Piotr Kokocki

Uniwersytet M. Kopernika w Toruniu

Periodic solutions for nonlinear evolution equations at resonance

Praca semestralna nr 1

(semestr zimowy 2010/11)

Opiekun pracy: Wojciech Kryszewski
Periodic solutions for nonlinear evolution equations at resonance

Piotr Kokocki*
Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
ul. Chopina 12/18, 87-100 Toruń, Poland

Abstract

We are concerned with periodic problems for nonlinear evolution equations at resonance of the form
\[\dot{u}(t) = -Au(t) + F(t, u(t)), \]
where a densely defined linear operator \(A: D(A) \to X \) on a Banach space \(X \) is such that \(-A \) generates a compact \(C_0 \) semigroup and \(F: [0, +\infty) \times X \to X \) is a nonlinear perturbation. Imposing an appropriate Landesman–Lazer type conditions on the nonlinear term \(F \), we prove a formula expressing the fixed point index of the associated translation along trajectories operator in terms of a time averaging of \(F \) restricted to \(\text{Ker} A \). Then we show that the translation operator has a nonzero fixed point index and, in consequence, we prove that the equation admits a periodic solution.

1 Introduction

Consider a periodic problem
\[\begin{aligned}
\dot{u}(t) &= -Au(t) + F(t, u(t)), \quad t > 0 \\
u(t) &= u(t + T) \quad t \geq 0,
\end{aligned} \tag{1.1} \]
where \(T > 0 \) is a fixed period, \(A: D(A) \to X \) is a linear operator such that \(-A \) generates a \(C_0 \) semigroup of bounded linear operators on a Banach space \(X \) and \(F: [0, +\infty) \times X \to X \) is a continuous mapping. Periodic problems of this form are the abstract formulations of many differential equations including the parabolic partial differential equations on an open set \(\Omega \subset \mathbb{R}^n, n \geq 1 \)
\[\begin{aligned}
u_t &= -\Delta u + f(t, x, u) \quad \text{in} \quad (0, +\infty) \times \Omega \\
B u &= 0 \quad \text{on} \quad [0, +\infty) \times \partial \Omega \\
u(t, x) &= u(t + T, x) \quad \text{in} \quad [0, +\infty) \times \Omega,
\end{aligned} \tag{1.2} \]
where
\[Au = -D_i(a_{ij}D_ju) + a_kD_ku + a_0u \]

* Corresponding author.
E-mail address: p.kokocki@mat.umk.pl.
The researches supported by the MNiSzW Grant no. N N201 395137
2010 Mathematical Subject Classification: 47J35, 35B10, 37L05
Key words: semigroup, evolution equation, topological degree, periodic solution, resonance
is such that \(a_{ij} = a_{ji} \in C^1(\Omega) \), \(a_k, a_0 \in C(\Omega) \),

\[
 a_{ij}(x)\xi_i\xi_j \geq \theta|\xi|^2 \quad \text{for} \quad \xi = (\xi_1, \xi_2, \ldots, \xi_n) \in \mathbb{R}^n, \quad x \in \Omega,
\]

\(f: [0, +\infty) \times \Omega \times \mathbb{R} \to \mathbb{R} \) is a continuous mapping and \(\mathcal{B} \) stands for the Dirichlet or Neumann boundary conditions.

Given \(x \in X \), let \(u(t; x) \) be a (mild) solution of

\[
 \dot{u}(t) = -Au(t) + \lambda F(t, u(t)), \quad t > 0
\]

such that \(u(0; x) = x \). We look for the \(T \)-periodic solutions of (1.1) as the fixed points of the translation along trajectory operator \(\Phi_T: X \to X \) given by \(\Phi_T(x) := u(T; x) \).

One of the effective methods used to prove the existence of the fixed points of \(\Phi_T \) is the averaging principle involving the equations

\[
 (1.3) \quad \dot{u}(t) = -\lambda Au(t) + \lambda F(t, u(t)), \quad t > 0
\]

where \(\lambda > 0 \) is a parameter. Let \(\Theta_T^\lambda: X \to X \) be the translation operator for (1.3). It is clear that \(\Phi_T = \Theta_T^\lambda \). Define the mapping \(\hat{F}: X \to X \) by \(\hat{F}(x) := \frac{1}{T} \int_0^T F(s, x) \, ds \) for \(x \in X \). The averaging principle says that for every open bounded set \(U \subset X \) such that \(0 \notin (-A + \hat{F})(D(A) \cap \partial U) \), one has that \(\Theta_T^\lambda(x) \neq x \) for \(x \in \partial U \) and

\[
 \deg(I - \Theta_T^\lambda, U) = \deg(-A + \hat{F}, U)
\]

provided \(\lambda > 0 \) is sufficiently small. In the above formula \(\deg \) stands for the appropriate topological degrees. Therefore, if \(\deg(-A + \hat{F}, U) \neq 0 \), then using suitable \textit{a priori} estimates and the continuation argument, we infer that \(\Theta_T^\lambda \) has a fixed point and, in consequence, (1.1) admits a periodic solution starting from \(\hat{U} \). The averaging principle for periodic problems on finite dimensional manifolds was studied in [16]. The principle for the equations on any Banach spaces has been recently considered in [8] in the case when \(-A\) generates a compact \(C_0 \) semigroup and in [9] for \(A \) being an \(m \)-accretive operator. In [10], a similar results were obtained when \(-A\) generates a semigroup of contractions and \(F \) is condensing. For the results when the operator \(A \) is replaced by a time-dependent family \(\{A(t)\}_{t \geq 0} \) see [11].

However there are examples of equations where the averaging principle in the above form is not applicable. Therefore, in this paper, motivated by [5], [17] and [22], we use the method of translation along trajectories operator to derive its counterpart in the particular situation when the equation (1.1) is at resonance i.e., \(\text{Ker} A \neq 0 \) and \(F \) is bounded. Let \(N := \text{Ker} A \) and assume that the \(C_0 \) semigroup \(\{S_A(t)\}_{t \geq 0} \) generated by \(-A\) is compact. Then it is well known that (real) eigenvalues of \(S_A(T) \) make a sequence which is either finite or converges to 0 and the algebraic multiplicity of each of them is finite. Denote by \(\mu \) the sum of the algebraic multiplicities of eigenvalues of \(S_A(T) : X \to X \) lying in \((1, +\infty)\). Furthermore it follows that the operator \(A \) has compact resolvents and, in consequence, \(\dim N < +\infty \). Let \(M \) be a subspace of \(X \) such that \(N \oplus M = X \) with \(S_A(t)M \subset M \) for \(t \geq 0 \). Define a mapping \(g: N \to N \) by

\[
 (1.4) \quad g(x) := \int_0^T PF(s, x) \, ds \quad \text{for} \quad x \in N
\]

where \(P: X \to X \) is a topological projection onto \(N \) with \(\text{Ker} P = M \).

First, we are concerned with an equation

\[
 \dot{u}(t) = -Au(t) + \lambda F(t, u(t)), \quad t > 0
\]
where \(\lambda \in [0,1] \) is a parameter. Denoting by \(\Phi_{T}^{\lambda} \) the translation along trajectory operator associated with this equation, we shall show that, if \(V \subset M \) is an open bounded set, with \(0 \in V \) and \(U \subset N \) is an open bounded set in \(N \) such that \(g(x) \neq 0 \) for \(x \) from the boundary \(\partial NU \) of \(U \) in \(N \), then for small \(\lambda \in (0,1) \), \(\Phi_{T}^{\lambda}(x) \neq x \) for \(x \in \partial(U \oplus V) \) and
\[
(1.5) \quad \deg_{LS}(I - \Phi_{T}^{\lambda}, U \oplus V) = (-1)^{\mu + \dim N} \deg_{B}(g, U).
\]
Here \(\deg_{LS} \) and \(\deg_{B} \) stand for the Leray–Schauder and Brouwer degree, respectively. The equation (1.5) will be called the resonant averaging formula.

Further, for an open and bounded set \(\Omega \subset \mathbb{R}^{n} \), we shall use this formula to study the periodic problem
\[
(1.6) \quad \left\{
\begin{array}{lcl}
\dot{u}(t) &=& -Au(t) + \lambda u(t) + F(t, u(t)), \quad t > 0 \\
u(t) &=& u(t + T) \quad t \geq 0,
\end{array}
\right.
\]
where \(A: D(A) \to X \) is a linear operator on the Hilbert space \(X := L^{2}(\Omega) \) with a real eigenvalue \(\lambda \) and \(F: [0, +\infty) \times X \to X \) is a continuous mapping. As before we assume that \(-A \) generates a compact \(C_{0} \) semigroup \(\{S_{t}(A)\}_{t \geq 0} \) on \(X \). The mapping \(F \) is associated with a bounded and continuous \(f: [0, +\infty) \times \Omega \times \mathbb{R} \to \mathbb{R} \) as follows
\[
(1.7) \quad F(t, u)(x) := f(t, x, u(x)) \quad \text{for} \quad t \in [0, +\infty), \quad x \in \Omega.
\]
Additionally we suppose that the following kernel coincidence holds true (which is more general than to assume that \(A \) is self-adjoint)
\[
N_{\lambda} := \text{Ker}(A - \lambda I) = \text{Ker}(A^{*} - \lambda I) = \text{Ker}(I - e^{\lambda T}S_{\lambda}(T)).
\]
Let \(\Psi_{T}: X \to X \) be the translation along trajectories operator associated with the equation
\[
\dot{u}(t) = -Au(t) + \lambda u(t) + F(t, u(t)), \quad t > 0.
\]
The resonant averaging formula, under a suitable Landesman–Lazer type conditions, gives an effective criterion for the existence of \(T \)-periodic solutions of (1.6). Namely, we prove that there is an open bounded set \(W \subset X \) such that \(g(x) \neq 0 \) for \(x \in N_{\lambda} \setminus (W \cap N_{\lambda}) \), \(\Psi_{T}(x) \neq x \) for \(x \in X \setminus W \) and
\[
(1.8) \quad \deg_{LS}(I - \Psi_{T}, W) = (-1)^{\mu(\lambda) + \dim N_{\lambda}} \deg_{B}(g, W \cap N_{\lambda})
\]
where \(\mu(\lambda) \) is the sum of the algebraic multiplicities of the eigenvalues of \(e^{\lambda T}S_{\lambda}(T) \) lying in \((1, +\infty) \) and \(g: N_{\lambda} \to N_{\lambda} \) is given by (1.4) with \(P \) being the orthogonal projection on \(N_{\lambda} \). Additionally, we compute \(\deg_{B}(g, W \cap N_{\lambda}) \), which may be important in the study of problems concerning to the multiplicity of periodic solutions. Obtained applications correspond to those from [5], [17], where a different approach were used to prove the existence of periodic solutions for equations at resonance.

Notation and terminology. Throughout the paper we use the following notational conveniences. If \((X, ||:||) \) is a normed linear space, \(Y \subset X \) is a subspace and \(U \subset Y \) is a subset, then by \(\text{cl}_{Y} U \) and \(\partial_{Y} U \) we denote the closure and boundary of \(U \) in \(Y \), respectively, while by \(\text{cl} U \) and \(\partial U \) we denote the closure and boundary of \(U \) in \(X \), respectively. If \(Z \) is a subspace of \(X \) such that \(X = Y \oplus Z \), then for subsets \(U \subset Y \) and \(V \subset Z \) we write \(U \oplus V := \{x + y \mid x \in U, y \in V\} \) for their algebraic sum. We recall also that a \(C_{0} \) semigroup \(\{S(t): X \to X\}_{t \geq 0} \) is compact if \(S(t)V \) is relatively compact for every bounded \(V \subset X \) and \(t > 0 \).
2 Translation along trajectories operator

Consider the following differential problem
\begin{equation}
\begin{aligned}
\dot{u}(t) &= -Au(t) + F(\lambda, t, u(t)), & t > 0 \\
u(0) &= x
\end{aligned}
\end{equation}

where \(\lambda \) is a parameter from a metric space \(\Lambda \), \(A: D(A) \to X \) is a linear operator on a Banach space \((X, \| \cdot \|) \) and \(F: \Lambda \times [0, +\infty) \times X \to X \) is a continuous mapping. In this section \(X \) is assumed to be real, unless otherwise stated. Suppose that \(-A \) generates a compact \(C_0 \) semigroup \(\{S_A(t)\}_{t \geq 0} \) and the mapping \(F \) is such that

\begin{itemize}
 \item [(F1)] for any \(\lambda \in \Lambda \) and \(x_0 \in X \) there is a neighborhood \(V \subset X \) of \(x_0 \) and a constant \(L > 0 \) such that for any \(x, y \in V \)
 \[\|F(\lambda, t, x) - F(\lambda, t, y)\| \leq L\|x - y\| \quad \text{for} \quad t \in [0, +\infty); \]
 \item [(F2)] there is a continuous function \(c: [0, +\infty) \to [0, +\infty) \) such that
 \[\|F(\lambda, t, x)\| \leq c(t)(1 + \|x\|) \quad \text{for} \quad \lambda \in \Lambda, \quad t \in [0, +\infty), \quad x \in X. \]
\end{itemize}

A mild solution of the problem (2.9) is, by definition, a continuous mapping \(u: [0, +\infty) \to X \) such that

\[u(t) = S_A(t)x + \int_0^t S_A(t-s)F(\lambda, s, u(s)) \, ds \quad \text{for} \quad t \geq 0. \]

It is well known (see e.g. [21]) that for any \(\lambda \in \Lambda \) and \(x \in X \), there is unique mild solution \(u(\cdot; \lambda, x): [0, +\infty) \to X \) of (2.9) such that \(u(0; \lambda, x) = x \) and therefore, for any \(t \geq 0 \), one can define the translation along trajectories operator \(\Phi_t: \Lambda \times X \to X \) by

\[\Phi_t(\lambda, x) := u(t; \lambda, x) \quad \text{for} \quad \lambda \in \Lambda, \quad x \in X. \]

As we need the continuity and compactness properties of \(\Phi_t \), we recall the following

Theorem 2.1. Let \(A: D(A) \to X \) be a linear operator such that \(-A \) generates a compact \(C_0 \) semigroup and let \(F: \Lambda \times [0, +\infty) \times X \to X \) be a continuous mapping such that conditions (F1) and (F2) hold.

(a) If sequences \((\lambda_n) \) in \(\Lambda \) and \((x_n) \) in \(X \) are such that \(\lambda_n \to \lambda_0 \) and \(x_n \to x_0 \), as \(n \to +\infty \), then

\[u(t; \lambda_n, x_n) \to u(t; \lambda_0, x_0) \quad \text{as} \quad n \to +\infty, \]

uniformly for \(t \) from bounded intervals in \([0, +\infty)\).

(b) For any \(t > 0 \), the operator \(\Phi_t: \Lambda \times X \to X \) is completely continuous, i.e. \(\Phi_t(\Lambda \times V) \) is relatively compact, for any bounded \(V \subset X \).

Remark 2.2. The above theorem is slightly different from Theorem 2.14 in [8], where it is proved in the case when linear operator is dependent on parameter as well, and moreover the parameter space \(\Lambda \) is compact. However, if \(A \) is free of parameters, then compactness of \(\Lambda \) may be omitted.
Before we start the proof we prove the following technical lemma

Lemma 2.3. Let $\Omega \subset X$ be a bounded set. Then

(a) for every $t_0 > 0$ the set \{u(t : \lambda, x) \mid t \in [0, t_0], \ \lambda \in \Lambda, \ x \in \Omega\} is bounded;
(b) for every $t_0 > 0$ and $\varepsilon > 0$ there is $\delta > 0$ such that if $t, t' \in [0, t_0], \ t < t'$ and $|t' - t| < \delta$, then

$$\left\| \int_t^{t'} S_A(t' - s)F(\lambda, s, u(s; \lambda, x)) \, ds \right\| \leq \varepsilon \quad \text{for} \quad \lambda \in \Lambda, \ x \in \Omega;$$

(c) for every $t_0 > 0$ the set

$$S(t_0) := \left\{ \int_0^{t_0} S_A(t_0 - s)F(\lambda, s, u(s; \lambda, x)) \, ds \mid \lambda \in \Lambda, \ x \in \Omega \right\}$$

is bounded.

Proof. Throughout the proof we assume that the constants $M \geq 1$ and $\omega \in \mathbb{R}$ are such that $\|S_A(t)\| \leq Me^{\omega t}$ for $t \geq 0$. (a) Let $R > 0$ be such that $\Omega \subset B(0, R)$. Then by condition (F2), for every $t \in [0, t_0]$

$$\|u(t : \lambda, x)\| \leq \|S_A(t)x\| + \int_0^t \|S_A(t - s)F(\lambda, s, u(s; \lambda, x))\| \, ds$$

$$\leq Me^{\omega t}\|x\| + \int_0^t Me^{\omega(t - s)}c(s)(1 + \|u(s; \lambda, x)\|) \, ds$$

$$\leq RMe^{\omega t_0} + t_0 KMe^{\omega t_0} + \int_0^t KMe^{\omega t_0}\|u(s; \lambda, x)\| \, ds,$$

where $K := \sup_{s \in [0, t_0]} c(s)$. By the Gronwall inequality

$$\|u(t : \lambda, x)\| \leq C_0e^{t_0C_1} \quad \text{for} \quad t \in [0, t_0], \ \lambda \in \Lambda \ x \in \Omega,$$

where $C_0 := RM e^{\omega t_0} + t_0 KMe^{\omega t_0}$ and $C_1 := KMe^{\omega t_0}$.

(b) From (a) it follows that there is $C > 0$ such that $\|u(t : \lambda, x)\| \leq C$ for $t \in [0, t_0], \ \lambda \in \Lambda$ and $x \in \Omega$. Therefore, if $t, t' \in [0, t_0]$ are such that $t < t'$, then

$$\left\| \int_t^{t'} S_A(t' - s)F(\lambda, s, u(s; \lambda, x)) \, ds \right\| \leq \int_t^{t'} Me^{\omega(t' - s)}\|F(\lambda, s, u(s; \lambda, x))\| \, ds$$

$$\leq \int_t^{t'} Me^{\omega(t' - s)}c(s)(1 + \|u(s; \lambda, x)\|) \, ds = (t' - t)MK e^{\omega t_0}(1 + C).$$

Taking $\delta := \varepsilon(MKe^{\omega t_0}(1 + C))^{-1}$ we obtain the assertion.

(c) For any $\lambda \in \Lambda$ and $x \in \Omega$

$$\left\| \int_0^{t_0} S_A(t_0 - s)F(\lambda, s, u(s; \lambda, x)) \, ds \right\| \leq \int_0^{t_0} Me^{\omega(t_0 - s)}c(s)(1 + \|u(s; \lambda, x)\|) \, ds$$

$$\leq \int_0^{t_0} MK e^{\omega t_0}(1 + \|u(s; \lambda, x)\|) \, ds \leq t_0 MK e^{\omega t_0}(1 + C) := R(t_0).$$
Hence $S(t_0)$ is contained in a ball of radius $R(t_0)$ and is bounded as claimed. \hfill \Box

Proof of Theorem 2.1. Let $\Omega \subset X$ be a bonded set and let $t \in (0, +\infty)$. We shall prove first that the set $\Phi_t(\Lambda \times \Omega)$ is relatively compact. Let $\varepsilon > 0$. For $0 < t_0 < t$, $\lambda \in \Lambda$ and $x \in \Omega$

$$u(t; \lambda, x) = S_A(t)x + S_A(t-t_0) \left(\int_0^{t_0} S_A(t_0 - s)F(\lambda, s, u(s; \lambda, x)) \, ds \right)$$

$$+ \int_{t_0}^t S_A(t-s)F(\lambda, s, u(s; \lambda, x)) \, ds,$$

and, in consequence,

$$(2.11) \quad \{u(t; \lambda, x) \mid \lambda \in \Lambda, \ x \in \Omega\} \subset S_A(t)\Omega + S_A(t-t_0)D_{t_0}$$

$$+ \left\{ \int_{t_0}^t S_A(t_0 - s)F(\lambda, s, u(s; \lambda, x)) \, ds \mid \lambda \in \Lambda, \ x \in \Omega \right\},$$

where

$$D_{t_0} := \left\{ \int_0^{t_0} S_A(t_0 - s)F(\lambda, s, u(s; \lambda, x)) \, ds \mid \lambda \in \Lambda, \ x \in \Omega \right\}.$$

Applying Lemma 2.3 (b), we infer that there is $t_0 \in (0, t)$ such that

$$(2.12) \quad \left\| \int_{t_0}^t S_A(t-s)F(\lambda, s, u(s; \lambda, x)) \, ds \right\| \leq \varepsilon \quad \text{for} \quad \lambda \in \Lambda, \ x \in \Omega.$$

From the point (c) of this lemma it follows that D_{t_0} is bounded. Combining (2.11) with (2.12) yields

$$\Phi_t(\Lambda \times \Omega) = \{u(t; \lambda, x) \mid \lambda \in \Lambda, \ x \in \Omega\} \subset V_\varepsilon + B(0, \varepsilon)$$

where $V_\varepsilon := S_A(t)\Omega + S_A(t-t_0)D_{t_0}$. This implies that V_ε is relatively compact, since $\{S_A(t)\}_{t \geq 0}$ is a compact semigroup and the sets Ω, D_{t_0} are bounded. On the other hand $\varepsilon > 0$ may be chosen arbitrary small and therefore the set $\Phi_t(\Lambda \times \Omega)$ is also relatively compact.

Let (λ_n) in Λ and (x_n) in X be sequences such that $\lambda_n \to \lambda_0 \in \Lambda$ and $x_n \to x_0 \in X$. We prove that $u(t; \lambda_n, x_n) \to u(t; \lambda_0, x_0)$ as $n \to +\infty$ uniformly on $[0, t_0]$ where $t_0 > 0$. For every $n \geq 1$ write $u_n := u(\cdot; \lambda_n, x_n)$. We claim that (u_n) is an equicontinuous sequence of functions. Indeed, take $t \in [0, +\infty)$ and let $\varepsilon > 0$. If $h > 0$ then, by the integral formula,

$$(2.13) \quad u_n(t + h) - u_n(t) = S_A(h)u_n(t) - u_n(t)$$

$$+ \int_t^{t+h} S_A(t + h - s)F(\lambda_n, s, u_n(s)) \, ds.$$

Note that for every $t \in [0, +\infty)$ set $\{u_n(t) \mid n \geq 1\}$ is relatively compact. For $t = 0$ it follows from the convergence of (x_n), while for $t, t_0 \in (0, +\infty)$ it is a consequence of the fact that the set $\Phi_t(\Lambda \times \{x_n \mid n \geq 1\})$ is relatively compact. From the continuity of semigroup there is $\delta_0 > 0$ such that

$$(2.14) \quad \|S_A(t + h)u_n(t) - S_A(t)u_n(t)\| \leq \varepsilon/2 \quad \text{for} \quad h \in (0, \delta_0), \ n \geq 1.$$
By Lemma 2.3 (b) there is $\delta \in (0, \delta_0)$ such that for $h \in (0, \delta)$ and $n \geq 1$

\[(2.15) \quad \left\| \int_t^{t+h} S_A(t+h-s)F(\lambda_n, s, u_n(s)) \, ds \right\| \leq \varepsilon/2. \]

Combining (2.13), (2.14) and (2.15), for $h \in (0, \delta)$ we infer that,

\[\|u_n(t+h) - u_n(t)\| \leq \|S_A(h)u_n(t) - u_n(t)\| \]
\[+ \left\| \int_t^{t+h} S_A(t+h-s)F(\lambda_n, s, u_n(s)) \, ds \right\| \leq \varepsilon/2 + \varepsilon/2 = \varepsilon \]

for every $n \geq 1$. We have thus proved that (u_n) is right side equicontinuous on $[0, +\infty)$. It remains to show that (u_n) is equicontinuous on the left. To this end take $t \in (0, +\infty)$ and $\varepsilon > 0$. If $0 < h \leq \delta < t$ then

\[(2.16) \quad \|u_n(t) - u_n(t-h)\| \leq \|u_n(t) - S_A(\delta)u_n(t-\delta)\| \]
\[+ \|S_A(\delta)u_n(t-\delta) - S_A(\delta-h)u_n(t-\delta)\| \]
\[+ \|S_A(\delta-h)u_n(t-\delta) - u_n(t-h)\|, \]

and consequently, for any $n \geq 1$,

\[(2.17) \quad \|u_n(t) - u_n(t-h)\| \leq \left\| \int_{t-\delta}^{t} S_A(t-s)F(\lambda_n, s, u_n(s)) \, ds \right\| \]
\[+ \|S_A(\delta)u_n(t-\delta) - S_A(\delta-h)u_n(t-\delta)\| \]
\[+ \left\| \int_{t-\delta}^{t-h} S_A(t-h-s)F(\lambda_n, s, u_n(s)) \, ds \right\|. \]

By Lemma 2.3 (b) there is $\delta \in (0, t)$ such that for every $t_1, t_2 \in [0, t]$ with $t_2 > t_1$ and $|t_1 - t_2| < \delta$, we have

\[(2.18) \quad \left\| \int_{t_1}^{t_2} S_A(t_2-s)F(\lambda_n, s, u_n(s)) \, ds \right\| \leq \varepsilon/3 \quad \text{for} \quad n \geq 1. \]

Using again the relative compactness of $\{u_n(t) \mid n \geq 1\}$ where $t \in [0, +\infty)$ we can choose $\delta_1 \in (0, \delta)$ such that for every $h \in (0, \delta_1)$ and $n \geq 1$

\[(2.19) \quad \|S_A(\delta)u_n(t-\delta) - S_A(\delta-h)u_n(t-\delta)\| \leq \varepsilon/3. \]

Taking into account (2.17), (2.18), (2.19), for $h \in (0, \delta_1)$

\[\|u_n(t) - u_n(t-h)\| \leq \left\| \int_{t-\delta}^{t} S_A(t-s)F(\lambda_n, s, u_n(s)) \, ds \right\| \]
\[+ \|S_A(\delta)u_n(t-\delta) - S_A(\delta-h)u_n(t-\delta)\| \]
\[+ \left\| \int_{t-\delta}^{t-h} S_A(t-h-s)F(\lambda_n, s, u_n(s)) \, ds \right\| \leq \varepsilon, \]

and finally the sequence (u_n) is left side equicontinuous on $(0, +\infty)$. Hence (u_n) is equicontinuous at every $t \in [0, +\infty)$ as claimed.

For every $n \geq 1$ write $w_n := u_n |_{[0, t_0]}$. We shall prove that $w_n \to w_0$ in $C([0, t_0], X)$ where $w_0 = u(\cdot ; \lambda_0, x_0) |_{[0, t_0]}$. It is enough to show that every subsequence of (w_n) contains
a subsequence which is convergent to \(w_0 \). Let \((w_{nk})\) be a subsequence of \((w_n)\). Since \((w_{nk})\) is equicontinuous on \([0, t_0]\) and the set \(\{w_{nk}(s) \mid n \geq 1\} = \{w_n(s) \mid n \geq 1\} \) is relatively compact for any \(s \in [0, t_0] \), by the Ascoli-Arzela Theorem, we infer that \((w_{nk})\) has a subsequence \((w_{nk_l})\) such that \(w_{nk_l} \to w_0 \) in \(C([0, t_0], X) \) as \(l \to +\infty \). For every \(l \geq 1 \) define a mapping \(\phi_l : [0, t_0] \to X \) by

\[
\phi_l(s) := S_A(t - s)F(\lambda_{nk_l}, s, w_{nk_l}(s)).
\]

From the continuity of \(\{S_A(t)\}_{t \geq 0} \) and \(F \), we deduce that \(\phi_l \to \phi_0 \) in \(C([0, t_0], X) \), where \(\phi_0 : [0, t_0] \to X \) is given by \(\phi_0(s) = S_A(t - s)F(\lambda_0, s, w_0(s)) \). It is clear that

\[
w_{nk_l}(t') = S_A(t')x_0 + \int_0^{t'} \phi_l(s) \, ds \quad \text{for } t' \in [0, t_0],
\]

and therefore, passing to the limit with \(l \to \infty \), we infer that for \(t' \in [0, t_0] \)

\[
w_0(t') = S_A(t')x_0 + \int_0^{t'} \phi_0(s) \, ds = S_A(t')x_0 + \int_0^{t'} S_A(t' - s)F(\lambda_0, s, w_0(s)) \, ds.
\]

By the uniqueness of mild solutions, \(w_0(t) = u(t \cdot \lambda_0, x_0) \) for \(t' \in [0, t_0] \) and we conclude that \(w_{nk_l} \to w_0 = u(\cdot \cdot \lambda_0, x_0) \) as \(l \to \infty \) and finally that \(w_n \to w_0 \) in \(C([0, t], X) \). This completes the proof of point (a). \(\square \)

If \(A : D(A) \to X \) is defined on a complex space \(X \), then the point spectrum of \(A \) is the set \(\sigma_p(A) := \{ \lambda \in \mathbb{C} \mid \text{there exists } z \in X \setminus \{0\} \text{ such that } \lambda z - Az = 0 \} \). For a linear operator \(A \) defined on a real space \(X \), it is possible to consider its complex point spectrum (see [2] or [12]). By the complexification of \(X \) we mean a complex linear space \((X \times X, +, \cdot) \), where \(X \mathbb{C} := X \times X \), with the operations of addition \(+ : X \mathbb{C} \times X \mathbb{C} \to X \mathbb{C} \) and multiplication by complex scalars \(\cdot : \mathbb{C} \times X \mathbb{C} \to X \mathbb{C} \) given by

\[
(x_1, y_1) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2) \quad \text{for } (x_1, y_1), (x_2, y_2) \in X \mathbb{C}, \quad \text{and}
\]

\[
(\alpha + \beta i) \cdot (x, y) := (\alpha x - \beta y, \alpha y + \beta x) \quad \text{for } \alpha + \beta i \in \mathbb{C}, \quad (x, y) \in X \mathbb{C},
\]

respectively. For convenience, denote the elements \((x, y)\) of \(X \mathbb{C} \) as \(x + yi \). If \(X \) is a space with a norm \(|\cdot|\), then the mapping \(|\cdot| : X \mathbb{C} \to \mathbb{C} \) given by

\[
|\mathbb{C} = \sup_{\theta \in [-\pi, \pi]} |\sin \theta x + \cos \theta y|
\]

is a norm on \(X \mathbb{C} \), and \((X \mathbb{C}, |\cdot|)\) is a Banach space, provided \(X \) is it. The complexification of \(A \) is a linear operator \(A \mathbb{C} : D(A \mathbb{C}) \to X \mathbb{C} \) given by

\[
D(A \mathbb{C}) := D(A) \times D(A) \quad \text{and} \quad A \mathbb{C}(x + yi) := Ax + Ayi \quad \text{for } x + yi \in D(A \mathbb{C}).
\]

Now, one can define the complex point spectrum of \(A \) by \(\sigma_p(A) := \sigma_p(A \mathbb{C}). \)

Remark 2.4. If \(-A\) is a generator of a \(C_0 \) semigroup \(\{S_A(t)\}_{t \geq 0} \), then it is easy to check that the family \(\{S_A(t)\mathbb{C}\}_{t \geq 0} \) of the complexified operators is a \(C_0 \) semigroup of bounded linear operators on \(X \mathbb{C} \) with the generator \(-A \mathbb{C}\). \(\square \)

In the following proposition we mention some spectral properties of \(C_0 \) semigroups
Proposition 2.5. (see [18, Theorem 16.7.2]) If $-A$ is the generator of a C_0 semigroup \{$S_A(t)$\}$_{t \geq 0}$ of bounded linear operators on a complex Banach space X, then
\[\sigma_p(S_A(t)) = e^{-t\sigma_p(A)} \setminus \{0\} \quad \text{for} \quad t > 0. \]
Furthermore, if $\lambda \in \sigma_p(A)$ then for every $t > 0$
\[(2.20) \quad \text{Ker}(e^{-\lambda t}I - S_A(t)) = \text{span} \left(\bigcup_{k \in \mathbb{Z}} \text{Ker}(\lambda_k t I - A) \right) \]
where $\lambda_k t := \lambda + (2k\pi/t)$ for $k \in \mathbb{Z}$.

3 Averaging principle at the resonance

In this section we are interested in the periodic problems of the form
\[\begin{cases} \dot{u}(t) = -Au(t) + \varepsilon F(t, u(t)), & t > 0 \\ u(t) = u(t + T) & t \geq 0 \end{cases} \]
where $T > 0$ is a fixed period, $\varepsilon \in [0, 1]$ is a parameter, $A: D(A) \to X$ is a linear operator on a real Banach space X and $F: [0, +\infty) \times X \to X$ is a continuous mapping. Suppose that F satisfies (F1) and (F2) and $-A$ generates a compact C_0 semigroup \{$S_A(t)$\}$_{t \geq 0}$ such that

(A1) $\text{Ker} A = \text{Ker}(I - S_A(T)) \neq \{0\}$;

(A2) there is a closed subspace $M \subset X$, $M \neq \{0\}$ such that $X = \text{Ker} A \oplus M$ and $S_A(t)M \subset M$ for $t \geq 0$.

Remark 3.1. (a) If A is any linear operator such that $-A$ generates a C_0 semigroup \{$S_A(t)$\}$_{t \geq 0}$, then it is immediate that $\text{Ker} A \subset \text{Ker}(I - S_A(t))$ for $t \geq 0$.

(b) Condition (A1) can be characterized in terms of the point spectrum. Namely, (A1) is satisfied if and only if
\[\{(2k\pi/T)i \mid k \in \mathbb{Z}, \ k \neq 0\} \cap \sigma_p(A) = \emptyset. \]
To see this suppose first that (A1) holds. If $(2k\pi/T)i \in \sigma_p(A)$ for some $k \neq 0$, then there is $z = x + yi \in X_C \setminus \{0\}$ such that
\[(3.23) \quad A_C z = (2k\pi/T)zi. \]
We actually know that $-A_C$ is a generator of the C_0 semigroup \{$S_{A_C}(t)$\}$_{t \geq 0}$ with $S_{A_C}(t) = S_A(t)C$ for $t \geq 0$. Therefore, by Proposition 2.5, we find that $z \in \text{Ker}(I - S_{A_C}(T))$ and, in consequence,
\[S_A(T)x + S_A(T)yi = x + yi. \]
By (A1), we get $Ax = Ay = 0$ and finally $A_C z = 0$, contrary to (3.23). Conversely, suppose that (3.22) is satisfied. Operator A_C as a generator of a C_0 semigroup is closed, and hence $\text{Ker} A_C$ is a closed subspace of X_C. On the other hand, by (2.20) and (3.22),
\[\text{Ker}(I - S_A(T)_C) = \text{Ker}(I - S_{A_C}(T)) = \text{cl Ker} A_C = \text{Ker} A_C, \]
which implies that $\text{Ker}(I - S_A(T)) = \text{Ker} A$, i.e. (A1) is satisfied. \hfill \Box
Since X is a Banach space and M, N are closed subspaces, there are projections $P: X \to X$ and $Q: X \to X$ such that $P^2 = P$, $Q^2 = Q$, $P + Q = I$ and $\text{Im} P = N$, $\text{Im} Q = M$. By Φ^t_T, we denote the translation along trajectories operator associated with (3.21).

Remark 3.2. The compactness of the semigroup $\{S_A(t)\}_{t \geq 0}$, implies that the non-zero real eigenvalues of $S_A(T)$ form a sequence which is either finite or converges to 0 and the algebraic multiplicity of each of them is finite. In both cases, only a finite number of eigenvalues is greater than 1 and let μ denote the sum of their algebraic multiplicities.

We are ready to formulate the main result of this section

Theorem 3.3. Let $g: N \to N$ be a mapping given by

$$g(x) := \int_0^T PF(s, x) \, ds \quad \text{for} \quad x \in N$$

and let $U \subset N$ and $V \subset M$ with $0 \in V$, be open bounded sets. If $g(x) \neq 0$ for $x \in \partial_N U$, then there is $\varepsilon_0 \in (0, 1)$ such that for any $\varepsilon \in (0, \varepsilon_0]$ and $x \in \partial (U \oplus V)$, $\Phi^t_T(x) \neq x$ and

$$\deg_{\text{LS}}(I - \Phi^t_T, U \oplus V) = (-1)^{\mu + \dim N \deg_{\text{B}}(g, U)}$$

where \deg_{LS} and \deg_{B} stand for the Leray–Schauder and the Brouwer topological degree, respectively.

Proof. Throughout the proof, we write $W := U \oplus V$ and $\Lambda := [0, 1] \times [0, 1] \times \overline{W}$. For any $(\varepsilon, s, y) \in \Lambda$ consider the differential equation

$$\dot{u}(t) = -Au(t) + G(\varepsilon, s, y, t, u(t)), \quad t > 0$$

where $G: \Lambda \times [0, +\infty) \times X \to X$ is defined by

$$G(\varepsilon, s, y, t, x) := \varepsilon PF(t, sx + (1 - s)Py) + \varepsilon sQF(t, x).$$

We check that G satisfies condition (F1). Indeed, fix $(\varepsilon, s, y) \in \Lambda$ and take $x_0 \in X$. If $s = 0$ then $G(\varepsilon, s, y, t, \cdot)$ is constant, hence we may suppose that $s \neq 0$. There are constants $L_0, L_1 > 0$ and neighborhoods $V_0, V_1 \subset X$ of points $sx_0 + (1 - s)Py$ and x_0, respectively, such that

$$\|F(t, x_1) - F(t, x_2)\| \leq L_0\|x_1 - x_2\| \quad \text{for} \quad x_1, x_2 \in V_0, \quad t \in [0, +\infty)$$

and

$$\|F(t, x_1) - F(t, x_2)\| \leq L_1\|x_1 - x_2\| \quad \text{for} \quad x_1, x_2 \in V_1, \quad t \in [0, +\infty).$$

Then $V' := \frac{1}{s}(V_0 - (1 - s)Py) \cap V_1$ is open, $x_0 \in V'$ and, for any $x_1, x_2 \in V'$,

$$\|G(\varepsilon, s, y, t, x_1) - G(\varepsilon, s, y, t, x_2)\| \leq \varepsilon\|P\|\|F(t, sx_1 + (1 - s)Py) - F(t, sx_2 + (1 - s)Py)\| + s\|Q\|\|F(t, x_1) - F(t, x_2)\| \leq \varepsilon L_0\|P\|\|x_1 - x_2\| + s\varepsilon L_1\|Q\|\|x_1 - x_2\| = (L_0\|P\| + L_1\|Q\|)\|x_1 - x_2\|.$$
i.e. (F1) is clearly satisfied.

An easy computation shows that condition (F2) also holds true. If \((\varepsilon, s, y) \in \Lambda\) and \(x \in X\), then by \(u(\cdot; \varepsilon, s, y, x): [0, +\infty) \to X\) we denote unique mild solution of (3.24) starting at \(x\). For \(t \geq 0\), let \(\Theta_t: \Lambda \times X \to X\) be the translation along trajectories operator given by

\[
\Theta_t(\varepsilon, s, y, x) := u(t; \varepsilon, s, y, x) \quad \text{for} \quad (\varepsilon, s, y) \in \Lambda, \quad x \in X, \quad t \in [0, +\infty).
\]

For every \(\varepsilon \in (0, 1)\) we define the mapping \(M^\varepsilon: [0, 1] \times \overline{W} \to X\) by

\[
M^\varepsilon(s, x) := \Theta_t(\varepsilon, s, x, x).
\]

Clearly \(M^\varepsilon\) is completely continuous for every \(\varepsilon \in (0, 1)\). Indeed, by Theorem 2.1 the operator \(\Theta_T\) is completely continuous and, consequently, the set \(\Theta_T(\Lambda \times \overline{W}) \subset X\) is relatively compact. Since

\[
M^\varepsilon([0, 1] \times \overline{W}) = \Theta_T(\{\varepsilon\} \times [0, 1] \times \overline{W} \times \overline{W}) \subset \Theta_T(\Lambda \times \overline{W}),
\]

the set \(M^\varepsilon([0, 1] \times \overline{W})\) is relatively compact as well.

Now we claim that there is \(\varepsilon_0 \in (0, 1)\) such that

\[
M^\varepsilon(s, x) \neq x \quad \text{for} \quad x \in \partial W, \quad s \in [0, 1], \quad \varepsilon \in (0, \varepsilon_0).
\]

Suppose to the contrary that there are sequences \((\varepsilon_n)\) in \((0, 1)\), \((s_n)\) in \([0, 1]\) and \((x_n)\) in \(\partial W\) such that \(\varepsilon_n \to 0\) and

\[
\Theta_T(\varepsilon_n, s_n, x_n, x_n) = M^\varepsilon_n(s_n, x_n) = x_n \quad \text{for} \quad n \geq 1.
\]

We may assume that \(s_n \to s_0\) with \(s_0 \in [0, 1]\). By (3.26) and the boundedness of \((x_n) \subset \partial W\), the complete continuity of \(\Theta_T\) implies that \((x_n)\) has convergent subsequence. Without lost of generality we may assume that \(x_n \to x_0\) as \(n \to +\infty\), for some \(x_0 \in \partial W\). After passing to the limit in (3.26), by Theorem 2.1 (a), it follows that

\[
\Theta_T(0, s_0, x_0, x_0) = x_0.
\]

On the other hand

\[
\Theta_t(0, s_0, x_0, x_0) = S_A(t)x_0 \quad \text{for} \quad t \geq 0,
\]

which together with (3.27) implies that \(x_0 = S_A(T)x_0\). Condition (A1) yields \(x_0 \in \text{Ker} \ A = N\) and hence \(Qx_0 = 0\). Since \(0 \in V\), and the equality

\[
\partial(U \oplus V) = \partial_N U \oplus \text{cl}_M V \cup \text{cl}_N U \oplus \partial_M V
\]

holds true, we infer that \(x_0 \in \partial_N U\). By the use of Remark 3.1 (a) and (3.28) we also find that

\[
\Theta_t(0, s_0, x_0, x_0) = S_A(t)x_0 = x_0 \quad \text{for} \quad t \geq 0.
\]

For every \(n \geq 1\), write \(u_n := u(\cdot; \varepsilon_n, s_n, x_n, x_n)\) for brevity. As a consequence of (3.26)

\[
x_n = S_A(T)x_n + \varepsilon_n \int_0^T S_A(T - \tau)PF(\tau, s_n u_n(\tau) + (1 - s_n)Px_n) d\tau
\]

\[
+ \varepsilon_n s_n \int_0^T S_A(T - \tau)QF(\tau, u_n(\tau))d\tau \quad \text{for} \quad n \geq 1.
\]
The fact that the spaces \(M, N \subset X \) are closed and \(S_A(t)N \subset N, S_A(t)M \subset M \), for \(t \geq 0 \), leads to

\[
(3.31) \quad \varepsilon_n \int_0^T S_A(T-\tau)PF(\tau, s_n u_n(\tau) + (1-s_n)Px_n) d\tau \in N \quad \text{and}\quad \varepsilon_n s_n \int_0^T S_A(T-\tau)QF(\tau, u_n(\tau)) d\tau \in M \quad \text{for} \quad n \geq 1.
\]

Combining (3.30) with (3.31) gives

\[
P x_n = S_A(T)Px_n + \varepsilon_n \int_0^T S_A(T-\tau)PF(\tau, s_n u_n(\tau) + (1-s_n)Px_n) d\tau \quad \text{for} \quad n \geq 1,
\]

and therefore

\[
(3.32) \quad \int_0^T PF(\tau, s_n u_n(\tau) + (1-s_n)Px_n) d\tau = 0 \quad \text{for} \quad n \geq 1,
\]

since \(Px_n \in \text{Ker} A = \text{Ker} (I - S_A(T)) \) for \(n \geq 1 \). By Theorem 2.1 (a) and (3.29) the sequence \((u_n)\) converges uniformly on \([0, T]\) to the constant mapping equal to \(x_0 \), hence, passing to the limit in (3.32), we infer that

\[
g(x_0) = \int_0^T PF(\tau, x_0) d\tau = 0.
\]

This contradicts the assumption, since \(x_0 \in \partial N U \), and proves (3.25).

By the homotopy invariance of topological degree we have

\[
(3.33) \quad \text{deg}_LS(I - \Phi^\varepsilon_T, W) = \text{deg}_LS(I - M^\varepsilon(1, \cdot), W) = \text{deg}_LS(I - M^\varepsilon(0, \cdot), W)
\]

for \(\varepsilon \in (0, \varepsilon_0] \).

Let the mappings \(\widetilde{M}_1 : U \to N \) and \(\widetilde{M}_2 : V \to M \) be given by

\[
\widetilde{M}_1^\varepsilon(x_1) := x_1 + \varepsilon \int_0^T PF(s, x_1) ds \quad \text{for} \quad x_1 \in U,
\]

\[
\widetilde{M}_2^\varepsilon(x_2) := S_A(T)|_M x_2 \quad \text{for} \quad x_2 \in V
\]

and let \(\widetilde{M}^\varepsilon : U \times V \to N \times M \) be their product

\[
\widetilde{M}^\varepsilon(x_1, x_2) := (\widetilde{M}_1^\varepsilon(x_1), \widetilde{M}_2^\varepsilon(x_2)) \quad \text{for} \quad (x_1, x_2) \in \overline{U} \times \overline{V}.
\]

For \(\varepsilon \in (0, 1) \) and \(x \in X \)

\[
M^\varepsilon(0, x) = S_A(T)x + \varepsilon \int_0^T S_A(T-\tau)PF(\tau, Px) d\tau = S_A(T)x + \varepsilon \int_0^T PF(\tau, Px) d\tau.
\]

and therefore it is easily seen that the mappings \(M^\varepsilon(0, \cdot) \) and \(\widetilde{M}^\varepsilon \) are topologically conjugate. By the compactness of the \(C_0 \) semigroup \(\{S_A(t) : M \to M\}_{t \geq 0} \) and the fact that \(\text{Ker} (I - S_A(T)|_M) = 0 \), we infer that the mapping

\[
I - \widetilde{M}_2^\varepsilon : M \to M
\]
is a linear isomorphism. By use of the multiplication property of topological degree, for any \(\varepsilon \in (0, 1) \),
\[
\deg_{LS}(I - M^{\varepsilon}(0, \cdot), W) = \deg_{LS}(I - \tilde{M}^{\varepsilon}, U \times V)
= \deg_{B}(I - \tilde{M}^{\varepsilon}_{1}, U) \cdot \deg_{LS}(I - \tilde{M}^{\varepsilon}_{2}, V).
\]
Combining this with (3.33), we conclude that
\[
\deg_{LS}(I - \Phi_{\varepsilon}^{T}, W) = \deg_{B}(-\varepsilon g, U) \cdot \deg_{LS}(I - S_{A}(T)|_{M}, V)
= (-1)^{\dim N} \deg_{B}(g, U) \cdot \deg_{LS}(I - S_{A}(T)|_{M}, V),
\]
for \(\varepsilon \in (0, \varepsilon_{0}] \). If \(\lambda \neq 1 \) and \(k \geq 1 \) is an integer then, by (A1) and (A2),
\[
\Ker (\lambda I - S_{A}(T)|_{M})^{k} = \Ker (\lambda I - S_{A}(T))^{k}.
\]
Hence \(\sigma_{p}(S_{A}(T)|_{M}) = \sigma_{p}(S_{A}(T)) \setminus \{ 1 \} \) and the algebraic multiplicities of the corresponding eigenvalues are the same. Therefore, by the standard spectral properties of compact operators (see e.g. [14, Theorem 12.8.3]),
\[
\deg_{LS}(I - S_{A}(T)|_{M}, V) = (-1)^{m},
\]
and finally
\[
\deg_{LS}(I - \Phi_{\varepsilon}^{T}, W) = (-1)^{m + \dim N} \deg_{B}(g, U),
\]
for every \(\varepsilon \in (0, \varepsilon_{0}] \), which completes the proof. \(\square \)

An immediate consequence of Theorem 3.3 is the following

Corollary 3.4. Let \(U \subset N \) and \(V \subset M \) with \(0 \in V \), be open bounded sets such that \(g(x) \neq 0 \) for \(x \in \partial N U \). If \(\deg_{B}(g, U) \neq 0 \), then there is \(\varepsilon_{0} \in (0, 1) \) such that for any \(\varepsilon \in (0, \varepsilon_{0}] \) problem (3.21) admits a mild solution.

4 Periodic problems with the Landesman–Lazer type conditions

Let \(\Omega \subset \mathbb{R}^{n}, n \geq 1 \), be an open bounded set and let \(X := L^{2}(\Omega) \). By \(\| \cdot \| \) and \(\langle \cdot, \cdot \rangle \) we denote the standard norm and the scalar product on \(X \), respectively. Assume that \(f: [0, +\infty) \times \Omega \times \mathbb{R} \to \mathbb{R} \) satisfies conditions

(a) there is a constant \(m > 0 \) such that
\[
|f(t, x, y)| \leq m \quad \text{for} \quad t \in [0, +\infty), \ x \in \Omega, \ y \in \mathbb{R};
\]
(b) there is a constant \(L > 0 \) such that for any \(t \in [0, +\infty), \ x \in \Omega \) and \(y_{1}, y_{2} \in \mathbb{R} \)
\[
|f(t, x, y_{1}) - f(t, x, y_{2})| \leq L|y_{1} - y_{2}|;
\]
(c) \(f(t, x, y) = f(t + T, x, y) \) for \(t \in [0, +\infty), \ x \in \Omega \) and \(y \in \mathbb{R} \);
(d) there are continuous functions \(f_{+}, f_{-}: [0, +\infty) \times \Omega \to \mathbb{R} \) such that
\[
f_{+}(t, x) = \lim_{y \to +\infty} f(t, x, y) \quad \text{and} \quad f_{-}(t, x) = \lim_{y \to -\infty} f(t, x, y)
\]
for \(t \in [0, +\infty) \) and \(x \in \Omega \).
Consider the following periodic differential problem
\begin{equation}
\begin{cases}
\dot{u}(t) = -Au(t) + \lambda u(t) + F(t, u(t)), \quad t > 0 \\
u(t) = u(t + T) \quad \text{or} \quad t \geq 0
\end{cases}
\end{equation}
where $A: D(A) \to X$ is a linear operator such that $-A$ generates a compact C_0 semigroup \{\(S_A(t)\)\}_{t \geq 0}$ of bounded linear operators on X, λ is its real eigenvalue and $F: [0, +\infty) \times X \to X$ is a continuous mapping given by the formula
\[F(t, u)(x) := f(t, x, u(x)) \quad \text{for} \quad t \in [0, +\infty), \quad x \in \Omega.\]
Additionally, we suppose that
\[(A3) \text{ Ker}(A - \lambda I) = \text{ Ker}(A^* - \lambda I) = \text{ Ker}(I - e^{\lambda T} S_A(T)).\]
Recall that by assumptions (a) and (b), the mapping F is well defined, bounded, continuous and Lipschitz uniformly with respect to time. Therefore, the translations along trajectories operator $\Phi_t: X \to X$ associated with the equation (4.34) is well-defined and completely continuous for $t > 0$, as a consequence of Theorem 2.1. Let $N_\lambda := \text{ Ker}(\lambda I - A)$ and define $g: N_\lambda \to N_\lambda$ by
\[g(u) := \int_0^T PF(t, u) \, dt \quad \text{for} \quad u \in N_\lambda,
\]
where $P: X \to X$ is the orthogonal projection onto N_λ. Since \{\(S_A(t)\)\}_{t \geq 0} is compact, A has compact resolvents and $\dim N_\lambda < \infty$. Furthermore note that, for any $u, z \in N_\lambda$,
\begin{equation}
\langle g(u), z \rangle = \int_0^T \langle PF(t, u), z \rangle \, dt = \int_0^T \langle F(t, u), z \rangle \, dt = \int_0^T \int_\Omega f(t, x, u(x)) z(x) \, dx \, dt.
\end{equation}
We are ready to state the main result of this section

Theorem 4.1. Suppose that $f: [0, +\infty) \times \Omega \times \mathbb{R} \to \mathbb{R}$ satisfies one of the following Landesman–Lazer type conditions:
\begin{equation}
\int_0^T \int_{\{u > 0\}} f_+(t, x) u(x) \, dx \, dt + \int_0^T \int_{\{u < 0\}} f_-(t, x) u(x) \, dx \, dt > 0,
\end{equation}
for any $u \in N_\lambda$ with $\|u\| = 1$, or
\begin{equation}
\int_0^T \int_{\{u > 0\}} f_+(t, x) u(x) \, dx \, dt + \int_0^T \int_{\{u < 0\}} f_-(t, x) u(x) \, dx \, dt < 0,
\end{equation}
for any $u \in N_\lambda$ with $\|u\| = 1$. Then the problem (4.34) admits a T-periodic mild solution.

In the proof of preceding theorem, we use the following

Theorem 4.2. Let $f: [0, +\infty) \times \Omega \times \mathbb{R} \to \mathbb{R}$ satisfy the following condition:
\begin{equation}
\int_0^T \int_{\{u > 0\}} f_+(t, x) u(x) \, dx \, dt + \int_0^T \int_{\{u < 0\}} f_-(t, x) u(x) \, dx \, dt \neq 0
\end{equation}
for every $u \in N_\lambda$ with $\|u\| = 1$. Then there is a bounded open set $W \subset X$ such that
\[\Psi_T(u) \neq u \quad \text{for } u \in X \setminus W, \quad g(u) \neq 0 \quad \text{for } u \in N_\lambda \setminus (W \cap N_\lambda) \] and
\[\deg_{LS}(I - \Psi_T, W) = (-1)^{\mu(\lambda)+\dim N_\lambda} \deg_{B}(g, W \cap N_\lambda) \]
where $\mu(\lambda)$ is the sum of the algebraic multiplicities of the eigenvalues of $e^{\lambda T}S_A(T) : X \to X$ lying in $(1, +\infty)$.

We shall use the following lemma

Lemma 4.3. If $f : [0, +\infty) \times \Omega \times \mathbb{R} \to \mathbb{R}$ satisfies (4.38), then there is $R_0 > 0$ such that $g(u) \neq 0$ for $u \in N_\lambda$ with $\|u\| \geq R_0$.

Proof. Suppose the assertion is false. Then there is a sequence $(u_n) \subset N_\lambda$ such that $g(u_n) = 0$ for $n \geq 1$ and $\|u_n\| \to +\infty$ as $n \to +\infty$. Define $z_n := u_n/\|u_n\|$ for $n \geq 1$. Since $(z_n) \subset N_\lambda$ and N_λ is a finite dimensional space, (z_n) is relatively compact. We can assume that there is $z_0 \in N_\lambda$ with $\|z_0\| = 1$ such that $z_n \to z_0$ as $n \to +\infty$. Additionally, we can suppose that $z_n(x) \to z_0(x)$ as $n \to +\infty$ for almost every $x \in \Omega$. Let
\[\Omega_+ := \{x \in \Omega \mid z_0(x) > 0\} \quad \text{and} \quad \Omega_- := \{x \in \Omega \mid z_0(x) < 0\}. \]

Then, by (4.35), we have
\[0 = \langle g(u_n), z_0 \rangle = \int_0^T \int_\Omega f(t, x, u_n(x))z_0(x) \, dxdt, \quad \text{for } n \geq 1 \]
and therefore
\[\int_0^T \int_{\Omega_+} f(t, x, z_n(x)\|u_n\|)z_0(x) \, dxdt + \int_0^T \int_{\Omega_-} f(t, x, z_n(x)\|u_n\|)z_0(x) \, dxdt = 0, \]
for $n \geq 1$. Note that, for fixed $t \in [0, T]$, the convergence $f(t, x, z_n(x)\|u_n\|) \to f_+(t, x)$ by $n \to +\infty$ occurs for almost every $x \in \Omega_+$. Since the domain Ω has finite measure, $z_0 \in L^1(\Omega) \subset L^1(\Omega)$. From the boundedness of f and the dominated convergence theorem, we infer that, for any $t \in [0, T]$,
\[\int_{\Omega_+} f(t, x, z_n(x)\|u_n\|)z_0(x) \, dx \to \int_{\Omega_+} f_+(t, x)z_0(x) \, dx \quad \text{as } n \to +\infty. \]

The function $\varphi^+_n : [0, T] \to \mathbb{R}$ given by
\[\varphi^+_n(t) := \int_{\Omega_+} f(t, x, z_n(x)\|u_n\|)z_0(x) \, dx = \langle F(t, u_n), \max(z_0, 0) \rangle \quad \text{for } t \in [0, T] \]
is continuous and furthermore $|\varphi^+_n(t)| \leq m \|z_0\|_{L^1(\Omega)} < +\infty$ for $t \in [0, T]$. By use of (4.42) and the dominated convergence theorem, we deduce that
\[\int_0^T \int_{\Omega_+} f(t, x, z_n(x)\|u_n\|)z_0(x) \, dxdt \to \int_0^T \int_{\Omega_+} f_+(t, x)z_0(x) \, dxdt \]
as $n \to +\infty$. Proceeding in the same way, we also find that
\[\int_0^T \int_{\Omega_-} f(t, x, z_n(x)\|u_n\|)z_0(x) \, dxdt \to \int_0^T \int_{\Omega_-} f_-(t, x)z_0(x) \, dxdt \]
as \(n \to +\infty \). In consequence, after passing to the limit in (4.41)
\[
\int_0^T \int_{\Omega_+} f_+(t, x) z_0(x) \, dx \, dt + \int_0^T \int_{\Omega_-} f_-(t, x) z_0(x) \, dx \, dt = 0
\]
for \(z_0 \in N_\lambda \) with \(\| z_0 \| = 1 \), contrary to (4.38), which completes the proof. \(\square \)

Proof of Theorem 4.2. Consider the following differential problem
\[
\dot{u}(t) = -Au(t) + \lambda u(t) + \varepsilon F(t, u(t)), \quad t > 0
\]
where \(\varepsilon \) is a parameter from \([0, 1]\) and let \(\mathcal{Y}_T: [0, 1] \times X \to X \) be the translations along trajectories operator for this equation. The previous lemma shows that there is \(R_0 > 0 \) such that \(g(u) \neq 0 \) for \(u \in N_\lambda \) with \(\| u \| \geq R_0 \). We claim that there is \(R_1 \geq R_0 \) such that
\[
(4.43) \quad \mathcal{Y}_T(\varepsilon, u) \neq u \quad \text{for} \quad \varepsilon \in (0, 1], \quad u \in X, \quad \| u \| \geq R_1.
\]
Conversely, suppose that there are sequences \((\varepsilon_n)\) in \((0, 1]\) and \((u_n)\) in \(X \) such that
\[
(4.44) \quad \mathcal{Y}_T(\varepsilon_n, u_n) = u_n \quad \text{for} \quad n \geq 1
\]
and \(\| u_n \| \to +\infty \) as \(n \to +\infty \). For every \(n \geq 1 \), set \(w_n := w(\cdot; \varepsilon_n, u_n) \) where \(w(\cdot; \varepsilon, u) \) is a mild solution of
\[
\dot{w}(t) = -Au(t) + \lambda w(t) + \varepsilon F(t, w(t))
\]
starting at \(u \). Then
\[
(4.45) \quad w_n(t) = e^{\lambda t} S_A(t) u_n + \varepsilon_n \int_0^t e^{\lambda (t-s)} S_A(t-s) F(s, w_n(s)) \, ds
\]
for \(n \geq 1 \) and \(t \in [0, +\infty) \). Putting \(t := T \) in the above equation, by (4.44), we infer that
\[
(4.46) \quad z_n = e^{\lambda T} S_A(T) z_n + v_n(T),
\]
with \(z_n := u_n/\| u_n \| \) and
\[
v_n(t) := \frac{\varepsilon_n}{\| u_n \|} \int_0^t e^{\lambda (t-s)} S_A(t-s) F(s, w_n(s)) \, ds \quad \text{for} \quad n \geq 1, \quad t \in [0, +\infty).
\]
Observe that, for any \(t \in [0, T] \) and \(n \geq 1 \), we have
\[
(4.47) \quad \| v_n(t) \| \leq \frac{1}{\| u_n \|} \int_0^t M e^{(\omega+\lambda)(t-s)} \| F(s, w_n(s)) \| \, ds \leq m\nu(\Omega)^{1/2} M e^{\omega t}/\| u_n \|
\]
where the constants \(M \geq 1 \) and \(\omega \in \mathbb{R} \) are such that \(\| S_A(t) \| \leq Me^{\omega t} \) for \(t \geq 0 \) and \(\nu \) stands for the Lebesgue measure. Hence
\[
(4.48) \quad v_n(t) \to 0 \quad \text{for} \quad t \in [0, T] \quad \text{as} \quad n \to +\infty,
\]
and, in particular, set \(\{ v_n(T) \}_{n \geq 1} \) is relatively compact. In view of (4.46)
\[
(4.49) \quad \{ z_n \}_{n \geq 1} \subset e^{\lambda T} S_A(T) \{ \{ z_n \}_{n \geq 1} \} + \{ v_n(T) \}_{n \geq 1},
\]
and therefore, by the compactness of \(\{S_A(t)\}_{t \geq 0} \) we see that \(\{z_n\}_{n \geq 1} \) has convergent subsequence. Without loss of generality we may assume that \(z_n \to z_0 \) as \(n \to +\infty \) and \(z_n(x) \to z_0(x) \) for almost every \(x \in \Omega \), where \(z_0 \in X \) is such that \(\|z_0\| = 1 \). Passing to the limit in (4.46), as \(n \to +\infty \), and using (4.48), we find that \(z_0 = e^{\lambda T} S_A(T) z_0 \), hence that \(z_0 \in \ker (I - e^{\lambda T} S_A(T)) \) and finally, by condition (A3), that

\[
(4.50) \quad z_0 \in \ker (\lambda I - A) = \ker (\lambda I - A^*) .
\]

Thus Remark 3.1 (a) leads to

\[
(4.51) \quad z_0 \in \ker (I - e^{\lambda T} S_A(t)) \quad \text{for} \quad t \geq 0 .
\]

From (4.45) we deduce that

\[
\frac{1}{\|u_n\|} (w_n(t) - u_n) = e^{\lambda T} S_A(t) z_n - z_n + v_n(t) \quad \text{for} \quad t \in [0,T],
\]

which by (4.48) and (4.51) gives

\[
(4.52) \quad \frac{1}{\|u_n\|} (w_n(t) - u_n) \to 0 \quad \text{for} \quad t \in [0,T] \quad \text{as} \quad n \to +\infty .
\]

If we again take \(t := T \) in (4.45) and act with the scalar product operation \(\langle \cdot, z_0 \rangle \), we obtain

\[
\langle u_n, z_0 \rangle = \langle e^{\lambda T} S_A(T) u_n, z_0 \rangle + \varepsilon_n \int_0^T e^{\lambda(T-s)} \langle S_A(T-s) F(s,w_n(s)), z_0 \rangle \, ds .
\]

Since \(X \) is Hilbert space, by [21, Corollary 1.10.6], the family \(\{S_A(t)^*\}_{t \geq 0} \) of the adjoint operators is a \(C_0 \) semigroup on \(X \) with the generator \(-A^*\), i.e.

\[
(4.53) \quad S_A(t)^* = S_A^*(t) \quad \text{for} \quad t \geq 0 .
\]

Remark 3.1 (a) and (4.50) imply that \(z_0 \in \ker (I - e^{\lambda T} S_A^*(t)) \) for \(t \geq 0 \) and consequently, by (4.53), \(z_0 \in \ker (I - e^{\lambda T} S_A^*(t^*)) \) for \(t \geq 0 \). Thus

\[
\langle u_n, z_0 \rangle = \langle u_n, e^{\lambda T} S_A(T)^* z_0 \rangle + \varepsilon_n \int_0^T e^{\lambda(T-s)} \langle F(s,w_n(s)), S_A(T-s)^* z_0 \rangle \, ds
\]

\[
= \langle u_n, z_0 \rangle + \varepsilon_n \int_0^T \langle F(s,w_n(s)), z_0 \rangle \, ds,
\]

and therefore

\[
\int_0^T \langle F(s,w_n(s)), z_0 \rangle \, ds = 0 \quad \text{for} \quad n \geq 1 .
\]

We have further

\[
(4.54) \quad 0 = \int_0^T \int_{\Omega} f(s,x,w_n(s)(x)) z_0(x) \, dx ds
\]

\[
= \int_0^T \int_{\Omega^+} f(s,x,w_n(s)(x)) z_0(x) \, dx ds + \int_0^T \int_{\Omega^-} f(s,x,w_n(s)(x)) z_0(x) \, dx ds,
\]
where the sets Ω_+ and Ω_- are given by (4.40). Given $s \in [0, T]$, we claim that

$$\varphi_n^+(s) := \int_{\Omega_+} f(s, x, w_n(s)(x))z_0(x) \, dx \rightarrow \int_{\Omega_+} f_+(s, x)z_0(x) \, dx$$

and

$$\varphi_n^-(s) := \int_{\Omega_-} f(s, x, w_n(s)(x))z_0(x) \, dx \rightarrow \int_{\Omega_-} f_-(s, x)z_0(x) \, dx$$

as $n \to \infty$. Since the proofs of (4.55) and (4.56) are analogous, we consider only the former limit. We show that every sequence (n_k) has a subsequence (n_{k_l}) such that

$$\int_{\Omega_+} f(s, x, (h_{n_{k_l}}(s, x) + z_{n_{k_l}}(x))\|u_{n_{k_l}}\|)z_0(x) \, dx \rightarrow \int_{\Omega_+} f_+(s, x)z_0(x) \, dx$$

as $n \to +\infty$ with

$$h_n(s, x) := (w_n(s)(x) - u_n(x))/\|u_n\| \quad \text{for} \quad x \in \Omega, \quad n \geq 1.$$

Due to (4.52), one can choose a subsequence $(h_{n_{k_l}}(s, \cdot))$ of $(h_n(s, \cdot))$ such that $h_{n_{k_l}}(s, x) \to 0$ for almost every $x \in \Omega$. Hence

$$h_{n_{k_l}}(s, x) + z_{n_{k_l}}(x) \to z_0(x) > 0 \quad \text{as} \quad n \to +\infty$$

for almost every $x \in \Omega_+$ and consequently

$$f(s, x, (h_{n_{k_l}}(s, x) + z_{n_{k_l}}(x))\|u_{n_{k_l}}\|) \to f_+(s, x) \quad \text{as} \quad n \to +\infty$$

for almost every $x \in \Omega_+$. Since $z_0 \in L^2(\Omega) \subset L^1(\Omega)$ and f is bounded, from the Lebesgue dominated convergence theorem, we have the convergence (4.57) and hence (4.55). Further, for any $s \in [0, T]$ and $n \geq 1$, one has

$$|\varphi_n^+(s)| \leq \int_{\Omega_+} |f(s, x, w_n(s)(x))z_0(x)| \, dx \leq m \int_{\Omega_+} |z_0(x)| \, dx \leq m\|z_0\|_{L^1(\Omega)}.$$

and similarly

$$|\varphi_n^-(s)| \leq m\|z_0\|_{L^1(\Omega)} \quad \text{for} \quad t \in [0, T] \quad \text{and} \quad n \geq 1.$$

Since

$$\varphi_n^+(s) = \langle F(s, w_n(s)), \max(z_0, 0) \rangle \quad \text{and} \quad \varphi_n^-(s) = \langle F(s, w_n(s)), \min(z_0, 0) \rangle$$

for $s \in [0, T]$ and $n \geq 1$, functions φ_n^+ and φ_n^- are continuous on $[0, T]$. Using (4.55), (4.56), (4.60), (4.61) and the dominated convergence theorem, after passing to the limit in (4.54), we infer that

$$\int_0^T \int_{\Omega_+} f_+(s, x)z_0(x) \, dx \, ds + \int_0^T \int_{\Omega_+} f_+(s, x)z_0(x) \, dx \, ds = 0,$$

which contradicts (4.38), since $z_0 \in N_\lambda$ and $\|z_0\| = 1$ and, in consequence, proves (4.43).

By the homotopy invariance of topological degree, for any $\varepsilon \in (0, 1]$, we have

$$\deg_{LS}(I - \Psi, W) = \deg_{LS}(I - \Upsilon_T(1, \cdot), B(0, R)) = \deg_{LS}(I - \Upsilon_T(\varepsilon, \cdot), B(0, R)),$$

18
for all \(R \geq R_1 \). Since \(A \) has compact resolvents \(\text{Ker} (A^* - \lambda I)^\perp = \text{Im} (A - \lambda I) \) and therefore, by (A3), \(X \) admits the direct sum decomposition

\[
X = N_\lambda \oplus \text{Im} (A - \lambda I).
\]

Clearly the range and kernel of \(A \) are invariant under \(S_A(t) \) for \(t \geq 0 \), hence putting \(M := \text{Im} (\lambda I - A) \), condition (A2) is satisfied for \(A - \lambda I \). Moreover \(R_1 \geq R_0 \) and therefore, we also have that \(g(u) \neq 0 \) for \(u \in N_\lambda \) with \(\|u\| \geq R_1 \). Let \(W := B(0,R_1) \), \(U := W \cap N_\lambda \) and \(V := W \cap M \). Then \(g(u) \neq 0 \) for \(u \in \partial N_\lambda U \) and clearly

\[
(4.64) \quad W \subset U \oplus V.
\]

Therefore, by Theorem 3.3, there is \(\varepsilon_0 \in (0,1) \) such that, for any \(\varepsilon \in (0,\varepsilon_0] \) and \(u \in \partial(U \oplus V) \), \(\Upsilon_T(\varepsilon,u) \neq u \) and

\[
(4.65) \quad \text{deg}_\text{LS}(I - \Upsilon_T(\varepsilon, \cdot), U \oplus V) = (-1)^{\mu(\lambda) + \dim N_\lambda} \text{deg}_B(g,U),
\]

where \(\mu(\lambda) \) is the sum of algebraic multiplicities of eigenvalues of \(S_{A - \lambda I}(T) \) in \((1, +\infty)\). In view of (4.64) and the choice of the number \(R_1 > 0 \), we infer that

\[
\{ u \in U \oplus V \mid \Upsilon_T(\varepsilon_0,u) = u \} \subset W
\]

and, by the excision property,

\[
(4.66) \quad \text{deg}_\text{LS}(I - \Upsilon_T(\varepsilon_0, \cdot), U \oplus V) = \text{deg}_\text{LS}(I - \Upsilon_T(\varepsilon_0, \cdot), W).
\]

Combining (4.65) with (4.66) yields

\[
(4.67) \quad \text{deg}_\text{LS}(I - \Upsilon_T(\varepsilon_0, \cdot), W) = (-1)^{\mu(\lambda) + \dim N_\lambda} \text{deg}_B(g,U),
\]

which together with (4.63) implies

\[
(4.68) \quad \text{deg}_\text{LS}(I - \Psi_T, W) = (-1)^{\mu(\lambda) + \dim N_\lambda} \text{deg}_B(g,U)
\]

and the proof is complete. \(\square \)

The following proposition allow us to determine the Brouwer degree of the mapping \(g \).

Proposition 4.4.

(i) If condition (4.36) holds then there is \(R_0 > 0 \) such that \(g(u) \neq 0 \) for \(u \in N_\lambda \) with \(\|u\| \geq R_0 \) and
\[
\text{deg}_B(g, B(0,R)) = 1 \quad \text{for} \quad R \geq R_0.
\]

(ii) If condition (4.37) holds then there is \(R_0 > 0 \) such that \(g(u) \neq 0 \) for \(u \in N_\lambda \) with \(\|u\| \geq R_0 \) and
\[
\text{deg}_B(g, B(0,R)) = (-1)^{\dim N_\lambda} \quad \text{for} \quad R \geq R_0.
\]

Proof. (i) We begin by proving that there exists \(R_0 > 0 \) such that

\[
(4.69) \quad \langle g(u), u \rangle > 0 \quad \text{for} \quad u \in N_\lambda, \|u\| \geq R_0.
\]
Arguing by contradiction, suppose that there is a sequence \((u_n) \subset N_\lambda\) such that \(\|u_n\| \to +\infty\) as \(n \to +\infty\) and \(\langle g(u_n), u_n \rangle \leq 0\), for \(n \geq 1\). For every \(n \geq 1\), write \(z_n := u_n/\|u_n\|\).

Since \((z_n)\) is bounded and contained in the finite dimensional space \(N_\lambda\), it contains a convergent subsequence. Without loss of generality we may assume that there is \(z_0 \in N_\lambda\) with \(\|z_0\| = 1\) such that \(z_n \to z_0\) as \(n \to +\infty\) and \(z_n(x) \to z_0(x)\) as \(n \to +\infty\) for almost every \(x \in \Omega\). Recalling the notational convention (4.40), we have

\[
(4.70) \quad 0 \geq \langle g(u_n), z_n \rangle = \langle g(u_n), z_n - z_0 \rangle + \langle g(u_n), z_0 \rangle
\]

\[
= \int_0^T \int_{\Omega} f(t, x, u_n(x))z_0(x) \, dx \, dt + \langle g(u_n), z_n - z_0 \rangle
\]

\[
= \int_0^T \int_{\Omega_+} f(t, x, z_n(x)\|u_n\|)z_0(x) \, dx \, dt
\]

\[
+ \int_0^T \int_{\Omega_-} f(t, x, z_n(x)\|u_n\|)z_0(x) \, dx \, dt + \langle g(u_n), z_n - z_0 \rangle.
\]

On the other hand, if we fix \(t \in [0, T]\), then, by the condition (d), we have

\[
(4.71) \quad f(t, x, z_n(x)\|u_n\|) \to f_+(t, x) \quad \text{as} \quad n \to +\infty
\]

for almost every \(x \in \Omega_+\). Since \(f\) is assumed to be bounded, by the dominated convergence theorem, (4.71) shows that

\[
(4.72) \quad \int_{\Omega_+} f(t, x, z_n(x)\|u_n\|)z_0(x) \, dx \to \int_{\Omega_+} f_+(t, x)z_0(x) \, dx
\]

as \(n \to \infty\). Let \(\varphi_n^+ : [0, T] \to \mathbb{R}\) be given by

\[
\varphi_n^+(t) := \int_{\Omega_+} f(t, x, z_n(x)\|u_n\|)z_0(x) \, dx = (F(t, u_n), \max(z_0, 0))
\]

for \(t \in [0, T]\). The function \(\varphi_n^+\) is evidently continuous and \(|\varphi_n^+(t)| \leq m\|z_0\|_{L^1(\Omega)}\) for \(t \in [0, T]\). Applying (4.72) and the dominated convergence theorem, we find that

\[
(4.73) \quad \int_0^T \int_{\Omega_+} f(t, x, z_n(x)\|u_n\|)z_0(x) \, dx \, dt \to \int_0^T \int_{\Omega_+} f_+(t, x) \, dx \, dt,
\]

as \(n \to +\infty\). Proceeding in the same way, we infer that

\[
(4.74) \quad \int_0^T \int_{\Omega_-} f(t, x, z_n(x)\|u_n\|)z_0(x) \, dx \, dt \to \int_0^T \int_{\Omega_-} f_-(t, x) \, dx \, dt,
\]

as \(n \to +\infty\). Since the sequence \((g(u_n))\) is bounded, we see that

\[
(4.75) \quad |\langle g(u_n), z_n - z_0 \rangle| \leq \|g(u_n)\|\|z_n - z_0\| \to 0 \quad \text{as} \quad n \to +\infty.
\]

By (4.73), (4.74), (4.75), letting \(n \to +\infty\) in (4.70), we assert that

\[
\int_0^T \int_{\Omega_+} f_+(t, x)z_0(x) \, dx \, dt + \int_0^T \int_{\Omega_-} f_-(t, x)z_0(x) \, dx \, dt \leq 0,
\]

as \(n \to +\infty\).
contrary to (4.36).
Now, for any $R > R_0$, the mapping $H : [0, 1] \times N_\lambda \to N_\lambda$ given by
\[H(s, u) := sg(u) + (1 - s)u \quad \text{for} \quad u \in N_\lambda, \]
has no zeros for $s \in [0, 1]$ and $u \in N_\lambda$ with $\|u\| = R$. If it were not true, then there would
be $H(s, u) = 0$, for some $s \in [0, 1]$ and $u \in N_\lambda$ with $\|u\| = R$, and in consequence,
\[0 = \langle H(s, u), u \rangle = s\langle g(u), u \rangle + (1 - s)\langle u, u \rangle. \]
If $s = 0$ then $0 = \|u\|^2 = R^2$, which is impossible. If $s \in (0, 1]$, then $0 \geq \langle g(u), u \rangle$, which
contradicts (4.69). By the homotopy invariance of the topological degree
\[\deg_B(g, B(0, R)) = \deg_B(H(1, \cdot), B(0, R)) = \deg_B(H(0, \cdot), B(0, R)) = \deg_B(I, B(0, R)) = 1, \]
and the proof of (i) is complete.

(ii) Proceeding by analogy to (i), we obtain the existence of $R_0 > 0$ such that
\[\langle g(u), u \rangle < 0 \quad \text{for} \quad \|u\| \geq R_0. \]
This implies, that for every $R > R_0$, the homotopy $H : [0, 1] \times N_\lambda \to N_\lambda$ given by
\[H(s, u) := sg(u) - (1 - s)u \quad \text{for} \quad u \in N_\lambda \]
is such that $H(s, u) \neq 0$ for $s \in [0, 1]$ and $u \in N_\lambda$ with $\|u\| = R$. Indeed, if $H(s, u) = 0$ for
some $s \in [0, 1]$ and $u \in N_\lambda$ with $\|u\| = R$, then
\[0 = \langle H(s, u), u \rangle = s\langle g(u), u \rangle - (1 - s)\langle u, u \rangle. \]
Hence, if $s \in (0, 1]$, then $\langle g(u), u \rangle \geq 0$, contrary to (4.76). If $s = 0$, then $R^2 = \|u\|^2 = 0,$
and again a contradiction. In consequence, by the homotopy invariance,
\[\deg_B(g, B(0, R)) = \deg_B(-I, B(0, R)) = (-1)^{\dim N_\lambda}, \]
as desired. □

Proof Theorem 4.1. Theorem 4.2 asserts that there is an open bounded set $W \subset X$
such that $\Psi_T(u) \neq u$ for $u \in X \setminus W$, $g(u) \neq 0$ for $u \in N_\lambda \setminus (W \cap N_\lambda)$ and
\[\deg_{\operatorname{LS}}(I - \Psi_T, W) = (-1)^{\mu(\lambda) + \dim N_\lambda} \deg_B(g, W \cap N_\lambda). \]
In view of Proposition 4.4, we obtain, the existence of $R > 0$ such that $W \subset B(0, R)$
and either $\deg(g, B(0, R) \cap N_\lambda) = 1$, when (4.36) is satisfied or $\deg(g, B(0, R) \cap N_\lambda) = (-1)^{\dim N_\lambda}$, in the case of condition (4.37). By the inclusion $\{u \in B(0, R) \cap N_\lambda \mid g(u) = 0\} \subset W \cap N_\lambda$ and (4.77) we infer that
\[\deg_{\operatorname{LS}}(I - \Psi_T, W) = (-1)^{\mu(\lambda) + \dim N_\lambda} \deg_B(g, W \cap N_\lambda) \]
\[= (-1)^{\mu(\lambda) + \dim N_\lambda} \deg(g, B(0, R) \cap N_\lambda) = \pm 1. \]
Thus, by the existence property of the topological degree, we find that there is a fixed
point of Ψ_T and in consequence a T-periodic mild solution of (4.34). □
In the particular case when the linear operator A is self-adjoint and $-A$ is a generator of a compact C_0 semigroup $\{S_A(t)\}_{t \geq 0}$ of bounded linear operators on X, the spectrum $\sigma(A)$ is real and consists of eigenvalues $\lambda_1 < \lambda_2 < \lambda_3 < \ldots < \lambda_k < \ldots$ (not counting the multiplicities) which form a sequence convergent to infinity. By Proposition 2.5, for every $t > 0$, $\{e^{-\lambda_k t}\}_{k \geq 1}$ is the sequence of nonzero eigenvalues of $S_A(t)$ and

$$
(4.78) \quad \text{Ker} (\lambda_k I - A) = \text{Ker} (e^{-\lambda_k t} I - S_A(t)) \quad \text{for} \quad k \geq 1.
$$

In consequence, we see that (A3) holds.

Corollary 4.5. Let A be a self-adjoint operator such that $-A$ is a generator of a compact C_0 semigroup $\{S_A(t)\}_{t \geq 0}$ and let $f : [0, +\infty) \times \Omega \times \mathbb{R} \to \mathbb{R}$ satisfy the Landesman–Lazer type condition (4.38). If $\lambda = \lambda_k$ for some $k \geq 1$, then there is a bounded open set $W \subset X$ such that $\Psi_T(u) \neq u$ for $u \in X \setminus W$, $g(u) \neq 0$ for $u \in N_{\lambda_k} \setminus (W \cap N_{\lambda_k})$ and

$$
(4.79) \quad \text{deg}_{LS}(I - \Psi_T, W) = (-1)^{d_k} \text{deg}_B(g, W \cap N_{\lambda_k}),
$$

where $d_k := \sum_{i=1}^{k-1} \dim \text{Ker} (\lambda_i I - A)$ for $k \geq 1$. In particular, if either condition (4.36) or (4.37) is satisfied then (4.34) has mild solution.

Proof. To see (4.79), it is enough to check that $d_k = \mu(\lambda_k) + \dim N_{\lambda_k}$ for $k \geq 1$. Since

$$
e (\lambda_k - \lambda_1) T > e (\lambda_k - \lambda_2) T > \ldots > e (\lambda_k - \lambda_{k-1}) T
$$

are eigenvalues of $e^{\lambda_k T} S_A(T)$ which are greater than 1, for $k = 1$ it is evident that $\mu(\lambda_k) = 0$ and $d_1 = \mu(\lambda_k) + \dim N_{\lambda_k}$. The operator $S_A(T)$ is also self-adjoint and therefore the geometric and the algebraic multiplicity of each eigenvalue coincide. Hence

$$
(4.80) \quad \mu(\lambda_k) = \sum_{i=1}^{k-1} \dim \text{Ker} (e^{-\lambda_i T} I - S_A(T)) \quad \text{for} \quad k \geq 2.
$$

From (4.78) and (4.80), we deduce that

$$
\mu(\lambda_k) = \sum_{i=1}^{k-1} \dim \text{Ker} (\lambda_i I - A) = d_k - \dim N_{\lambda_k}
$$

and finally that $d_k = \mu(\lambda_k) + \dim N_{\lambda_k}$ for every $k \geq 1$, as desired. The formula (4.79) together with Proposition 4.4 leads to existence of mild solution of (4.34) in the case when condition (4.36) or (4.37) is satisfied. \(\square\)

5 Applications

Let $\Omega \subset \mathbb{R}^n$, $n \geq 1$, be an open bounded connected set with C^1 boundary. We recall that $\| \cdot \|$ and $\langle \cdot, \cdot \rangle$ denote, similarly as before, the norm and the scalar product on $X = L^2(\Omega)$, respectively. For $u \in H^1(\Omega)$, we will denote by $D_k u$, the k-th weak derivative of u.

22
We begin with the \(T\)-periodic parabolic problem

\[
\begin{aligned}
\frac{\partial u}{\partial t} &= \Delta u + \varepsilon f(t, x, u) \quad \text{in} \quad (0, +\infty) \times \Omega \\
\frac{\partial u}{\partial n}(t, x) &= 0 \quad \text{on} \quad [0, +\infty) \times \partial \Omega \\
u(t, x) &= u(t + T, x) \quad \text{in} \quad [0, +\infty) \times \Omega,
\end{aligned}
\]

where \(\varepsilon \in [0, 1]\) is a parameter and \(f : [0, +\infty) \times \Omega \times \mathbb{R} \to \mathbb{R}\) is a continuous mapping which is required to satisfy conditions (a), (b) and (c) from the previous section. We put (5.81) into an abstract setting. To this end let \(A : D(A) \to X\) be a linear operator such that \(-A\) is the Laplacian with the Neumann boundary conditions, i.e.

\[
D(A) := \left\{ u \in H^1(\Omega) \mid \text{there is } g \in L^2(\Omega) \text{ such that } \int_{\Omega} \nabla u \nabla h \, dx = \int_{\Omega} gh \, dx \text{ for } h \in H^1(\Omega) \right\},
\]

\(Au := g\), where \(g\) is as above,

and define \(F : [0, +\infty) \times X \to X\) to be a mapping given by the formula

\[
F(t, u)(x) := f(t, x, u(x)) \quad \text{for} \quad t \in [0, +\infty), \quad x \in \Omega.
\]

Then by the assumptions (a) and (b), it is well defined, continuous, bounded and Lipschitz uniformly with respect to time. Problem (5.81) may be considered in the abstract form

\[
\begin{aligned}
\dot{u}(t) &= -Au(t) + \varepsilon F(t, u(t)), \quad t > 0 \\
u(t) &= u(t + T) \quad t \geq 0
\end{aligned}
\]

where \(\varepsilon \in [0, 1]\) is a parameter. Solutions of (5.81) will be understandable as mild solutions of (5.83).

Theorem 5.1. Let \(g_0 : \mathbb{R} \to \mathbb{R}\) be given by

\[
g_0(y) := \int_0^T \int_{\Omega} f(t, x, y) \, dx \, dt \quad \text{for} \quad y \in \mathbb{R}.
\]

If real numbers \(a\) and \(b\) are such that \(a < b\) and \(g_0(a) \cdot g_0(b) < 0\), then there is \(\varepsilon_0 > 0\) such that for \(\varepsilon \in (0, \varepsilon_0]\), the problem (5.81) admits a solution.

Proof. Since the spectrum of \(A\) is real, condition (A1) is satisfied as a consequence of Remark 3.1. It is known that \(-A\) generates a compact \(C_0\) semigroup on \(X\), \(N := \text{Ker} \, A\) is a one dimensional space. If we take \(M := \text{Im} \, A\), then \(M = N^\perp\) and hence \(A\) satisfies also condition (A2). Let \(P : X \to X\) be the orthogonal projection onto \(N\) given by

\[
P(u) := \frac{1}{\nu(\Omega)} (u, e) \cdot e \quad \text{for} \quad u \in X
\]
where \(e \in L^2(\Omega) \) represents the constant equal to 1 function and \(\nu \) stands for the Lebesgue measure. Set \(U := \{ s \cdot e \mid s \in (a,b) \} \), \(V := \{ u \in N^\perp \mid \|u\| < 1 \} \) and let \(g : N \to N \) be defined by
\[
g(u) := \int_0^T P F(t,u) \, dt \quad \text{for} \quad u \in N.
\]
Then
\[
g_0(y) = \nu(\Omega) \cdot K^{-1}(g(K(y))) \quad \text{for} \quad y \in \mathbb{R},
\]
where \(K : \mathbb{R} \to N \) is the linear homeomorphism given by \(K(y) := y \cdot e \). Since \(g_0(a) \cdot g_0(b) < 0 \), we have \(\deg_B(g,U) = \deg_B(g_0,(a,b)) \neq 0 \) and hence, by Corollary 3.4, there is \(\varepsilon_0 \in (0,1) \) such that, for \(\varepsilon \in (0,\varepsilon_0] \), problem (5.81) admits a solution as desired. \(\square \)

Uniformly elliptic differential operator with the Dirichlet boundary conditions

Suppose that \(a_{ij} = a_{ji} \in C^1(\Omega) \) for \(1 \leq i, j \leq n \) and let \(\theta > 0 \) be such that
\[
a_{ij}(x)\xi_i\xi_j \geq \theta|\xi|^2 \quad \text{for} \quad \xi = (\xi_1, \xi_2, \ldots, \xi_n) \in \mathbb{R}^n, \quad x \in \Omega.
\]
We assume that \(A : D(A) \to X \) is a linear operator given by the formula
\[
D(A) := \left\{ u \in H^1_0(\Omega) \mid \text{there is } g \in L^2(\Omega) \text{ such that} \int_{\Omega} a_{ij}(x)D_iu D_jh \, dx = \int_{\Omega} gh \, dx \text{ for } h \in H^1_0(\Omega) \right\},
\]
\[
Au := g, \quad \text{where } g \text{ is as above.}
\]
It is well known that \(-A\) is self-adjoint and generates a compact \(C_0 \) semigroup on \(X = L^2(\Omega) \). Let \(\lambda_1 < \lambda_2 < \ldots < \lambda_k < \ldots \) be the sequence of eigenvalues of \(A \) (not counting the multiplicities). We are concerned with a periodic parabolic problem of the form
\[
\begin{aligned}
\frac{\partial u}{\partial t}(t,x) &= -D_i(a_{ij} D_j u) + \lambda_k u + f(t, x, u) \quad \text{in } (0, +\infty) \times \Omega \\
u(t, x) &= 0 \quad \text{on } [0, +\infty) \times \partial \Omega \\
u(t, x) &= u(t + T, x) \quad \text{in } [0, +\infty) \times \Omega,
\end{aligned}
\]
where \(\lambda_k \) is \(k \)-th eigenvalue of \(A \) and \(f : [0, +\infty) \times \Omega \times \mathbb{R} \to \mathbb{R} \) is as above. We write problem (5.84) in the abstract form
\[
\begin{aligned}
\dot{u}(t) &= -Au(t) + \lambda_k u(t) + F(t, u(t)), \quad t > 0 \\
u(t) &= u(t + T) \quad t \geq 0
\end{aligned}
\]
where \(F : [0, +\infty) \times X \to X \) is given by the formula (5.82). An immediate consequence of Corollary 4.5 is the following

Theorem 5.2. Suppose that \(f : [0, +\infty) \times \Omega \times \mathbb{R} \to \mathbb{R} \) is such that:
\[
\int_0^T \int_{\{u > 0\}} f_+(t,x)u(x) \, dx \, dt + \int_0^T \int_{\{u < 0\}} f_-(t,x)u(x) \, dx \, dt > 0,
\]
for any \(u \in \ker A \) with \(\|u\| = 1 \), or
\[
\int_0^T \int_{\{u > 0\}} f_+(t,x)u(x) \, dx \, dt + \int_0^T \int_{\{u < 0\}} f_-(t,x)u(x) \, dx \, dt < 0,
\]
for any \(u \in \ker A \) with \(\|u\| = 1 \). Then the problem (5.84) admits a \(T \)-periodic mild solution.
Acknowledgements. The author wishes to thank Prof. Wojciech Kryszewski and Dr. A. Ćwiszewski for helpful comments and suggestions, which raised the quality of this work.

References

