of length i. A cyclic path is a loop if si 6= sj

for all 0 6 i < j < k. Define the effect ∆(π) and guard Γ(π) of a path π by

∆(π) =

k∑
i=0

di and Γ(π) = −min{∆(iπ)|i 6 k}

where n + ω = ω + n = ω for every n ∈ N. The guard Γ(π) denotes the minimal

counter value that is needed to traverse the path π while maintaining a non-negative

counter value along all intermediate processes.

Lastly, fix a homomorphism obs : δ∗ → Act∗, that maps paths to their observable
action sequences: obs((s, ε, d, t)) = ε and obs((s, a, d, t)) = a for a 6= ε.

Definition 33 (Guarded ω-automata). A guarded ω-automaton G = (Q,Act, δ) is

given by finite sets Q,Act of states and actions and a transition relation δ ⊆ Q ×
Act× N× Z ∪ {ω} ×Q. It defines a transition system over the stateset Q× N where

qn
a−→ q′n′ iff there is a transition rule (q, a, g, d, q′) ∈ δ with

(1) n > g and

4.1. REDUCTION TO ω-AUTOMATA 81

(2) n′ = n+ d ∈ N or d = ω and n′ > n.

Specifically,G is a ω-automaton if for all transition rules g = 0 and d ∈ {−1, 0, 1, ω}.
The next construction establishes the connection between automata and ω-automata in
the context of weak pre-order.

Lemma 29. For an automatonN = (Q,Act, δ) we can effectively construct a guarded

ω-automatonG = (Q,Act, δG) with the same state spaceQ, such that for all a ∈ Act,

(1) whenever qn a
=⇒q′n′ in N , there is a n′′ > n such that qn a−→ q′n′′ in G;

(2) whenever qn a−→ q′n′ in G, there is a n′′ > n such that qn a
=⇒q′n′′ in N .

Proof. The idea of the proof is to introduce direct transition rule from one state to
another for any path between them that reads at most one visible action and does not
contain silent cycles.

For two states s, t of N , let D(s, t) be the set of direct paths from s to t:

D(s, t) = {(qi, ai, di, qi+1)i<k : q0 = s, qk = t,

∀06i<j6k qi = qj =⇒ (i = 0 ∧ j = k)}.

Define the subset of silent direct paths by SD(s, t) = {π ∈ D(s, t)|obs(π) = ε}.
Every path in D(s, t) has acyclic prefixes only and is therefore bounded in length by
|Q|. Hence D(s, t) and SD(s, t) are finite and effectively computable for all pairs s, t.

Using this notation, we define the transition rules in G as follows. Let δG contain
a transition rule (q, a,Γ(π),∆(π), q′) for each path π = π1(s, a, d, s′)π2 ∈ δ+ where
π1 ∈ SD(q, s) and π2 ∈ SD(s′, q′). This carries over all transition rules ofN because
the empty path is in SD(s, s) for all states s. Moreover, introduce ω-transition rules in
case N allows paths π1, π2 as above to contain direct cycles with positive effect on the
counter: if there is a path π = π′1π

′′
1π
′′′
1 (s, a, d, s′)π2 with

(1) π′1 ∈ SD(q, t), π′′1 ∈ SD(t, t) and π′′′1 ∈ SD(t, s)

(2) ∆(π′′1) > 0

for some t ∈ Q, then δG contains a transition rule (q, a,Γ(π′1π
′′
1), ω, q′). Similarly, if

for some t ∈ Q, there is a path π = π1(s, a, d, s′)π′2π
′′
2π
′′′
2 that satisfies

(1) π1 ∈ SD(q, s), π′2 ∈ SD(s′, t), π′′2 ∈ SD(t, t) and π′′′2 ∈ SD(t, q′)

(2) ∆(π′′2) > 0

add a transition rule (q, a, g, ω, q′) with guard g = Γ(π1(s, a, d, s′)π′2π
′′
2). If there is an

a-labelled path from q to q′ that contains a silent and direct cycle with positive effect,
G has an a-labelled ω-transition rule from q to q′ with the guard derived from that path.

82 CHAPTER 4. SIMULATION PRE-ORDER OVER 1-COUNTER AUTOMATA

To prove the first part of the lemma, assume qn a
=⇒N q′n′. By definition of a

=⇒N ,
there must be a path π = π1(s, a, d, s′)π2 with obs(π1) = obs(π2) = ε. Suppose both
π1 and π2 do not contain loops with positive effect. Then there must be paths π′1 ∈
SD(q, s), π′2 ∈ SD(s′, q′) with Γ(π′i) 6 Γ(πi) and ∆(π′i) > ∆(πi) for i ∈ {1, 2}
that can be obtained from π1 and π2 by removing all loops with effects less or equal 0.
So G contains a transition rule (q, a, g′, d′, q′) for some g′ 6 n and d′ > n′ − n and
hence qn a−→G q′n′′ for n′′ = n + d′ > n′. Alternatively, either π1 or π2 contains a
loop with positive effect. Note that for any such path, another path with lower or equal
guard exists that connects the same states and contains only one counter-increasing
loop: If π1 contains a loop with positive effect, there is a path π̄1 = π′1π

′′
1π
′′′
1 from q to

s, where π′1, π
′′ and π′′′1 are direct and ∆(π′′1) > 0 for the loop π′′1 ∈ SD(t, t) for some

state t. In this case, G contains a ω-transition rule (q, a, g, ω, q′) with g = Γ(π′1π
′′
1).

Similarly, if π2 contains the counter-increasing loop, there is a π̄2 = π′2π
′′
2π
′′′
2 , with

π′2 ∈ SD(s′, t), π′′2 ∈ SD(t, t), π′′′2 ∈ SD(t, q′) and ∆(π′′2) > 0. This means there
is a transition rule (q, a, g, ω, q′) in G with g = Γ(π1(s, a, d, s′)π′2π

′′
2). In both cases,

g 6 Γ(π) 6 n′′ and therefore qn a−→G q′i for all i > n.
For the second part of the lemma, assume qn a−→G q′n′. This must be the result

of a transition rule (q, a, g, d, q′) ∈ δG for some g 6 n. In case d 6= ω, there is
a path π ∈ δ∗ from q to q′ with ∆(π) = n′ − n, obs(π) = a and Γ(π) = g that
witnesses the move qn a

=⇒N q′n′ in N . Otherwise if d = ω, there must be a path π =

π11π12π13(s, a, d, s′)π21π22π23 from q to q′ in N where Γ(π) 6 n, all πij are silent
and direct and one of π12 and π22 is a cycle with strictly positive effect. This implies
that one can “pump” the value of the counter higher than any given value. Specifically,
there are naturals k and j such that the path π′ = π11π

k
12π13(s, a, d, s′)π21π

j
22π23 from

q to q′ satisfies Γ(π′) 6 Γ(π) 6 n and ∆(π′) > n′−n. Now π′ witnesses the sequence
of transitions of a form qn

a
=⇒N q′n′′ in N for an n′′ > n′. 2

Remark 4. Observe that no transition rule of the automaton G as constructed above

has a guard larger than |Q| ∗ 3 + 1 and finite effect > 2|Q|+ 1.

Lemma 30. For an automatonN = (Q,Act, δ) one can effectively construct a guarded

ω-automaton G = (Q,Act, δG) s.t. for any automaton M without silent transition

rules, and any two processes pm, qn of M and N , respectively,

(1) pm 4 qn wrt. M,N ⇐⇒ pm 4 qn wrt. M,G; (4.1)

(2) pm 4κ qn wrt. M,N ⇐⇒ pm 4κ qn wrt. M,G. (4.2)

Proof. Consider the construction from the proof of Lemma 29. Let 4M,N denote
weak pre-order wrt. M,N and 4M,G denote the simulation pre-order wrt. M,G.

For the “if” direction we show that 4M,G is a weak simulation wrt.M,N . Assume
pm 4M,G qn and pm a−→M p′m′. That means there is a transition qn a−→G q′n′ for

4.1. REDUCTION TO ω-AUTOMATA 83

some n′ ∈ N so that p′m′ 4G q′n′. By Lemma 29 (2), qn a
=⇒N q′n′′ for a n′′ > n′.

Because simulation is monotonic we know that also p′m′ 4M,G q′n′′. Similarly, for
the “only if” direction, one can use the first claim of Lemma 29 to check that 4M,N

is a (weak) simulation wrt. M,G.

Moreover one round of a game between M and N corresponds to one round of a
game between M and G, and other way around. Thus every Spoiler’s and Duplicator’s
strategies can be moved from one simulation game to another. Observe that the same
holds for the approximant game as well. Thus the second claim holds. 2

Lemma 31. For an automaton M and a guarded ω-automaton G with states QM and

QG respectively, one can effectively construct an automaton M ′ and an ω-automaton

N ′ with states QM ′ ⊇ QM and QN ′ ⊇ QG, respectively, such that for any two pro-

cesses pm, qn of M and G respectively,

(1) pm 4 qn wrt. M,G ⇐⇒ pm 4 qnwrt. M ′, N ′. (4.3)

(2) if pm 4κ qn wrt. M,G then pm 4κ qn wrt. M ′, N ′. (4.4)

Proof. We first observe that for any transition rule of the guarded ω-automaton G, the
values of its guards are bounded by some constant. The same holds for all finite effects.
Let Γ(G) be the maximal guard and ∆(G) be the maximal absolute finite effect of any
transition rule of G.

The idea of this construction is to simulate one round of the simulation game with
respect to M and G in k = 2Γ(G) + ∆(G) + 1 rounds of the simulation game with
respect to M ′ and N ′. We will replace each observable5 original transition of both
players by sequences of k transition in the new game, which is long enough to verify if
the guard of Duplicator’s move is satisfied and adjust the counter using transitions with
effects in {−1, 0,+1, ω} only.

We transform the one-counter automaton M = (QM ,Act, δM) to the one-counter
automaton M ′ = (QM ′ ,Act′, δM ′) as follows:

Act′ = Act ∪ {b} (4.5)

QM ′ = QM ∪ {pi|1 6 i < k, p ∈ QM} (4.6)

δM ′ = {p a,d−→ p′k|p
a,d−→ p′ ∈ δM ∧ a ∈ Act} (4.7)

∪ {p′i
b,0−→ p′i−1|1 < i < k} (4.8)

∪ {p′1
b,0−→ p′}. (4.9)

5Due to lemmas 28 and 29 ε-transition rules was already removed.

84 CHAPTER 4. SIMULATION PRE-ORDER OVER 1-COUNTER AUTOMATA

We see that

pm
a−→M p′m′ ⇐⇒ pm

a−→M ′ p
′
k−1m

′ bk−2

−→M ′ p
′
1m
′ b−→M ′ p

′m′. (4.10)

Now we transform the guarded ω-automaton G = (QG,Act, δG) to the ω-automa-
tonN ′ = (QN ′ ,Act′, δN ′). Each original transition rule will be replaced by a sequence
of k transition rules that test if the current counter value exceeds the guard g and adjust
the counter accordingly. The new ω-automaton N ′ has states

QN ′ = QG ∪ {ti|0 6 i < k, t ∈ δG}. (4.11)

For each original transition rule t = (q, a, g, d, q′) ∈ δG, we add the following transi-
tion rules to δN ′ . First, to test the guard:

q
a,0−→ tk−1, (4.12)

ti
b,−1−→ ti−1, for k − g < i < k (4.13)

ti
b,+1−→ ti−1, for k − 2g < i < k − g. (4.14)

Now we add transition rules to adjust the counter according to d ∈ N ∪ {ω}. In case
0 6 d < ω we add

ti
b,+1−→ ti−1, for k − 2g − |d| < i < k − 2g (4.15)

ti
b,0−→ ti−1, for 0 6 i < k − 2g − |d|. (4.16)

In case d < 0 we add

ti
b,−1−→ ti−1, for k − 2g − |d| < i < k − 2g (4.17)

ti
b,0−→ ti−1, for 0 6 i < k − 2g − |d|. (4.18)

In case d = ω we add

ti
b,ω−→ ti−1, for i = k − 2g (4.19)

ti
b,0−→ ti−1, for 0 6 i < k − 2g. (4.20)

Finally, we allow a move to the new state:

t0
b,0−→ p′. (4.21)

Observe that every transition rule in the constructed automaton N ′ has effect in the set
{−1, 0,+1, ω}. N ′ is therefore an ordinary ω-automaton. It is straightforward to see

4.2. SIMULATION BY ω-AUTOMATA 85

that
qn

a−→G q′n′ ⇐⇒ qn
abk−1

−→N ′ q
′n′. (4.22)

Equations (4.3) and (4.4) now follows from Equations (4.10) and (4.22). This con-
cludes the proof of Lemma 31. 2

Theorem 10 follows by the composition of Lemmas 30 and 31.

4.2 Simulation by ω-automata

We have shown how to get rid of silent transitions in checking weak pre-order of one-
counter automata, at the price of introducing ω-transitions rules in the Duplicator’s
automaton. Now we have to solve the simplified problem, i.e. prove the following:

Theorem 11. The simulation pre-order between a one-counter automaton without

silent transition rules and an ω-automaton is effectively semilinear and thus decidable.

We will start by defining a new notion of approximants promised in the beginning
of this chapter, denoted below by (4λ)λ∈Ord. Then we will show the following two
facts:

• For every one-counter automaton M = (QM ,Act, δM) and ω-automaton N =

(QN ,Act, δN), the approximants (4λ)λ∈Ord stabilize at a finite level (in Sec-
tion 4.2.1).

• The finite approximants are effectively semilinear relations (in Section 4.2.2).

4.2.1 Approximants

If not stated otherwise in Section 4.2 we assume that M = (QM ,Act, δM) is a fixed
one-counter automaton without ε-transition rules and N = (QN ,Act, δN) is a fixed
ω-automaton.

First we define approximants 4λκ in two (ordinal) dimensions. The approximants
generalize the standard simulation approximants 4κ for the simulation pre-order be-
tween one-counter automaton and ω-automaton.

From a game-theoretic perspective the subscript κ indicates the number of rounds
Duplicator can survive and the superscript λ denotes the number of ω-transitions, in-
duced by ω-transition rules, Spoiler needs to allow. E.g., pm 42

5 qn if Duplicator
can guarantee that no play of the simulation game that contains less than 3 moves via
ω-transitions is losing for him in less than 6 rounds.

Definition 34 (approximants). Define the family of relations 4λκ⊆ QM×N×QN×N
indexed by pairs of ordinals κ, λ.

86 CHAPTER 4. SIMULATION PRE-ORDER OVER 1-COUNTER AUTOMATA

• 40
κ =4λ0 = QM × N×QN × N are the full relations, for every κ and λ.

• pm 4λ+1
κ+1 qn if and only if (pm, qn) satisfies: for all pm a−→ p′m′ there is a

transition qn a−→ q′n′ s.t. either

(1) q
a,ω−→ q′ ∈ δN (the move is via an ω-transition rule) and p′m′ 4λκ q′n′,

or

(2) q
a,d−→ q′ ∈ δN where d = n′ − n and p′m′ 4λ+1

κ q′n′.

• For limit ordinals κ′, λ′ we define 4λ′κ =
⋂
λ<λ′ 4λκ and 4λκ′ =

⋂
κ<κ′ 4λκ .

Observe that whenever Duplicator has a choice between an ω-transition and a transition
induced by ordinary transition rule:

q
a,ω−→ q′ and q

a,d−→ q′

with the same destination state q′; it is always better for him to chose the ω-transition.

For convenience we introduce additionally two hierarchies indexed by single ordi-
nals:

4λ =
⋂

κ∈Ord
4λκ 4κ =

⋂
λ∈Ord

4λκ . (4.23)

We slightly overload the notation here, which is acceptable as the relations 4κ are
exactly the approximants induced by weak simulation expansion. On the other hand
4λ is a special notion derived from the syntactic peculiarity of ω-transitions present in
the simulation game when Duplicator plays in an ω-automaton.

Example 19. Consider an automaton that consists of a single a-labelled loop in state

p, i.e. p
a,0−→ p and an ω-automaton with transition rules q

a,ω−→ q′
a,−1−→ q′ only. We

see that for any m,n ∈ N, pm 4n q′n 6<n+1 pm. Moreover, pm 4ω qn but

pm 64ω+1 qn and pm 41 qn but pm 642
ω+1 qn and thus pm 642 qn.

Similarly as before we characterize approximants via game as follows.

Definition 35. The approximant game is played in rounds between Spoiler and Dupli-

cator. Game positions are quadruples (κ, λ, pm, qn) where pm, qn are processes of N

and N ′ respectively, and κ, λ are ordinals. In each round that starts in (κ, λ, pm, qn):

• Spoiler chooses ordinals κ′ < κ and λ′ < λ,

• Spoiler makes a move pm a−→ p′m′,

• Duplicator responds by making a move qn a−→ q′n′ using some transition t.

4.2. SIMULATION BY ω-AUTOMATA 87

If t was an ω-transition the next round starts at the position (κ′, λ′, p′m′, q′n′), Oth-

erwise the next round starts at (κ′, λ, p′m′, q′n′) (in this case Spoiler’s choice of λ′

becomes irrelevant). If a player cannot move the other wins and if κ or λ becomes 0,

Duplicator wins.

Lemma 32. If Duplicator wins the approximant game from (κ, λ, pm, qn) then he also

wins the game from (κ′, λ′, pm, qn) for any κ′ 6 κ and λ′ 6 λ.

Proof. If Duplicator has a winning strategy in the game from (κ, λ, pm, qn) then he
can use the same strategy in the game from (κ′, λ′, pm, qn) and maintain the invariant
that the pair of ordinals in the game position is pointwise smaller than the pair in the
original game. Thus Duplicator wins from (κ′, λ′, pm, qn). 2

Lemma 33. pm 4λκ qn iff Duplicator has a strategy to win the approximant game

that starts in (κ, λ, pm, qn).

Proof. We show both directions by well-founded induction on pairs of ordinals (κ, λ).

For the “only if” direction we assume pm 4λκ qn and show that Duplicator wins
the game from (κ, λ, pm, qn). In the base case of κ = 0 or λ = 0 Duplicator directly
wins by definition. By induction hypothesis we assume that the claim is true for all
pairs pointwise smaller than (κ, λ). Spoiler starts a round by picking ordinals κ′ < κ

and λ′ < λ and moves pm a−→ p′m′. We distinguish two cases, depending on whether
λ is a limit or successor ordinal.

Case 1: λ is a successor ordinal. By Lemma 32 we can safely assume that λ =

λ′ + 1. By our assumption pm 4λκ qn, there must be a response qn a−→ q′n′ that is
either due to an ω-transition and then p′m′ 4λ′κ′ q′n′ or due to an ordinary transition,
in which case we have p′m′ 4λ′+1

κ′ q′n′. In both cases, we know by the induction
hypothesis that Duplicator wins from this next position and thus also from the initial
position.

Case 2: λ is a limit ordinal. By pm 4λκ qn we obtain pm 4γκ qn for all γ < λ.
If κ is a successor ordinal then, by Lemma 32, we can safely assume that κ′ = κ − 1.
Otherwise, if κ is a limit ordinal, then, by Def. 34, we have pm 4γκ′′ qn for all κ′′ < κ

and in particular pm 4γκ′+1 qn. So in either case we obtain

pm 4γκ′+1 qn for all γ < λ. (4.24)

If there is some ω-transition that allows a response qn a−→
ω
q′n′ that satisfies p′m′ 4λ′κ′

q′n′, then Duplicator picks this response and we can use the induction hypothesis
to conclude that he wins the game from the next position. Otherwise, if no such ω-
transition exists, Equation (4.24) implies that for every γ < λ there is a response to
some q′n′ that uses a non-ω-transition t(γ) and that satisfies p′m′ 4γκ′ q′n′. Since

88 CHAPTER 4. SIMULATION PRE-ORDER OVER 1-COUNTER AUTOMATA

λ is a limit ordinal, there exist infinitely many γ < λ. By the pigeonhole principle,
that there must be one transition that occurs as t(γ) for infinitely many γ. Therefore,
a response that uses this transition satisfies p′m′ 4λκ′ q′n′. If Duplicator uses this re-
sponse, the game continues from position (κ′, λ, p′m′, q′n′) and he wins by induction
hypothesis.

For the “if” direction we show that pm 64λκ qn implies that Spoiler has a winning
strategy in the approximant game from (κ, λ, pm, qn). In the base case of κ = 0 or λ =

0 the implication holds trivially since the premise is false. By induction hypothesis we
assume that the implication is true for all pairs pointwise smaller than (κ, λ). Observe
that if κ or λ are limit ordinals then (by Def. 34) there are successors λ′ 6 λ and
κ′ 6 κ s.t. pm 64λ′κ′ qn. So without loss of generality we can assume that κ and λ are
successors. By the definition of approximants there must be a move pm a−→ p′m′ s.t.

• for every possible response qn a−→ω q′n′ that uses some ω-transition we have
p′m′ 64λ−1κ−1 q

′n′,

• for every possible response qn a−→ q′n′ via some normal transition it holds that
p′m′ 64λκ−1 q′n′.

So if Spoiler chooses κ′ = κ−1, λ′ = λ−1 and moves pm a−→ p′m′ then any possible
response by Duplicator will take the game to a position (γ, κ′, p′m′, q′n′) for a γ 6 λ.
By induction hypothesis Spoiler wins the game. 2

Lemma 34. For all ordinals κ, λ the following properties hold.

(1) pm 4λκ qn implies pm′ 4λκ qn′ for all m′ 6 m and n′ > n

(2) If κ′ > κ and λ′ > λ then 4λ′κ′ ⊆4λκ .

(3) There are ordinals κ•, λ• such that 4κ• =4κ•+1 and 4λ• =4λ•+1 .

(4) 4 =
⋂
κ 4κ =

⋂
λ 4λ

The first point states that individual approximants are monotonic in the sense of
Proposition 3. Points (2)-(4) imply that both 4κ and 4λ yield non-increasing se-
quences of approximants that converge towards weak pre-order. It is easy to see that
the approximants 4κ do not converge at finite levels, and not even at ω, i.e., κ• > ω

in general. However, we will show that the approximants 4λ do converge at a finite
level, i.e., λ• ∈ N for any pair of automata.

Proof. (1) By Lemma 33 it suffices to observe that Duplicator can reuse a win-
ning strategy in the approximant game from (κ, λ, pm, qn) to win the game from
(κ, λ, pm− d1, qn+ d2) for naturals d1, d2.

(2) If pm 4λ′κ′ qn then, by Lemma 33, Duplicator wins the approximant game
from position (κ′, λ′, pm, qn). By Lemma 32 he can also win the approximant game
from (κ, λ, pm, qn). Thus pm 4λκ qn by Lemma 33.

4.2. SIMULATION BY ω-AUTOMATA 89

(3) By (2) we see that with increasing ordinal index κ the approximant relations
4κ form a decreasing sequence of relations, thus they stabilize for some ordinal κ•.
The existence of a convergence ordinal for 4λ• follows analogously.

(4) First we observe that
⋂
κ 4κ =

⋂
κ

⋂
λ 4λκ =

⋂
λ

⋂
κ 4λκ =

⋂
λ 4λ . It

remains to show that 4 =
⋂
κ 4κ .

To show 4⊇
⋂
κ 4κ , we use κ• from (3) and rewrite the right side to

⋂
κ 4κ

=4κ• =4κ•+1 . From Definition 34 we get that 4κ =4γκ for γ > κ and therefore
4κ•+1
κ•+1 =4κ•+1 =4κ• =4κ•κ• . This means 4κ•κ• =

⋂
κ 4κ must be a simulation

relation and hence a subset of 4 .

To show 4⊆
⋂
κ 4κ , we prove by ordinal induction that 4⊆4κ for all ordinals

κ. The base case κ = 0 is trivial. For the induction step we prove the equivalent
property 64κ ⊆ 64 . There are two cases.

In the first case, κ = κ′+ 1 is a successor ordinal. If pm 64κ′+1 qn then pm 64κ′+1
κ′+1

qn and therefore, by Lemma 33, Spoiler wins the approximant game from (κ′+1, κ′+

1, pm, qn). Let pm a−→ p′m′ be an optimal initial move by Spoiler. Now either there
is no valid response and thus Spoiler immediately wins in the simulation game or for
every Duplicator response qn a−→ q′n′ we have p′m′ 64κ′κ′ q′n′. Then also p′m′ 64κ′
q′n′ and by induction hypothesis p′m′ 64 q′n′. From this we obtain that Spoiler wins
the simulation game from (p′m′, q′n′) and thus from (pm, qn). Therefore pm 64 qn,
as required.

In the second case, κ is a limit ordinal. Then pm 64κ qn implies pm 64κ′ qn for
some κ′ < κ and therefore pm 64 qn by induction hypothesis. 2

The following lemma shows an uniformity property of the simulation game. Be-
yond some fixed bound, an increased counter value of Spoiler can be neutralized by an
increased counter value of Duplicator, thus enabling Duplicator to survive at least as
many rounds in the game as before.

Lemma 35. There is a fixed bound c ∈ N s.t. the following property holds. Suppose

p ∈ QM , q ∈ QN , m, n ∈ N with m > c ,and κ ∈ Ord satisfy

pm 4κ qn.

Then for every m′ > m there is n′ ∈ N s.t.

pm′ 4κ qn′.

Proof. It suffices to show the existence of a local bound c for any given pair of states
(p, q) that satisfies the condition, since we can simply take the global c to be the maxi-
mal such bound over all finitely many pairs (p, q). Consider now a fixed pair (p, q) of

90 CHAPTER 4. SIMULATION PRE-ORDER OVER 1-COUNTER AUTOMATA

states. For m,n ∈ N, we define the following (sequences of) ordinals.

I(m,n) = the largest ordinal κ with pm 4κ qn, or κ•

if pm 4 qn,

I(m) = the increasing sequence of ordinals I(m,n)n>0,

S(m) = sup{I(m)}.

Observe that I(m,n) can be presented as an infinite matrix where I(m) is a column
and S(m) is the limit of the sequence of elements of column I(m) looking upwards.

q
p m m′

n

n′

I(m,n) I(m′, n)

I(m,n′) I(m′, n′)

6

>

6
>

S(m)
6

S(m′)

6

>

>

>

>

By Lemma 34 (1), we derive that for any n′ > n ∈ N and m′ > m ∈ N

I(m,n′) > I(m,n) > I(m′, n) (4.25)

and because of the second inequality also S(m) > S(m′). So the ordinal sequence
S(m)m>0 of suprema must be non-increasing and by the well-ordering of the ordinals
there is a smallest index k ∈ N at which this sequence stabilizes:

∀l > k. S(l) = S(k).

We split the remainder of this proof into three cases depending on whether I(k) and
I(l) for some l > k have maximal elements. In each case we show the existence of a
bound c that satisfies requirement.

Case 1. For all l > k and n ∈ N it holds that I(l, n) < S(l), i.e., no I(l) has
a maximal element. In this case c := k satisfies the requirement. To see this, take
m′ > m > c = k and pm 4κ qn. Then, by our assumption, κ < S(m) and
S(m) = S(m′) = S(k). Therefore κ < S(m′). Thus there must exist an n′ ∈ N s.t.
pm′ 4κ qn′, as required.

Case 2. For all l > k there is a nl ∈ N such that I(l, nl) = S(l), i.e., all I(l)

4.2. SIMULATION BY ω-AUTOMATA 91

have maximal element S(l) = S(k). Again c := k satisfies the requirement. Given
m′ > m > c = k and pm 4κ qn we let n′ := nm′ and obtain I(m′, n′) = S(m′) =

S(k) > κ and thus pm′ 4κ qn′, as required.

Case 3. If none of the two cases above holds then there must exist some l > k

s.t. the sequences I(k), . . . , I(l − 1) each have a maximal element and for l′ > l the
sequence I(l′) has no maximal element. To see this, consider sequences I(x) and I(x′)

with x′ > x > k. If I(x′) has a maximal element then so must I(x), by equation (4.25)
and S(x) = S(x′) = S(k). Given this, we repeat the argument of the Case 1. with
c := l and again satisfy the requirement. 2

The hierarchy of approximants 4λ stabilizes at a finite level for any pair of au-
tomata. This is the first of two key technical results for the proof of Theorem 11.

Lemma 36. Consider simulation pre-order 4 between an automaton without ε-tran-

sitions M = (QM ,Act, δM) and an ω-automaton N = (QN ,Act, δN). There exists a

constant λ• ∈ N s.t. 4 =4λ• .

Proof. We assume the contrary and derive a contradiction. By Lemma 34 (4), the
inclusion 4⊆4λ always holds for every ordinal λ. Thus, if @λ• ∈ N. 4 =4λ•

then for every finite λ ∈ N there are processes p0m0 and q0n0 s.t. p0m0 4λ q0n0 but
p0m0 64 q0n0. In particular, this holds for the special case of λ = |QM ×QN |(c+ 1),
where c is the constant given by Lemma 35, which we consider in the rest of this proof.

Since q0n0 does not simulate p0m0, we can assume a winning strategy for Spoiler
in the simulation game which is optimal in the sense that it guarantees that the simu-

lation level κi — the largest ordinal with pimi 4κi
qini — strictly decreases along

rounds of any play. By monotonicity, Lemma 34 (1) we can thus infer that when-
ever a pair of control-states repeats along a play, then Duplicator’s counter must have
decreased or Spoiler’s counter must have increased: along any partial play

(p0m0, q0n0)(t0, t
′
0)(p1m1, q1n1)(t1, t

′
1) . . . (pkmk, qknk)

of length k with pi = pj and qi = qj for some i < j 6 k we have nj < ni or
mj > mi. By a similar argument we can assume that Duplicator also plays optimally,
in the sense that he uses ω-transitions to increase his counter to higher values than
in previous situations with the same pair of control-states. By combining this with
the previously stated property that the sequence of κi strictly decreases we obtain the
following:

if pi = pj , qi = qj and t′i−1, t
′
j−1 ∈ δω then mj > mi. (4.26)

Here δω denotes the set of ω-transition, induced by transition rules with symbolic effect
ω in the Duplicator’s ω-automaton N .

Although Duplicator loses the simulation game between p0m0 and q0n0, our as-

92 CHAPTER 4. SIMULATION PRE-ORDER OVER 1-COUNTER AUTOMATA

sumption p0m0 4λ q0n0 with λ = |QM × QN |(c + 1) implies that Duplicator does
not lose with less than λ ω-transitions, regardless of Spoiler’s strategy. Thus there al-
ways is a prefix of a play along which Duplicator makes use of ω-transitions λ times.
Let

π = (p0m0, q0n0)(t0, t
′
0)(p1m1, q1n1)(t1, t

′
1) . . . (pkmk, qknk)

be such a partial play.

Our choice of λ = |QM ×QN |(c+ 1) guarantees that some pair (p, q) of control-
states repeats at least c + 1 times directly after Duplicator making a move via an ω-
transition. Thus there are indices i(1) < i(2) < · · · < i(c + 1) < k s.t. for all
1 6 j 6 c+ 1 we have pi(j−1) = p, qi(j) = q and t′i(j)−1 ∈ δω . By observation (4.26)
and m0 > 0 we obtain that mi(x) > x for 0 6 x 6 c + 1. In particular, c 6 mi(c) <

mi(c+1), i.e. both of Spoiler’s counter values after the last two such repetitions must
lie above c. This allows us to apply Lemma 35 to derive a contradiction as follows.

Let κ be the simulation level before this repetition: κ is the largest ordinal with
pmi(c) 4κ qni(c). Since mi(c+1) > mi(c) > c, Lemma 35 ensures the existence of a
natural n′ s.t. pmi(c+1) 4κ qn′. Because Duplicator used an ω-transition in his last
response leading to the repetition of states there must be a partial play π′ in which both
players make the same moves as in π except that Duplicator chooses ni(c+1) to be n′.
Now in this play we observe that the simulation level did in fact not strictly decrease as
this last repetition of control-states shows: We have pmi(c) 4κ qni(c) 6<κ+1 pmi(c)

and pmi(c+1) 4κ qni(c+1), which contradicts the optimality of Spoiler’s strategy. 2

4.2.2 Computability of finite approximants

To prove decidability of the simulation pre-order between one-counter automata and
ω-automata we will show that for each finite level k ∈ N the approximant 4k is effec-
tively semilinear, i.e. we can compute the semilinearity description of 4k . This yields
a decision procedure for simulation pre-order that works as follows. Iteratively com-
pute 4k for growing k and check after each round if the approximant has converged
yet. The convergence test of 4k ?

=4k−1 can easily be done, since the approximants
are semilinear sets. Termination of this procedure is guaranteed by Lemma 36, and the
limit is the simulation pre-order by Lemma 34 (4).

To start, we recall the following important result by Jančar, Kučera and Moller.

Theorem 12 ([38]). The simulation pre-order 4 between processes of two given one-

counter automata without ε-transition rules is effectively semilinear.

The following lemma is the second key technical result underlying the proof of
Theorem 11:

4.2. SIMULATION BY ω-AUTOMATA 93

Lemma 37. Given a one-counter automaton without ε-transition rules M and an ω-

automaton N , the approximant relations 4k between them are effectively semilinear

sets for all k ∈ N.

The rest of Section 4.2.2 is devoted to the proof of the this lemma.

Let M = (QM ,Act, δM) and N = (QN ,Act, δN). We prove the effective semi-
linearity of 4k by induction on k.

The base case 40 = QM × N×QN × N is trivially effectively semilinear.

For the induction step we proceed as follows. By induction hypothesis 4k is ef-
fectively semilinear. Using this, we reduce the problem of checking 4k+1 between
M and N to the problem of checking weak simulation 4 between two derived one-
counter automata without ε-transition rules M ′ and N ′, and obtain the effective semi-
linearity of the relation from Theorem 12. More precisely, the derived one-counter
automata M ′ and N ′ will contain all control-states of M and N , respectively, and we
will have that pm 4k+1 qn wrt. M,N iff pm 4 qn wrt. M ′, N ′.

Before we describe M ′ and N ′ formally, we explain the function of a test gadget
used in the construction.

An important observation is that after Duplicator made an ω-move in the approx-
imant game between M and N , the winner of the game from the resulting position
depends only on the control-states and Spoiler’s counter value, because Duplicator
could choose his counter arbitrarily high. Moreover, monotonicity (Lemma 34 (1))
guarantees that there must be a minimal value for Spoiler’s counter with which she can
win if at all. This yields the following property.

For any pair of states (p, q) ∈ QM×QN there must exist a valueM(p, q) ∈ N∪{ω}
s.t. for all m ∈ N

(∀n ∈ N. pm 64k qn) ⇐⇒ m >M(p, q). (4.27)

Since, by induction hypothesis, 4k (and thus also its complement) is effectively semi-
linear, we can compute the values M(p, q) for all (p, q) ∈ QM ×QN .

The test gadgets. Given the values M(p, q), we construct test gadgets that check
whether Spoiler’s counter value is > M(p, q). For each (p, q) ∈ QM × QN we
construct two one-counter automata S(p, q) and T (p, q) with initial states s(p, q) and
t(p, q), respectively, such that the following property holds for all m,n ∈ N.

s(p, q)m 64 t(p, q)n ⇐⇒ m >M(p, q). (4.28)

The construction of S(p, q) and T (p, q) is very simple. Let s(p, q) be the starting point
of a counter-decreasing chain of transition rules labelled with e of length M(p, q) ∈ N
where the last state of the chain allows to make a move via transition labelled f whereas

94 CHAPTER 4. SIMULATION PRE-ORDER OVER 1-COUNTER AUTOMATA

t(p, q) is a simple e-loop (where e, f are fresh actions not in Act). If M(p, q) = ω,
making s(p, q) a deadlock suffices. Thus S(p, q) and T (p, q) are one-counter automata
which we denote by

S(p, q) = (QS(p,q), {e, f}, δS(p,q)) and T (p, q) = (QT (p,q), {e}, δT (p,q)). (4.29)

Wlog. we assume that their state sets are disjoint from each other and from the original
automata M,N .

The construction of the automata M ′ and N ′. Let M ′ = (Q′M ,Act′, δ′M) and
N ′ = (Q′N ,Act′, δ′N) be one-counter automata constructed as follows.

Act′ = Act ∪QM ×QN ∪ {f, e} (where e, f are the actions from the test gadgets).

Spoiler’s new automaton M ′ has states

Q′M = QM ∪
⋃

p∈QM ,q∈QN

QS(p,q) (4.30)

Duplicator’s new automaton N ′ has states

Q′N = QN ∪ {W} ∪
⋃

p∈QM ,q∈QN

QT (p,q). (4.31)

where W is a new state.

Now we define the transition relations. δ′M = δM ∪
⋃
p∈QM ,q∈QN

δS(p,q) plus the
following transition rules for all p ∈ QM , q ∈ QN :

p
(p,q),0−→ s(p, q). (4.32)

δ′N = {q a,x−→ q′ ∈ δN | x 6= ω} ∪
⋃
p∈QM ,q∈QN

δT (p,q) plus the following transi-
tion rules for all p, p′ ∈ QM and q, q′ ∈ QN :

q
a,0−→ t(p, q′) if q

a,ω−→ q′ ∈ δN (4.33)

q
(p′,q′),0−→ W (4.34)

t(p, q)
(p,q),0−→ t(p, q) (4.35)

t(p, q)
(p,q′),0−→ W for all q 6= q′ (4.36)

t(p, q)
a,0−→W for all a ∈ Act (4.37)

W
a,0−→W for all a ∈ Act′ (4.38)

4.2. SIMULATION BY ω-AUTOMATA 95

Correctness. We show that for any pair pm, qn of processes of the automata M,N

we have pm 4k+1 qn if and only if pm 4 qn in the newly constructed automata
M ′, N ′.

To prove the ‘if’ direction we assume that pm 64k+1 qn wrt. M,N and derive
that pm 64 qn wrt. M ′, N ′. By our assumption and Definition 34, there exists some
ordinal κ such that pm 64k+1

κ qn. By Lemma 33, Spoiler has a winning strategy in the
approximant game from the position (κ, k + 1, pm, qn). The result then follows from
the following lemma.

Lemma 38. For all ordinals κ, control-states (p, q) ∈ QM ×QN and naturals m,n ∈
N: If Spoiler has a winning strategy in the approximant game from the position (κ, k+

1, pm, qn) then she also has a winning strategy in the simulation game the from posi-

tion (pm, qn) with respect to M ′ and N ′.

Proof. To prove lemma, we fix some p ∈ QM , q ∈ QN and proceed by ordinal
induction on κ. The base case trivially holds since Spoiler looses from a position
(0, k + 1, pm, qn).

For the induction step let Spoiler play the same move pm a−→ p′m′ for some
a ∈ Act in both games according to her assumed winning strategy in the approximant
game. Now Duplicator makes his response move in the new game between M ′, N ′,
which yields two cases. In the first case, Duplicator does not use a transition rule from
Equation (4.33). Then his move induces a corresponding move in the approximant
game which leads to a new position (κ′, k + 1, p′m′, q′n′) where p′m′ 64k+1

κ′ q′n′ for
some ordinal κ′ < κ. Thus, by Lemma 33 and the induction hypothesis, the property
holds.

In the second case, Duplicator’s response is via a transition rule from Equation (4.33),
which leads to a new position (p′m′, t(p′′, q′)n) for some p′′ ∈ QM . Thus in the
approximants game there will exist Duplicator moves to positions (κ′, k, p′m′, q′n′)

where n′ ∈ N can be arbitrarily high. We can safely assume that Duplicator chooses

p′′ = p′, since otherwise Spoiler can win in one round by playing p′m′
(p′,q′)−→ s(p, q)m′.

Now in the following round Spoiler can play p′m′
(p′,q′)−→ s(p′, q′)m′ by Equation (4.32)

and Duplicator’s only option is to stay in his current state by Equation (4.35). The
game thus continues from (s(p′, q′)m′, t(p′, q′)n). By our assumption Spoiler wins
the approximant game from the position (κ, k + 1, pm, qn). Thus there is some or-
dinal κ′ < κ such that Spoiler also wins the approximant game from the position
(κ′, k, p′m′, q′n′) for every n′ ∈ N. Thus, by Lemma 33 and Definition 34, we have
p′m′ 64kκ′ q′n′ and by Lemma 34 (2) p′m′ 64k q′n′ for all n′ ∈ N. By Equation (4.27)
we obtain m′ > M(p′, q′). By the construction of the gadgets and Equation (4.28) we
get s(p′, q′)m′ 64 t(p′, q′)n′, which implies the desired property. 2

This concludes the proof of the ‘if’ direction. Now we prove the ‘only if’ direction

96 CHAPTER 4. SIMULATION PRE-ORDER OVER 1-COUNTER AUTOMATA

of the correctness property. We assume that pm 64 qn in the newly constructed au-
tomata M ′ and N ′ and derive that pm 64k+1 qn wrt. M,N . To do this, we first show
the following property.

Lemma 39. Let (p, q) ∈ Qm×QN . If pm 64 qn with respect to automata M ′ and N ′

then there exists some general ordinal κ′ s.t. pm 64k+1
κ′ qn with respect to automata

M,N.

Proof. Assume pm 64 qn with respect to automata M ′ and N ′. Since both M ′, N ′ are
just one-counter automata non-simulation manifests itself at some finite approximant
κ ∈ N, i.e., pm 64κ qn. We prove the lemma by induction on κ. The base case of
κ = 0 is trivial. For the induction step we consider a move pm a−→ p′m′ for some a ∈
Act by Spoiler in both games according to Spoiler’s assumed winning strategy in the
game betweenM ′, N ′. It cannot be a Spoiler move p

(p,q),0−→ s(p, q) by Equation (4.32),
because Duplicator would immediately win via a move by Equation (4.34). Now we
consider all (possibly infinitely many) replies by Duplicator in the approximant game
betweenM,N from a position (κ′, k+1, pm, qn) for some yet to be determined ordinal
κ′. Our goal is to construct such κ′ that the position (κ′, k + 1, pm, qn) is winning for
Spoiler.

These replies fall into two classes.

In the first class, Duplicator’s move qn a−→ q′n′ is not due to an ω-transition and
thus also a possible move in the simulation game between M ′, N ′. From our assump-
tion that Spoiler wins the simulation game from position (pm, qn) in at most κ rounds,
it follows that Spoiler wins the simulation game from (p′m′, q′n′) in at most κ − 1

rounds. By induction hypothesis, there exists an ordinal κ′′ s.t. Spoiler has a winning
strategy in the approximant game betweenM ′, N ′ from position (κ′′, k+1, p′m′, q′n′).
There are only finitely many such replies. Thus let κ0 be the maximal such κ′′.

In the second class, Duplicator’s move qn a−→ q′n′ uses an ω-transition which does
not exist in N ′. Instead there exists a Duplicator transition qn

a,0−→ t(p′′, q′)n by Equa-
tion (4.33). From our assumption that Spoiler wins the simulation game from position
(pm, qn) in at most κ rounds, it follows that Spoiler wins the simulation game from
(p′m′, t(p′′, q′)n) in at most κ− 1 rounds. If p′′ 6= p′ then this is trivially true due to a
Spoiler move by Equation (4.32). Otherwise, if p′′ = p′, then this can only be achieved

by a Spoiler move of p′m′
(p′,q′),0−→ s(p′, q′)m′ in the next round, because for any other

Spoiler move Duplicator has a winning countermove by Equations (4.36) or (4.37). In

this case Duplicator can only reply with a move t(p′, q′)n
(p′,q′),0−→ t(p′, q′)n by Equa-

tion (4.35), and we must have that Spoiler can win in at most κ−2 rounds from position
(s(p′, q′)m′, t(p′, q′)n). This implies, by Equation (4.28), that m′ > M(p′, q′). Then
Equation (4.27) yields ∀n′ ∈ N. p′m′ 64k q′n′. Thus for every n′ ∈ N there exists some
ordinal κ′n s.t. p′m′ 64kκn

q′n′. Let κ′′ be the smallest ordinal s.t. ∀n′ ∈ N. κ′n 6 κ′′.

4.3. APPROXIMANT CONVERGENCE AT LEVEL ω · ω 97

Each of the finitely many distinct ω-transitions yields such a κ′′. Let κ1 be the maxi-
mum of them.

We set κ′ := max(κ0, κ1) + 1. Then every reply to Spoilers move pm a−→ p′m′ in
the approximant game from (κ′, k + 1, pm, qn) leads to some position that is winning
for Spoiler. So, Spoiler has a winning strategy in the approximant game from (κ′, k +

1, pm, qn) and by Lemma 33, pm 4k+1
κ′ qn wrt. M,N , which concludes the proof of

the lemma. 2

By Lemma 39 we have pm 64k+1
κ′ qn for some ordinal κ′ and thus pm 64k+1 qn

wrt. M,N . This concludes the ‘only if’ direction.

We have constructed one-counter automata M ′, N ′ s.t. pm 4k+1 qn wrt. M,N

if and only if pm 4 qn wrt. M ′, N ′. By Theorem 12, 4k+1 is effectively semilinear.

4.3 Approximant convergence at level ω · ω

We show that the hierarchy of approximants 4κ induced by ordinary weak simulation
expansion converges at level κ = ω2 on LTSs induced by one-counter automata.

Lemma 40. When considering approximants between an one-counter automaton and

an ω-automaton, we have 4ω·i⊆4i for every i ∈ N.

Proof. By induction on i. The base case of i = 0 is trivial, since 40 is the full relation.
We prove the inductive step by assuming the contrary and deriving a contradiction. Let
pm 4ω·i qn and pm 64i qn for some i > 0. Then there exists some ordinal κ s.t.
pm 64iκ qn. Without restriction let κ be the least ordinal satisfying this condition. If
κ 6 ω · i then we trivially have a contradiction. Now we consider the case κ > ωi.
By pm 64iκ qn and Lemma 33, Spoiler has a winning strategy in the approximant
game from position (κ, i, pm, qn). Without restriction we assume that Spoiler plays
optimally, i.e., wins as quickly as possible. Thus this game must reach some game
position (κ′ + 1, i, p′m′, q′n′) where κ′ > ω · i is a limit ordinal, such that Spoiler can
win from (κ′ + 1, i, p′m′, q′n′) but not from (κ′, i, p′m′, q′n′). I.e., p′m′ 64iκ′+1 q

′n′,
but p′m′ 4iκ′ q′n′. Consider Spoiler’s move p′m′ a−→ p′′m′′ according to her optimal
winning strategy in the game from position (κ′ + 1, i, p′m′, q′n′). Since p′m′ 4iκ′
q′n′ and κ′ is a limit ordinal, for every ordinal γk < κ′, Duplicator must have some
countermove q′n′ a−→ qknk s.t. p′′m′′ 4jγk qknk, where j = i−1 if the move was due
to an ω-transition and j = i otherwise. In particular, supk{γk} = κ′. However, since
Spoiler’s move p′m′ a−→ p′′m′′ was according to her optimal winning strategy from
position (κ′ + 1, i, p′m′, q′n′), we have that p′′m′′ 64jκ′ qknk. Therefore, there must
be infinitely many different Duplicator countermoves q′n′ a−→ qknk. Infinitely many
of these countermoves must be due to an ω-transition, because apart from these the
system is finitely branching. Thus for every ordinal γ < κ′ there is some Duplicator

98 CHAPTER 4. SIMULATION PRE-ORDER OVER 1-COUNTER AUTOMATA

countermove q′n′ a−→ qknk which is due to an ω-transition s.t. p′′m′′ 4i−1γk
qknk

where γk > γ (note the i−1 index due to the ω-transition). In particular, we can choose
γ = ω · (i− 1), because i > 0 and κ′ > ω · i. Then we have p′′m′′ 4i−1ω·(i−1) qknk, but
p′′m′′ 64i−1κ′ qknk. However, from p′′m′′ 4i−1ω·(i−1) qknk and the induction hypothesis,
we obtain p′′m′′ 4i−1 qknk and in particular p′′m′′ 4i−1κ′ qknk. Contradiction. 2

Theorem 13. Weak simulation approximants on one-counter automata converge at

level ω2, but not earlier in general.

Proof. First we show that 4ω2 is contained in 4 . Let pm and qn be processes of
automata M and N , respectively. Let M ′, N ′ be the derived OCA¬0 and ω-automaton
from Theorem 10. Assume pm 4ω2 qn wrt. M,N . Then, by Theorem 10 (2),
pm 4ω2 qn wrt. M ′, N ′. In particular we have pm 4ω·λ• qn wrt. M ′, N ′, with
the λ• ∈ N from Lemma 36. From Lemma 40 we obtain pm 4λ• qn wrt. M ′, N ′.
Lemma 36 yields pm 4 qn wrt. M ′, N ′. Finally, by Theorem 10 (1), we obtain
pm 4 qn wrt. M,N .

To see that ω2 is needed in general, consider the following class of simple examples.
Let p a−→ p define a simple automaton (actually a finite automaton). For every i ∈ N
we define an automaton Ni with transition rules (qk, a,−1, qk), (qk−1, ε, 0, q′k−1),
(q′k−1, ε, 1, q

′
k−1), and (q′k−1, a, 0, qk) for all k with 1 6 k 6 i. Then, for the au-

tomaton Ni, we have p 4ω·i q00, but p 64 q00. Thus in general 4 6=4ω·i for any
i ∈ N.

p q0 q′0

q1 q′1

q2

a, 0

a,−1 ε, 0
ε, 1

a, 0

a,−1
ε, 0

ε, 1

ε, 1

a,−1

Figure 4.1: Spoiler’s automaton and Duplicator’s automaton N2.

2

4.4. BRANCHING PRE-ORDER 99

4.4 Branching pre-order

Here we only sketch how branching pre-order checking may be reduced to weak pre-
order checking in the class of one-counter automata, thus providing a sketch of the
proof of Theorem 9.

Observe that the branching simulation round can be seen as a sequence of two
Spoilers move and two Duplicators moves. In her second move Spoiler decides if she
wants to make a rollback of her first move; the second Duplicator’s move is then fully
determined. The idea of reduction is to encode one round of branching simulation
game into two rounds of weak simulation game. We will base our argument on the
observation that if Spoiler makes a silent move then Duplicator can safely respond
with the silent self-loop, thus remaining in the same process.

We will describe how to transform two given automata M , N into two new au-
tomata M ′, N ′, with the following properties:

(1) the set of processes of M (resp. N) is included in the set of processes of M ′

(resp. N ′);

(2) two processes are related by branching pre-order wrt. M,N if and only if the
processes are related by weak pre-order wrt. M ′, N ′.

The alphabet of M ′ and N ′ will contain two additional letters r and n, standing for
’rollback’ and ’no rollback’, respectively. For every transition rule t of M (resp. N)
labelled with an observable action a ∈ Act, the automaton M ′ (resp. N ′) will contain
a new states. The transition rules in the new automata are split into four groups:

• silent transition rules are the same as in the original automata;

• for every transition rule t = (p
a,d−→ q), where a ∈ Act, we introduce a corre-

sponding transition rule which goes from p to state t:

p
a,d−→ t;

• for every state t = (p
a,d−→ q) originating in a transition rule, we introduce a

transition rule labelled with n
t
n,0−→ q,

which does not modify the counter;

• for every state t = (p
a,d−→ q) originating in a transition rule, we introduce a

transition rule labelled with r
t
r,−d−→ p,

which modifies the counter by −d.

100 CHAPTER 4. SIMULATION PRE-ORDER OVER 1-COUNTER AUTOMATA

Note that rollbacks are only allowed after observable transitions. This does not restrict
the power of Spoiler; indeed, in response to a Spoiler’s silent move, it is optimal for
Duplicator to stay in the same process (using a silent self-loop), and thus rollback is
useless. One can easily check that conditions (1) and (2) are fulfilled.

Chapter 5

Bibliography

[1] Parosh Aziz Abdulla and Karlis Cerans. Simulation is decidable for one-counter
nets (extended abstract). In CONCUR, pages 253–268, 1998.

[2] Jos C. M. Baeten and Jan Willem Bergstra, Jan A.and Klop. Decidability of bisim-
ulation equivalence for processes generating context-free languages. In PARLE

(2), pages 94–111, 1987.

[3] Jos C. M. Baeten and Jan Willem Bergstra, Jan A.and Klop. Decidability of bisim-
ulation equivalence for processes generating context-free languages. J. ACM,
40(3):653–682, 1993.

[4] Stanislav Böhm, Stefan Göller, and Petr Jančar. Bisimilarity of one-counter pro-
cesses is PSPACE-complete. In CONCUR, pages 177–191, 2010.

[5] Stanislav Böhm, Stefan Göller, and Petr Jančar. Equivalence of deterministic
one-counter automata is NL-complete. CoRR, abs/1301.2181, 2013.

[6] Olaf Burkart, Didier Caucal, and Bernhard Steffen. An elementary bisimulation
decision procedure for arbitrary context-free processes. In MFCS, pages 423–
433, 1995.

[7] Søren Christensen. Decidability and Decomposition in process algebras. PhD
thesis, Dept. of Computer Science, University of Edinburgh, UK, 1993.

[8] Søren Christensen, Yoram Hirshfeld, and Faron Moller. Bisimulation equivalence
is decidable for Basic Parallel Processes. In CONCUR, pages 143–157, 1993.

[9] Søren Christensen, Hans Hüttel, and Colin Stirling. Bisimulation equivalence is
decidable for all context-free processes. Inf. Comput., 121(2):143–148, 1995.

[10] Wojciech Czerwiński. Partially-commutative context-free graphs. PhD thesis,
University of Warsaw, 2012.

101

102 CHAPTER 5. BIBLIOGRAPHY

[11] Wojciech Czerwiński, Sibylle B. Fröschle, and Sławomir Lasota. Partially-
commutative context-free processes. In CONCUR, pages 259–273, 2009.

[12] Wojciech Czerwiński, Sibylle B. Fröschle, and Sławomir Lasota. Partially-
commutative context-free processes: Expressibility and tractability. Inf. Comput.,
209(5):782–798, 2011.

[13] Wojciech Czerwiński, Piotr Hofman, and Sławomir Lasota. Decidability of
branching bisimulation on normed commutative context-free processes. In CON-

CUR, pages 528–542, 2011.

[14] Wojciech Czerwiński and Sławomir Lasota. Fast equivalence-checking for
normed context-free processes. In FSTTCS, pages 260–271, 2010.

[15] Javier Esparza. Petri nets, commutative context-free grammars, and Basic Parallel
Processes. Fundam. Inform., 31(1):13–25, 1997.

[16] Rob J. van Glabbeek. The linear time-branching time spectrum (extended ab-
stract). In CONCUR, pages 278–297, 1990.

[17] Rob J. van Glabbeek. The linear time - branching time spectrum II. In CONCUR,
pages 66–81, 1993.

[18] Jan Friso Groote and Hans Hüttel. Undecidable equivalences for basic process
algebra. Inf. Comput., 115(2):354–371, 1994.

[19] Ken Higuchi, Etsuji Tomita, and Mitsuo Wakatsuki. A polynomial-time algo-
rithm for checking the inclusion for real-time deterministic restricted one-counter
automata which accept by final state. IEICE Transactions, 78-D(8):939–950,
1995.

[20] Ken Higuchi, Etsuji Tomita, and Mitsuo Wakatsuki. A polynomial-time algorithm
for checking the inclusion for strict deterministic restricted one-counter automata.
IEICE Transactions, 78-D(4):305–313, 1995.

[21] Yoram Hirshfeld. Congruences in commutative semigroups. Technical report,
University of Edinburgh, LFCS report ECS-LFCS-94-291, 1994.

[22] Yoram Hirshfeld. Petri nets and the equivalence problem. In CSL, pages 165–174.
1994.

[23] Yoram Hirshfeld. Bisimulation trees and the decidability of weak bisimulations.
Electr. Notes Theor. Comput. Sci., 5:2–13, 1996.

[24] Yoram Hirshfeld, Mark Jerrum, and Faron Moller. A polynomial-time algorithm
for deciding equivalence of normed context-free processes. In FOCS, pages 623–
631, 1994.

103

[25] Yoram Hirshfeld, Mark Jerrum, and Faron Moller. A polynomial algorithm for
deciding bisimilarity of normed context-free processes. Theor. Comput. Sci.,
158(1&2):143–159, 1996.

[26] Yoram Hirshfeld, Mark Jerrum, and Faron Moller. A polynomial-time algorithm
for deciding bisimulation equivalence of normed Basic Parallel Processes. Math-

ematical Structures in Computer Science, 6(3):251–259, 1996.

[27] Piotr Hofman, Richard Mayr, and Patrick Totzke. Decidability of weak simulation
on one-counter nets. In LICS, 2013. Accepted.

[28] Piotr Hofman and Patrick Totzke. Approximating weak bisimilarity of basic par-
allel processes. In DCM, pages 99–113, 2012.

[29] Hans Hüttel. Silence is golden: Branching bisimilarity is decidable for context-
free processes. In CAV, pages 2–12, 1991.

[30] Hans Hüttel. Undecidable equivalences for Basic Parallel Processes. In TACS,
pages 454–464, 1994.

[31] Dung T. Huynh and Lu Tian. On deciding readiness and failure equivalences for
processes. Inf. Comput., 117(2):193–205, 1995.

[32] P. Jančar. Decidability questions for bismilarity of Petri nets and some related
problems. In STACS, pages 581–592, 1994.

[33] Petr Jančar. Undecidability of bisimilarity for petri nets and some related prob-
lems. Theor. Comput. Sci., 148(2):281–301, 1995.

[34] Petr Jančar. Bisimulation equivalence is decidable for one-counter processes. In
ICALP, pages 549–559, 1997.

[35] Petr Jančar. Strong bisimilarity on Basic Parallel Processes is PSPACE-complete.
In LICS, pages 218–227, 2003.

[36] Petr Jančar. Bisimilarity on basic process algebra is in 2-EXPTIME (an explicit
proof). CoRR, abs/1207.2479, 2012.

[37] Petr Jančar and Martin Kot. Bisimilarity on normed Basic Parallel Processes can
be decided in time O(n3). In AVIS, 2004.

[38] Petr Jančar, Antonín Kučera, and Faron Moller. Simulation and bisimulation
over one-counter processes. In Proceedings of the 17th Annual Symposium on

Theoretical Aspects of Computer Science, STACS, pages 334–345, 2000.

[39] Petr Jančar and Faron Moller. Simulation of one-counter nets via colouring. Tech-
nical report, Uppsala Computing Science, February 1999.

104 CHAPTER 5. BIBLIOGRAPHY

[40] Petr Jančar, Faron Moller, and Zdenek Sawa. Simulation problems for one-
counter machines. In SOFSEM, pages 404–413, 1999.

[41] Stefan Kiefer. BPA bisimilarity is EXPTIME-hard. Inf. Process. Lett.,
113(4):101–106, 2013.

[42] Sławomir Lasota and Wojciech Rytter. Faster algorithm for bisimulation equiva-
lence of normed context-free processes. In MFCS, pages 646–657, 2006.

[43] Richard Mayr. Process rewrite systems. Electr. Notes Theor. Comput. Sci., 7:185–
205, 1997.

[44] Richard Mayr. Undecidability of weak bisimulation equivalence for 1-counter
processes. In ICALP, pages 570–583, 2003.

[45] Robin Milner. Communication and concurrency. PHI Series in computer science.
Prentice Hall, 1989.

[46] A. Ponse and Scott A. Smolka, editors. Handbook of Process Algebra. Elsevier
Science Inc., 2001.

[47] Géraud Sénizergues. The equivalence problem for deterministic pushdown au-
tomata is decidable. In ICALP, pages 671–681, 1997.

[48] Géraud Sénizergues. Complete formal systems for equivalence problems. Theor.

Comput. Sci., 231(2):309–334, 2000.

[49] Jirí Srba. Strong bisimilarity and regularity of Basic Parallel Processes is
PSPACE-hard. In STACS, pages 535–546, 2002.

[50] Jirí Srba. Roadmap of Infinite results, volume Vol 2: Formal Models and Seman-
tics. World Scientific Publishing Co., 2004.

[51] Jirí Srba. Beyond language equivalence on visibly pushdown automata. Logical

Methods in Computer Science, 5(1), 2009.

[52] Colin Stirling. The joys of bisimulation. In MFCS, pages 142–151, 1998.

[53] Colin Stirling. Decidability of weak bisimilarity for a subset of Basic Parallel
Processes. In FoSSaCS, pages 379–393, 2001.

[54] Jitka Stribrna. Decidability and complexity of equivalences for simple process

algebras. PhD thesis, University of Edinburgh, 1998.

[55] Patrick Totzke. Trace inclusion for deterministic one-counter nets is NL-
Complete. In EXPRESS/SOS, 2013. Submitted.

[56] Leslie G. Valiant and Michael S. Paterson. Deterministic one-counter automata.
J. Comput. Syst. Sci., 10(3):340–350, June 1975.

