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Chapter 1

Introduction

This dissertation gathers the results obtained by the author is his four years long
research in variational methods. During that time, three main aspects were investi-
gated: existence of a solution of an equation, existence of a solution of an inclusion
and existence of multiple solutions. Although the problems di�er in many ways,
the common requirement shall be homogeneous Dirichlet boundary conditions1. This
dissertation has two main goals.

The �rst goal is to prove the existence of multiple solutions for di�erent types of
p-Laplace nonlinear eigenvalue problems. The author proved that the extensions of
the famous Ricceri three critical point theorem are very useful for the types of prob-
lems involving multiple nonlinear terms. The nonlinear eigenvalue problems involving
the p-Laplace operator were widely studied in recent years by Filipucci�Pucci�Robert
[26], Kristaly�Varga [41], Cuesta, Cuesta�Quoirin [19, 20], and Molica Bisci with
co-authors [21, 25].

The second goal of this dissertation is the existence result obtained by a mixed
variational and �xed point approach for Du�ng type problems. This type of problems
is well known and often considered in context of control problems. Thus, not only
the existence for that type of problems is required, but also uniqueness and continuous
dependence on a control parameter. The variational methods applied in this research
use extensively the unique solution existence, The author decided to present this
approach to show its versatility - it turns out to work well for both the case of equations
and inclusions, for di�erent types of boundary conditions and even for PDEs. Such
problems were investigated by Amster and co-authors [3, 4], Galewski [27], Tomiczek
[62] and recently also Andres�Mach· [5] studied the similar type of problems governed
by inclusions. Also Candito�Carl�Livrea [15] stressed that this mixed variational-�xed
point approach cannot be considered as equivalent to the approach using the pure
pseudomonotone operators theory.

The dissertation is structured in the following way. In Chapter 2 we recall some
basic notation and de�nitions, and many important results from the theory of varia-
tional methods and functional analysis. The main theories presented there include

• Theory of monotone operators.

• Variational methods.

• Calculus of Clarke subdi�erentials.

• Fixed point theorems.
1Except for the last problem.
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The further sections in this chapter concern the results on multiplicity of critical
points. The author presents some results by Ricceri, see [56, 57, 58], that are a main
tool for the problems considered in Chapter 3. The last sections show some results in
the area of multiplicity obtained by the author and his co-authors.

In Chapter 3 we consider two nonlinear eigenvalue problems for the p-Laplace
operator. For both problems we prove the results on the existence of multiple critical
points. The main tool are the extensions of mountain pass theorem - the Ricceri type
three critical point theorems.

In Chapter 4 the author presents his results on the existence of a solution of
a Du�ng type di�erential equation with homogeneous Dirichlet boundary condition.
The results were obtained using the mixed approach. First, we prove the existence
of an auxiliary problem derived from the Du�ng equation. This auxiliary problem is
always a variational problem. Using the direct method, the existence of a solution is
proved. This de�nes an operator which has a �xed point � the solution of the problem.
We also prove the continuous dependence on the control parameter for this problem.

In Chapter 5 the concept from Chapter 4 is relaxed and applied to a Du�ng
type di�erential inclusion. The problem is relaxed in a way that the Banach �xed
point theorem is replaced with the Kakutani�Fan�Glicksberg theorem and a cut-o�
argument. Since the presented approach turned out e�cient, the second problem
was also investigated with the multivalued term placed in the boundary condition,
namely the generalized Robin boundary condition. Using the very similar approach
the existence of a solution of such problem was obtained.
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Chapter 2

Nonlinear Dirichlet BVP

toolbox

This chapter is organized in the following way. In the �rst section we introduce
the notation that shall hold throughout the dissertation. The notation shall cover
some basic symbols of well known Banach and Hilbert spaces and operations that
are de�ned on them. In this section we shall also recall some important subclasses of
Banach spaces, and their properties. In the second section we recall some de�nitions
and theorems from operator theory, namely the ones that are related to variational
methods. The section is concluded by the outline of the theory of monotone operators
which is related with the critical point theory for convex functionals.

The third and fourth sections are devoted to some mathematical tools and de�ni-
tions concerning variational (Section 2.3) and hemivariational (Section 2.4) calculus.
In Section 2.3 we recall some basic concepts of continuity and compactness in Banach
spaces. The section is concluded by some variational theorems useful for proving
the existence of a critical point, such as the mountain pass theorem. In Section 2.4
we recall the concept of generalized derivative in the sense of Clarke. The section
is concluded with some results concerning the closedness of a graph of a multivalued
operator. Some of those results where formulated by the author and his collaborators.

In Section 2.5 the collection of most applicable �xed point theorems is presented.
The section starts with the classical Banach theorem and its more recent extensions.
The section is concluded with a �xed point theorem for multivalued operators.

In Section 2.6, some multiplicity results are presented. The results are related to
the famous Ricceri three critical point theorem and its extensions. The �nal subsection
presents some author's results in this area, namely the comparison type three critical
point lemma.

The last section shall present the theorems which use the variational methods in
order to obtain a multiple critical point result for some problems.

2.1 Banach and Sobolev spaces

The purpose of this section is to recall some important notions from the theory of
Banach spaces. Whenever X appears it is referred to a general Banach space, while
H is referred to a general Hilbert space. X∗ denotes the space of all linear and contin-
uous real-valued functionals de�ned on X. We distinguish three classical topologies,
strong, weak, and weak-* one. We shall denote the convergences in those topologies as
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follows: by→ the strong convergence, by⇀ the weak convergence and by ∗⇀ a weak-*
convergence. In order to avoid misunderstanding, the symbol is usually followed by an
exact description of chosen topology. By the symbol 〈·; ·〉 we understand the duality
pairing. The �rst argument is the functional and the second one is the function. In
cases where it is not clear from the context, the spaces from which the function and
the functional are taken are written in the lower index. Similar, in case of in�nite
dimensional Hilbert spaces the symbol (·; ·) denotes the scalar product. In case of Rn,
which is a �nite dimensional Hilbert space, we would just use · instead. The symbol
‖·‖X always denotes the norm on a Banach space X.

The Banach spaces are the most important subclass of locally convex topological
vector spaces.

De�nition 2.1.1 ([59, De�nition 1.8] Locally convex space). A topological vector
space X is a locally convex space if there exists a basis of neighbourhoods of zero
consisting of convex sets.

We consider the following subclasses of Banach spaces.

De�nition 2.1.2 ([12, Section 3.5] Re�exive space). Let X be a Banach space and
J : X→ X∗∗ be the canonical injection from X to X∗∗. If J is surjective then the space
X is called re�exive.

De�nition 2.1.3 ([12, Exercise 1.26] Strictly convex space). A Banach space X is
strictly convex if for any λ ∈ (0, 1) and x, y ∈ X such that x 6= y and ‖x‖ = ‖y‖ = 1
we have

‖λx+ (1− λ)y‖ < 1.

De�nition 2.1.4 ([23, De�nition 1] Locally uniformly convex space). The space X
shall be called locally uniformly convex if from ‖x‖ = ‖xn‖ = 1 and ‖xn + x‖ → 2
with n→∞, it follows that xn → x strongly in X.

De�nition 2.1.5 ([18] Uniformly convex spaces). A Banach space X is uniformly
convex if to each ε, 0 < ε ≤ 2, there corresponds δ(ε) > 0 such that

‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε,

imply ∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ(ε).

In the article [18] Clarkson presented a way to obtain uniformly convex spaces by
the Cartesian product of uniformly convex spaces.

De�nition 2.1.6 ([18] Uniformly convex product). Let N : Rk+ → R+, where R+ = [0,+∞).
We say that N is

(i) Positively homogeneous, if for c ≥ 0

N(ca1, ca2, · · · , cak) = cN(a1, a2, · · · , ak).

(ii) Strictly convex, if

N(a1 + b1, a2 + b2, · · · , ak + bk) < N(a1, a2, · · · , ak) +N(b1, b2, · · · , bk)

unless ai = cbi (i = 1, 2, · · · , k) for c > 0. In the latter case we have
equality if N is additionally positively homogeneous.
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(iii) Strictly increasing, if it is strictly increasing in each variable separately.

Suppose now that a �nite number of Banach spaces B1, B2, · · · , Bk are given, and
that B is their product. We shall call B a uniformly convex product of Bi if the norm
of an element x = (x1, x2, · · · , xk) of B is de�ned by

‖x‖ = N(
∥∥x1
∥∥ ,∥∥x2

∥∥ , · · · ,∥∥xk∥∥),

where N is a continuous non-negative function satisfying the conditions (i)-(iii).

Example 2.1.7. A simple example of a function N satisfying these conditions is
N : Rk → R given by the formula

N(a1, . . . , ak) =

(
k∑
i=1

api

) 1
p

(p > 1).

Here condition (ii) becomes the Minkowski inequality. This example is used later in
Section 3.2.

Theorem 2.1.8 ([18] Clarkson theorem). The uniformly convex product of a �nite
number of uniformly convex Banach spaces is a uniformly convex Banach space.

Theorem 2.1.9 ([23, Theorem 2]). The following implications hold

(i) If X is a Hilbert space then it is a uniformly convex Banach space with
the norm generated by the scalar product.

(ii) If X is a uniformly convex Banach space then it is a locally uniformly
convex Banach space.

(iii) If X is a locally uniformly convex Banach space then it is a strictly convex
Banach space.

Theorem 2.1.10 ([23, Theorem 3] Pettis�Milman theorem). If X is a uniformly
convex Banach space then it is a re�exive Banach space.

To denote some more relations between Banach spaces we shall require the concept
of embedding.

De�nition 2.1.11 ([1] Embeddings). We say that the Banach space X is continuously
embedded in the Banach space Y, and we write that X ↪→ Y provided that

(i) X is a subspace of Y.

(ii) The identity operator I from X into Y denoted by Ix = x for all x ∈ X
is continuous.

If I is a compact operator we shall say that X is compactly embedded in Y, denoted
as X ⊂⊂ Y.

De�nition 2.1.12 ([1, Section 1.26,2.3]). Let Ω ⊂ Rn. We use the following symbols
to denote certain well known and relevant Banach spaces.

C (Ω) - a topological vector space of continuous functions on Ω, if Ω is compact then
C (Ω) is a Banach space with the norm ‖u‖C(Ω) = sup

x∈Ω
|u(x)|.
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Cp (Ω) - a topological vector space of all functions φ which, together with all their
partial derivatives Dα φ of order |α| ≤ m, are continuous on Ω. We note that if
Ω is a compact set then Cp (Ω) is a Banach space with the norm

‖φ‖Cp(Ω) = max
0≤|α|≤m

sup
x∈Ω
|Dα φ(x)|.

By the symbol Cp0 (Ω) we shall denote a subspace consisting of functions with
compact support in Ω.

C∞ (Ω) - a vector space of smooth functions de�ned as C∞ (Ω) =
∞⋂
m=0

Cm (Ω). If

Ω is compact then this space is a Banach space equipped with the following norm

‖φ‖C∞(Ω) = max
0≤|α|

sup
x∈Ω
|Dα φ(x)|.

By the symbol C∞0 (Ω) we shall denote a subspace consisting of function with
compact support in Ω.

Lp (Ω) - space of p-power integrable functions on Ω given up to a Lebesgue null set,

L1
loc (Ω) - space of locally integrable functions, namely f ∈ L1

loc (Ω) if and only if for
every K ⊂ Ω with K compact f |K ∈ L1 (K).

We shall also require symbols for weighted versions of some of the above spaces.
In that case we shall place the weight function before the semicolon, e.g., for weighted
Lp space with the weight w : Ω→ R we shall use the notation Lp (w(x); Ω).

We shall recall the concept of di�erential, that we require to properly introduce
Sobolev spaces.

De�nition 2.1.13 ([1, Section 1.2] Di�erential). Assume that α = (α1, α2, . . . , αn)
is a n-tuple of nonnegative integers. α shall be called a multi-index. If Dj = d

dxj
, then

Dα = Dα1
1 · · ·D

αn
n

denotes a di�erential of order |α|.

De�nition 2.1.14 ([1, Section 1.56] Test functions and Schwartz distribution spaces).
Let Ω ⊂ Rn. A sequence (ui)i∈N of functions belonging to C∞0 (Ω) is said to converge
in the sense of space D (Ω) to the function u ∈ C∞0 (Ω) provided that the following
assertions are satis�ed

(i) There exists a compact set K ⊂ Ω such that supp(uj−u) ⊂ K for every j.

(ii) lim
j→∞

Dα uj(x) = Dα u(x) uniformly on K for each multi-index α.

There exists a locally convex topology on the vector space C∞0 (Ω) with respect to
which a linear functional J is continuous if and only if J(uj)→ J(u) in R whenever
uj → u in the sense of space D (Ω). Equipped with this topology, the space C∞0 (Ω)
becomes a topological vector space called D (Ω) whose elements are called test func-
tions. The dual space D ’ (Ω) of D (Ω) is called the space of Schwartz distributions on
Ω. The space D ’ (Ω) with the weak star topology is a locally convex topological vector
space.
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We observe that for any u ∈ L1
loc (Ω) we can easily generate a distribution using

the following formula

Tu(v) =

∫
Ω

u(x)v(x)dx, v ∈ D (Ω) .

It follows easily that such de�nition guarantees that Tu ∈ D ’ (Ω).

De�nition 2.1.15 ([1, Section 1.60,1.62] Derivatives of distributions and weak deriva-
tives). Let Ω ⊂ Rn,N 3 n. Assume T ∈ D ’ (Ω) and α to be a n-tuple multi-index.
We de�ne the derivative of the distribution T in the following way

〈Dα T ; v〉 = (−1)|α| 〈T ; Dα v〉 , v ∈ D (Ω) .

Now we de�ne the concept of the weak derivative of a function. Assume u ∈ L1
loc (Ω).

There may exist a function vα ∈ L1
loc (Ω) such that

Tvα = Dα Tu,

in D ’ (Ω). If such function exists, it is unique up to a Lebesgue null set and thus it
shall be called a weak (distributional) partial derivative of u and shall be denoted by
Dα u.

If the function u has a partial derivative then its partial derivative and weak
derivative of the same multi-index are equal up to Lebesgue null set.

We introduce the following notion of Sobolev spaces that shall be considered in
this dissertation.

De�nition 2.1.16 ([1, Section 1.26, Section 2.3]). Let Ω ⊂ Rn. We use the following
symbols to denote certain well known and relevant Sobolev spaces.

Wk,p (Ω) - is a Banach space of functions which belong to Lp (Ω) and moreover all
their weak derivatives up to order k are also Lp (Ω) integrable, namely

Wk,p (Ω) =

u ∈ Lp (Ω) :
∑

0≤|α|≤k

‖Dα u‖pLp(Ω) <∞

 ,

in case that 1 ≤ p <∞, and

Wk,∞ (Ω) =

{
u ∈ L∞ (Ω) : max

0≤|α|≤k
‖Dα u‖L∞(Ω) <∞

}
.

The space is endowed with the following norm called the Sobolev norm

‖u‖Wk,p(Ω) =

 ∑
0≤|α|≤k

‖Dα u‖pLp(Ω)

 1
p

,

‖u‖Wk,∞(Ω) = max
0≤|α|≤k

‖Dα u‖L∞(Ω) .

Wk,p
0 (Ω) - a Banach space de�ned as a closure of C∞0 (Ω) in the space Wk,p (Ω).

Wk,p′

0 (Ω) - denotes a dual space to Wk,p
0 (Ω).
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Hk (Ω) - a Hilbert space equal to Wk,2 (Ω).

Hk
0 (Ω) - a Hilbert space equal to Wk,2

0 (Ω).

H−k (Ω) - denotes a dual space to Hk
0 (Ω).

Usually we shall assume that Ω is bounded, open (we shall use the term domain
for a bounded, connected and open subset of Rn) and it has Lipschitz boundary but
this not necessarily covers all the cases.

We recall two well known facts, whose proofs can be found in [37]. Both of them
are known consequences of the Hölder inequality.

Lemma 2.1.17. Let 1 ≤ p < q, u ∈ Lq (0, 1) , f ∈ L
q
q−p (0, 1). Then

1∫
0

|u(t)|p|f(t)| dt ≤ ‖u‖pLq(0,1) ‖f‖L
q
q−p (0,1)

.

Lemma 2.1.18. Let 1 ≤ p < q and u ∈ Lq (0, 1). Then

‖u‖Lp(0,1) ≤ ‖u‖Lq(0,1) .

Similar inequality can be proved for other bounded domains. It has a form of
‖x‖Lp(Ω) ≤ CΩ ‖x‖Lq(Ω), where the right hand side is multiplied by CΩ, a positive
constant depending on the domain and p, q. Thus, the following lemma can be for-
mulated.

Lemma 2.1.19. Let Ω be a bounded domain. Then for 1 ≤ p ≤ q < +∞ we have
that

Lq (Ω) ↪→ Lp (Ω) .

Theorem 2.1.20 ([54, Theorem 6.18]). Let u be a Lebesgue integrable function de-
�ned on a bounded domain Ω. If for every p ∈ [1,∞), u ∈ Lp (Ω) and

sup
1≤p<∞

‖u‖Lp(Ω) <∞,

then u ∈ L∞ (Ω) and
‖u‖L∞(Ω) = lim

p→∞
‖u‖Lp(Ω) .

2.1.1 Continuous and compact embeddings of Sobolev spaces

In this dissertation we consider only boundary value problems for bounded domains,
and hence the domains of our solutions are always bounded subsets of Rn. Thus,
the presented embeddings concern only such domains.

Theorem 2.1.21 ([1, Theorem 6.30] Poincaré lemma). If domain Ω ⊂ Rn is bounded,
then there exists a constant K dependent only on Ω and p, such that for all u ∈ C∞0 (Ω)

‖u‖Lp(Ω) ≤ K ‖∇u‖Lp(Ω;Rn) .

If we set Ω = (0, 1), we know the exact value of the optimal constant. Within
this dissertation we are interested mostly in the one-dimensional case. Without loss
of generality we reduce our analysis into interval (0, 1). We consider homogeneous
Dirichlet boundary condition either on both ends or only on one end of interval. For
other bounded intervals on a real line, the following inequalities shall only di�er in
constants.
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Theorem 2.1.22. For all u ∈ H1
0 (0, 1) we have the following inequality

‖u‖L2(0,1) ≤
1

π

∥∥∥∥ d

dt
u

∥∥∥∥
L2(0,1)

.

Due to the above inequality, the functional H1
0 (0, 1) 3 u 7→

∥∥ d
dtu
∥∥

L2(0,1)
de�nes

a norm equivalent to the Sobolev one. Thus, whenever we shall refer to the norm of
H1

0 (0, 1) we will understand that ‖u‖H1
0(0,1) =

∥∥ d
dtu
∥∥

L2(0,1)
.

We note that the constant, which is equal to inverse of a square root of the �rst
eigenvalue of the operator −d2u(t)

dt2 on H1
0 (0, 1), is optimal (indeed, the associated

eigenfunction is equal to sin(πt)).
We estimate the Poincaré constant in V1 (0, 1) =

{
u ∈ H1 (0, 1) : u(0) = 0

}
.

Theorem 2.1.23 (A version of Poincaré lemma). For all x ∈ V1 (0, 1) we have
the following inequality

‖u‖L2(0,1) ≤
2

π
‖u‖V1(0,1) .

Moreover the constant is optimal.

Proof. Indeed. Let x ∈ V1 (0, 1). We consider a function y given by the following
formula

y(t) =

{
x(2t) for t ∈ [0, 1

2 ]
x(2− 2t) for t ∈ ( 1

2 , 1].

It is an easy observation that such y ∈ H1
0 (0, 1). Those elements satisfy the following

relations

‖y‖2L2(0,1) =

1∫
0

y(t)2 dt =

1
2∫

0

x(2t)2 dt+

1∫
1
2

x(2− 2t)2 dt

=
1

2

1∫
0

x(t)2 dt+
1

2

1∫
0

x(t)2 dt = ‖x‖2L2(0,1) ,

and

‖y‖2H1
0(0,1) =

1∫
0

(
d

dt
y(t)

)2

dt =

1
2∫

0

4

(
d

dt
x(2t)

)2

dt+

1∫
1
2

4

(
d

dt
x(2− 2t)

)2

dt

= 4
1

2

1∫
0

(
d

dt
x(t))

)2

dt+
1

2

1∫
0

(
d

dt
x(t))

)2

dt = 4 ‖x‖2V1(0,1) .

Since
‖y‖L2(0,1) ≤

1

π
‖y‖H1

0(0,1) ,

we obtain
‖x‖L2(0,1) ≤

2

π
‖x‖V1(0,1) .

Moreover the constant is optimal since for x = sin(π2 t) inequality becomes equality.

13



It follows that

Corollary 2.1.24. We have H1
0 (0, 1) ↪→ L2 (0, 1) and V1 (0, 1) ↪→ L2 (0, 1) with both

embeddings being compact.

The compactness in the above result follows by the classical Rellich theorem.

Lemma 2.1.25 ([12, Proposition 8.13] Sobolev type inequality). Let u ∈ H1
0 (0, 1).

Then

‖u‖C([0,1]) ≤
∥∥∥∥du

dt

∥∥∥∥
L2(0,1)

.

Theorem 2.1.26 ([1, Theorem 6.3] Rellich�Kondrachov theorem). Let Ω ⊂ Rn be
a domain, and let 1 ≤ p < n. Set p∗ = np

n−p . Then the Sobolev space W1,p
0 (Ω) is con-

tinuously embedded in Lp
∗

(Ω) and compactly embedded in Lq (Ω), where 1 ≤ q < p∗.
Explicitly

W1,p
0 (Ω) ↪→ Lp

∗
(Ω) ,

and
W1,p

0 (Ω) ⊂⊂ Lq (Ω) for 1 ≤ q < p∗

Theorem 2.1.27 ([7] Hardy inequality). Assume 1 < p < N . If u ∈W1,p
(
RN
)
then∫

RN

|u|p

|x|p
dx ≤ CN,p

∫
RN

|∇u|p dx,

with CN,p =
(

p
N−p

)p
. Moreover the constant CN,p is optimal.

From this theorem it follows that the following embedding holds

W1,p
0 (Ω) ↪→ Lp

(
|x|−p; Ω

)
.

2.1.2 Improved regularity tools

From the perspective of applications, a very important aspect is the regularity of
solutions. Our knowledge about weak solutions is limited, as they are just elements
of the space W1,p

0 . For most of the applications we require more. Thus, the methods
for increasing the class of regularity plays an important role. In one-dimensional case
a crucial role is played by the Fundamental Lemma of Calculus of Variations proved
by du Bois-Reymond.

Theorem 2.1.28 ([49] Fundamental Lemma of Calculus of Variations - du Bois-Rey-
mond). Let I = (a, b) be an interval in R. Let v ∈ L2 (I;Rn), w ∈ L1 (I;Rn) be
the functions, such that∫

I

v(x) · h′(x) dx = −
∫
I

w(x) · h(x) dx,

for any h ∈ H1
0 (I;Rn). Then there exists a constant c ∈ Rn, such that

v(x) =

x∫
a

w(s) ds+ c,

for almost every x ∈ I.

14



Theorem 2.1.29 (A version of du Bois-Reymond lemma for space V1). Let I = (a, b)
be an interval in R. Let v ∈ L2 (I;Rn), w ∈ L1 (I;Rn) be functions such that∫

I

v(x) · d

dx
h(x) dx = c · h(b)−

∫
I

w(x) · h(x) dx, for all h ∈ V1 (a, b) ,

where c ∈ Rn. Then there exists a constant M ∈ Rn such v(t) =
t∫
a

w(s) ds + M for

a. e. t ∈ I.

Proof. Let W (x) =
x∫
a

w(s) ds for x ∈ (a, b). After integrating by parts, we have

b∫
a

W (x) · d

dx
h(x) dx =

b∫
a

w(x) · (h(b)− h(x)) dx =

b∫
a

w(x) · h(b) dx−
b∫
a

w(x) · h(x) dx

=

b∫
a

w(x) · h(b) dx− c · h(b) +

b∫
a

v(x) · d

dx
h(x)dx.

Thus
b∫
a

(W (x)− v(x)) · d

dx
h(x) dx+ h(b) ·

 b∫
a

w(x)dx− c

 = 0. (2.1)

Let M = 1
b−a

b∫
a

(W (x)− v(x)) dx. Then

b∫
a

M · d

dx
h(x) dx = M · h(b)

and thus we can transform (2.1) into equation

b∫
a

(W (x)− v(x)−M) · d

dx
h(x) dx+ h(b) ·

 b∫
a

w(x)dx− c+M

 = 0. (2.2)

We test (2.2) against h(x) =
x∫
a

(W (s)− v(s)−M) ds. Since h(a) = 0 and h(b) = 0

we get
b∫
a

(W (x)− v(x)−M)
2 dx = 0. The assertion follows easily.

2.2 Operator theory

Theorem 2.2.1 ([12, Corollary 5.8] Lax�Milgram theorem). Assume that
B : H ×H → R is a continuous, coercive and bilinear form on a Hilbert space H.
Then for any given φ ∈ H∗ (a linear and continuous functional on H), there exists
unique element u ∈ H such that

B(u, v) = 〈φ; v〉 , for all v ∈ H.
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De�nition 2.2.2 ([64] Compact operator). Let X,Y be Banach spaces, and let U be
an open unit ball in X. An operator A : X → Y is called compact if the closure of
A(U) is a compact set in Y.

De�nition 2.2.3 ([64, De�nition 25.2] Monotone operators). Let X be a Banach
space, and let A : X→ X∗ be an operator. Then

(i) A is called monotone i�

〈Au−Av;u− v〉 ≥ 0,

for all u, v ∈ X.

(ii) A is called strictly monotone i�

〈Au−Av;u− v〉 > 0,

for all u, v ∈ X with u 6= v.

(iii) A is called strongly monotone i� there exists a constant c > 0 such that

〈Au−Av;u− v〉 ≥ c ‖u− v‖2 ,

for all u, v ∈ X.

(iv) A is called uniformly monotone i�

〈Au−Av;u− v〉 ≥ a (‖u− v‖) ‖u− v‖ ,

for all u, v ∈ X, where the function a : R+ → R+ is strictly increasing
with a(0) = 0 and a(t)→ +∞ as t→ +∞.

(v) A is called coercive i�

lim
‖u‖→∞

〈Au;u〉
‖u‖

= +∞.

Obviously, we have the following implications

• If A is strongly monotone then it is a uniformly monotone operator.

• If A is uniformly monotone then it is a strictly monotone and coercive operator.

• If A is strictly monotone then it is a monotone operator.

De�nition 2.2.4 ([64, De�nition 26.1] Hemicontinuity and demicontinuity). Let
A : X→ X∗ be an operator on the real Banach space X.

(i) A is said to be demicontinuous i� for any (un)n∈N ⊂ X and u ∈ X

un → u⇒ Aun ⇀ Au.

(ii) A is said to be hemicontinuous i� the real function

t 7→ 〈A(u+ tv);w〉 ,

is continuous on [0, 1] for all u, v, w ∈ X.
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(iii) A is said to be strongly continuous i� for any (un)n∈N ⊂ X and u ∈ X

ub ⇀ u⇒ Aun → Au.

(iv) A is said to be bounded i� A maps bounded sets into bounded sets.

Theorem 2.2.5 ([64] Browder�Minty theorem). Let A : X → X∗ be a monotone,
coercive, and hemicontinuous operator on the real, separable, re�exive Banach space
X. If A is strictly monotone, then the inverse operator A−1 exists and is a strictly
monotone, demicontinuous, and bounded operator. If A is uniformly monotone, then
A−1 is continuous. If A is strongly monotone then A−1 is Lipschitz continuous.

2.3 Variational calculus

The concept of variational calculus is a an advanced and yet very intuitive method of
investigating the existence of a solution of various problems governed by di�erential
equations, either ordinary or partial. The method as itself is a generalization of
a relation which can be easily expressed by the Fermat Theorem in one-dimensional
case. Since the basic concept of �nding the extremes of a real-valued function is usually
transformed into �nding the roots of its derivative, one hopes for such relations to
hold for problems in higher dimensional spaces. This approach requires introduction of
a generalized concept of derivative, the one that could cover the cases of both �nite and
in�nite dimensional spaces. This leads to the de�nition of the Gâteaux derivative. For
a real-valued function de�ned for a real argument the Gâteaux derivative is equivalent
to a classical derivative. In higher dimensions it usually corresponds to the gradient
of a function. In in�nite dimensional case, problem of �nding the critical points of
a functional can be transformed, via its Gâteaux derivative, to a di�erential equation.
It is therefore possible to �nd the solutions of di�erential equations by �nding critical
points of associated action functionals.

Although there are many problems for which this method cannot be applied,
the most problems originating from modern physics actually have potentials (a no-
table exception are the Navier�Stokes equations). The concept of variational calculus
is well expressed in physics as a relation between the action of an object and by
object's energy. Thus, most equations having its application in physics do admit
a corresponding functional for this approach.

Thus, the problems in variational calculus are well motivated, and they mainly
concern the existence and multiplicity of critical points. The most fundamental the-
orem for that purpose is the Weierstrass theorem. The theorem requires conditions
of two types: compactness and lower semicontinuity. Unfortunately, for in�nite di-
mensional spaces the compact sets in the norm topology have empty interiors, and
are not applicable in most cases since they are very small sets. Thus, both conditions
required for the existence of critical points had to be re-investigated. The most im-
portant de�nition of variational calculus is the Gâteaux derivative. It is the modern
understanding of variation introduced by Lagrange.

De�nition 2.3.1 ([63, De�nition 1.1] Gâteaux and Fréchet derivative). Let φ : U → R,
where U is an open subset of a Banach space X. The functional φ has a Gâteaux
derivative f ∈ X∗ at u ∈ U if for every h ∈ X,

lim
t→0,t6=0

1

t
(φ(u+ th)− φ(u)− 〈f ; th〉) = 0.
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The Gâteaux derivative at u ∈ U is denoted by φ′ (u). The value of the Gâteaux
derivative at function h ∈ X shall be denoted by 〈φ′ (u) ;h〉.

The functional φ has a Fréchet derivative f ∈ X∗ at u ∈ U if

lim
h→0,h6=0

1

‖h‖
(φ(u+ h)− φ(u)− 〈f ;h〉) = 0.

The functional φ belongs to C1 (U) if the Fréchet derivative of φ exists for all u ∈ U
and is continuous on U .

De�nition 2.3.2 ([42] Carathéodory property). Let (Ω,F , µ) be a measure space and
let h : Ω × Rm → R, h = h(x, ξ) be de�ned for almost all x ∈ Ω and all ξ ∈ Rm. We
say that the function h has a Carathéodory property if

(i) for all ξ ∈ Rm, the function x 7→ h(x, ξ) is measureable on Ω,

(ii) for almost all x ∈ Ω, the function ξ 7→ h(x, ξ) is continuous on Rm.

We shall refer to functions that have a Carathéodory property as Carathéodory
functions. It is an easy observation that all continuous functions on Ω × Rm are
Carathéodory .

The following theorem shall us to de�ne the modern concept of N¥myckii operator.

Theorem 2.3.3 ([42]). Let N,m be positive integers and let Ω ⊂ RN be a measurable
set. Let h : Ω×Rm → R be a Carathéodory function, and let ui : Ω→ R, i = 1, . . . ,m
be measurable functions. Then the function

g(x) = h(x, u1(x), . . . , um(x))

is also measurable on Ω.

De�nition 2.3.4 ([42] N¥myckii operator). Let h : Ω × Rm → R be a Carathéodory
function, with Ω being measurable. Then the operator Nh de�ned for m-tuple of
measurable functions ui : Ω→ R, i = 1, . . . ,m by the formula

Nh(u1, . . . , um)(x) = h(x, u1(x), . . . , um(x)), for x ∈ Ω,

is called the N¥myckii operator.

An important property of N¥myckii operator is continuity.

Theorem 2.3.5 ([35] Generalized Krasnosel'skii theorem). Let Ω ⊂ R be an interval
and let f : Ω × R → R be a Carathéodory function. If for any convergent sequence
(xn)n∈N ⊂ L2 (Ω) there exists a subsequence (xni)i∈N and a function h ∈ Lp (Ω),
1 ≤ p <∞, such that

|f(t, xni(t))| ≤ h(t),

for all i ∈ N and a. e. t ∈ Ω, then the N¥myckii operator Nf : L2 (Ω) → Lp (Ω) given
by

Nf (x)→ f (·, x(·)),

is well de�ned and continuous, that is, if

xn −→
n→∞

x0 in L2 (Ω)

then
Nf (xn) −→

n→∞
Nf (x0) in Lp (Ω) .

18



2.3.1 Lower semicontinuity and compactness in in�nite dimen-

sional Banach spaces

De�nition 2.3.6 ([42, 43] Lower semicontinuity in in�nite dimensional Banach spaces).
Let F : X→ R, where X is a Banach space. Then

lower semicontinuity (l.s.c) - F is lower semicontinuous at a point x0 if every
inverse image of an open half-line (set of the form (r,+∞)) which contains
F (x0), contains an open set (in strong topology) that contains x0. We shall
refer to F as lower semicontinuous if it is a lower semicontinuous function
at every point of its domain.

sequential lower semicontinuity (s.l.s.c.) - F is sequentially lower semicontinu-
ous at a point x0 if

F (x0) ≤ liminf
x→x0

F (x).

We shall refer to F as sequentially lower semicontinuous if it is sequentially
lower semicontinuous at every point of its domain.

weak lower semicontinuity (w.l.s.c) - F is weakly lower semicontinuous at a point
x0 if every inverse image of an open half-line (set of the form (r,+∞)) which
contains F (x0), contains an open set in weak topology that contains x0. We shall
refer to F as weakly lower semicontinuous if it is weakly lower semicontinuous
at every point of its domain.

sequential weak lower semicontinuity(s.w.l.s.c.) - F is sequentially weakly lower
semicontinuous at a point x0 if

F (x0) ≤ liminf
x⇀x0

F (x).

We shall refer to F as sequentially weakly lower semicontinuous if it is sequen-
tially weakly lower semicontinuous at every point of its domain.

There are certain relations between those concepts of continuity.

Remark 2.3.7 ([43, Theorem 7.1.2]). Functional F is lower semicontinuous i� F is
sequentially lower semicontinuous.

The result holds due to the fact that the strong topologies are metrizable. Since
in in�nite dimensional Banach spaces the weak topologies are not metrizable we can
state the following remark, which actually explains the reason why we placed all four
de�nitions.

Remark 2.3.8. The de�nitions of sequential weak lower semicontinuity and weak
lower semicontinuity are equivalent i� X is a �nite dimensional linear topological
space.

In Banach spaces the following inclusions are trivial.

Remark 2.3.9. Every w.l.s.c. functional is s.w.l.s.c. Every s.w.l.s.c. functional is
l.s.c.

The following application of the Mazur theorem shows the case when l.s.c., s.w.l.s.c.
and w.l.s.c. are equivalent.

Theorem 2.3.10 ([43, Theorem 7.2.5.]). Let X be a Banach space and F : X → R
be a convex functional. Then F is l.s.c. i� F is w.l.s.c.
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From this theorem it is a simple corollary that the norm in a given Banach space
is a w.l.s.c. functional.

At this point we recall the very well known fact.

Theorem 2.3.11 ([12, Proposition 3.5.(iv)] Duality pairing convergence). Let X be
a Banach space. If xn ⇀ x weakly in X and if fn → f strongly in X∗ then

〈fn;xn〉 → 〈f ;x〉 .

In Chapter 3 we shall refer to certain p-Laplace problem for which the following
continuity result was a crucial step.

Theorem 2.3.12 ([51, Theorem 3.2] Montefusco theorem). Assume n ∈ N, p ∈ R,
1 < p < N , H =

(
N−p
p

)p
and Ω ⊂ Rn is bounded and open. Assume λ ∈ [0, H], where

H is de�ned as above, and stands for the inverse of the best constant in the Hardy
inequality (Theorem 2.1.27). Then the functional Hλ(u) : W1,p

0 (Ω) → R given by
formula

Hλ(u) =
1

p

∫
Ω

|∇u(x)|p − λ |u|
p

|x|p
dx,

is s.w.l.s.c.

In the beginning of this subsection we have shown that the reason why the clas-
sical Weierstrass theorem does not bring an applicable �minimal element existence�
result is due to the fact that weak topology is not equivalent to the strong one. It
suggests that compactness required to obtain a Weierstrass type theorem is actually
the compactness in the weak topology.

De�nition 2.3.13 ([42, 43] Compactness in in�nite dimensional Banach spaces).
We say that M ⊂ X is weakly compact if every covering of M by open sets in weak
topology contains a �nite subcovering. We say that M is sequentially weakly compact
if from any sequence (un)

∞
n=1 of elements of M , it is possible to select a subsequence

(ukn)
∞
n=1 which converges weakly to an element of the set M .

De�nition 2.3.14 ([40, De�nition 1.6]). A functional f ∈ C1 (X) satis�es the Palais�
Smale condition at level c ∈ R (abbreviated to (PS)c ) if every sequence (un)n∈N ⊂ X
such that lim

n→∞
f(un) = c and lim

n→∞
‖f ′(un)‖X∗ = 0, possesses a convergent subse-

quence. A function f ∈ C1 (X,R) satis�es the Palais�Smale condition (abbreviated to
(PS)) if it is satis�es the Palais�Smale condition at every level c ∈ R.

De�nition 2.3.15 (Coercive functional). A functional f : X→ R de�ned on the Ba-
nach space X is said to be coercive i�

lim
‖u‖→+∞

f(u) = +∞.

2.3.2 Existence of critical points

We call several result on the existence of critical points.

Theorem 2.3.16 ([42, Theorem 24.11]). Let M be a non-empty, weakly compact
subset of a Banach space X. Let f be a s.w.l.s.c. functional on the set M . Then

• inf
x∈M

f(x) > −∞.
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• There exists at least one x0 ∈M such that f(x0) = inf
x∈M

f(x).

Theorem 2.3.17 ([49]). Let X be re�exive Banach space and functional f : X → R
be s.w.l.s.c. and coercive. Then there exists x ∈ X such f(x) = inf

y∈X
f(y).

Theorem 2.3.18 ([40, Theorem 1.7] Minimization in (PS) case). Let X be a Banach
space and let f be a functional, f ∈ C1 (X) which is bounded from below. If f satis�es
the Palais�Smale condition at level inf

X
f = c, then c is a critical value of f , namely

there exists a point u0 ∈ X such that f(u0) = c and f ′(u0) = 0.

Theorem 2.3.19 ([40, Theorem 1.12] Mountain pass theorem, zero altitude). Let X
be a Banach space, and let f ∈ C1 (X) such that

inf
‖u−e0‖=ρ

≥ max {f(e0), f(e1)}

for some e0 6= e1 ∈ X with 0 < ρ < ‖e1 − e0‖. If f satis�es the (PS)c condition
at level

c = inf
γ∈Γ

max
t∈[0,1]

f(γ(t)),

where
Γ = {γ ∈ C ([0, 1],X) : γ(0) = e0, γ(1) = e1} ,

then c is a critical value of f with c ≥ max {f(e0), f(e1)}.

The mountain pass theorem can be obtained in multiple ways. Two of them are
most common. The �rst one involves the Ekeland variational principle. The second
one uses the deformation lemma of Willem [63].

2.4 Calculus of Clarke subdi�erentials

In this section we shall present some de�nitions and theorems that are used in
the study of di�erential inclusions and hemivariational inequalities.

De�nition 2.4.1 ([50, De�nition 3.7] Upper semicontinuous multifunction). Let X,
Y be a Hausdor� topological spaces and N : X → 2Y be a multifunction. N is called
upper semicontinuous at x0 ∈ X, if for every open set V ⊂ Y such that N(x0) ⊂ V
we can �nd a neighbourhood N (x0) of x0 such that

N (N (x0)) ⊂ V.

We say that N is upper semicontinuous, if N is upper semicontinuous at every x0 ∈ X.

De�nition 2.4.2 ([50] Generalized directional derivative). Let U ⊂ X be an open set
in a Banach X. The generalized directional derivative of a locally Lipschitz function
φ : U → R at the point x ∈ U in the direction v ∈ X, denoted φ0 (x; v), is de�ned by

φ0 (x; v) = limsup
y→x,λ↓0

φ(y + λv)− φ(y)

λ
.

De�nition 2.4.3 ([50] Generalized subdi�erential in sense of Clarke). Let φ : U → R,
U ⊂ X be a locally Lipschitz function. The generalized subdi�erential of φ at x ∈ U ,
denoted ∂φ (x), is the subset of dual space X∗ de�ned by

∂φ (x) =
{
ξ ∈ X∗ : φ0 (x; v) ≥ 〈ξ; v〉X∗×X , for all v ∈ X

}
.
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In case φ has several variables we will use notation of the form F 0
(k) (x1, . . . , xn; v),

k = 1 . . . n, that will corresponds to a generalized directional derivative with respect to
its k variable, with the rest of them �xed. Analogously we introduce ∂kF (x1, . . . xn).

Lemma 2.4.4 ([50, Proposition 3.23] Properties of generalized subdi�erential). If
φ : U → R is a locally Lipschitz function on a subset U of X, then

(i) The function U ×X 3 (x, v) 7→ Φ0 (x; v) ∈ R is upper semicontinuous,
i.e., for all x ∈ U , v ∈ X, (xn)n∈N ⊂ U , (vn)n∈N ⊂ X such that xn → x
in U and vn → v in X , we have that

limsup
n→∞

φ0 (xn; vn) ≤ φ0 (x; v) .

(ii) For every x ∈ U the gradient ∂φ(x) is a nonempty, convex, and weakly∗

compact subset of X∗ which is bounded by the Lipschitz constant Kx > 0
of φ near x.

Theorem 2.4.5 ([6] Convergence theorem). Let (Ω,F , µ) be a �nite measure space
and j : Rd → R be such locally Lipschitz function that its generalized subdi�erential
ξ → ∂j (ξ) is bounded on bounded sets. We assume that un → u in Lp

(
Ω,Rd

)
and

ξn ⇀ ξ in Lq
(
Ω;Rd

)
, 1 ≤ p <∞ and 1 ≤ q <∞. If

ξn(s) ∈ ∂j (un(s)) µ-a. e. s ∈ Ω,

then
ξ(s) ∈ ∂j (u(s)) µ-a. e. s ∈ Ω.

Theorem 2.4.6 ([38] Nonautonomous convergence lemma). Let (Ω,F , µ) be a �nite
measure space, d ∈ N and j : Ω × Rd → R be a Carathéodory function which is
locally Lipschitz continuous with respect to its second variable for µ-almost every value
of its �rst variable, such that its generalized subdi�erential in the sense of Clarke
ξ → ∂2j(t, ξ) is bounded on bounded sets for any �xed t ∈ Ω. We assume that un → u
in Lp

(
Ω;Rd

)
and ξn ⇀ ξ weakly in Lq

(
Ω;Rd

)
, where 1 ≤ p <∞, 1 < q <∞. If

ξn(s) ∈ ∂2j(s, un(s)) µ-a. e. s ∈ Ω,

then
ξ(s) ∈ ∂2j(s, u(s)) µ-a. e. s ∈ Ω.

The proof for this fact follows the proof of Theorem 2.4.5 presented in [8].

Proof. Since un → u strongly in Lp
(
Ω;Rd

)
then, up to a subsequence, un(s)→ u(s)

for µ-a. e. s ∈ Ω. Thus, by the Egoro� theorem, for any ε > 0 there exists a sub-
set ω ⊂ Ω such that µ (ω) < ε and un → u strongly in L∞

(
Ω \ ω;Rd

)
. For any

v ∈ L∞
(
Ω \ ω;Rd

)
, by the de�nition of the Clarke subdi�erential, it holds∫
Ω\ω

ξn(s) · v(s) ds ≤
∫

Ω\ω

j0 (s, un(s); v(s)) ds. (2.3)

We note that j0 (s, un(s); v(s)) is obviously measurable. By the de�nition of weak
convergence of ξn in (2.3) we have∫

Ω\ω

ξ(s) · v(s) ds = lim
n→∞

∫
Ω\ω

ξn(s) · v(s) ds ≤ limsup
n→∞

∫
Ω\ω

j0 (s, un(s); v(s)) ds. (2.4)
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Moreover, we have for µ-a. e. s ∈ Ω \ ω

j0 (s, un(s); v(s)) = sup
z∈∂2j(s,un(s))

z · v(s) ≤ ‖v‖L∞(Ω\ω;Rd) sup
z∈∂2j(s,un(s))

|z|.

Since (un)n∈N is convergent in L∞
(
Ω \ ω;Rd

)
and a multifunction ξ → ∂2j (s, ξ) is

bounded on bounded sets for µ-a. e. �xed s, it follows that j0 (s, un(s); v(s)) is bounded
from above. Applying the Fatou lemma to (2.4) we get∫

Ω\ω

ξ(s) · v(s)ds ≤
∫

Ω\ω

limsup
n→∞

j0 (s, un(s); v(s)) ds.

By upper semicontinuity of generalized directional derivative, we obtain∫
Ω\ω

ξ(s) · v(s)ds ≤
∫

Ω\ω

j0 (s, u(s); v(s)) ds. (2.5)

Since v in (2.5) was arbitrarily �xed it follows that

ξ(s) ∈ ∂j (s, u(s)) a. e. ∈ Ω \ ω.

Finally, since ε > 0 was arbitrary, the assertion holds.

We will also need the auxiliary result, which is an a version of the convergence
theorem of Aubin and Cellina. Before we pass to the result, however, we recall
a de�nition of an upper limit of sets in the Kuratowski�Painlevé sense, and a result
on pointwise behaviour of weakly convergent sequences in Lp

(
Ω;Rd

)
.

De�nition 2.4.7. Let (An)
∞
n=1 be a sequence of sets such that An ⊂ R for all n.

The Kuratowski�Painlevé upper limit of the sequence (An)
∞
n=1 is de�ned by

K- limsup
n→∞

An =

{
x ∈ R |x = lim

k→∞
xnk , xnk ∈ Ank , n1 < . . . < nk < . . .

}
.

Lemma 2.4.8 ([22, Proposition 4.7.44]). Let (Ω,F , µ) be a σ-�nite measure space.
Let (fn)

∞
n=1 be a sequence such that fn ∈ L1 (Ω) for all n, and fn ⇀ f weakly in

L1 (Ω) for certain f ∈ L1 (Ω). If for µ-a. e. x ∈ Ω and all n we have fn(x) ∈ G(x)
where the sets G(x) are nonempty and bounded, then

f(x) ∈ conv K- limsup
n→∞

{fn(x)} µ-a. e. on Ω.

Lemma 2.4.9 (Multivalued nonautonomous convergence lemma). Let (Ω,F , µ) be
a �nite measure space and let the multifunction N : Ω× R→ 2R be such that

H2.4(a) ξ → N(t, ξ) is bounded on bounded sets for µ-a.e. t ∈ Ω.

H2.4(b) Graph of the multivalued mapping ξ → N(t, ξ) is a closed set in R2 for
µ-a.e. t ∈ Ω.

H2.4(c) Values of N are closed, convex, and nonempty sets.

We assume that un → u strongly in L∞ (Ω) and ξn → ξ weakly in L1 (Ω). If

ξn(s) ∈ N(s, un(s)) for µ-a. e. s ∈ Ω,

then
ξ(s) ∈ N(s, u(s)) for µ-a. e. s ∈ Ω.
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Proof. As un → u strongly in L∞ (Ω), then |un(t)| ≤M µ-a. e. t ∈ Ω, where the con-
stant M is independent on n. As ξ → N(t, ξ) is bounded on bounded sets it follows
that ξn(s) belong to a bounded set for µ-a.e. s ∈ Ω. We are in position to use Lemma
2.4.8 to conclude that

ξ(s) ∈ conv K- limsup
n→∞

{ξn(s)} µ-a. e. s ∈ Ω.

For µ-a.e. s ∈ Ω we have

K- limsup
n→∞

{ξn(s)} ⊂ K- limsup
n→∞

N(s, un(s)).

Since the graph of the multifunction ξ → N(s, ξ) is closed and un(s) → u(s) for
almost all s ∈ Ω, so

K- limsup
n→∞

N(s, un(s)) ⊂ N(s, u(s)),

for µ-a.e. t ∈ Ω. Concluding, we have

ξ(s) ∈ convN(s, u(s)) µ-a. e. s ∈ Ω.

But, as N(s, u(s)) is a convex and closed set it follows that

ξ(s) ∈ N(s, u(s)) µ-a. e. s ∈ Ω,

and the assertion is proved.

2.5 Abstract �xed point results

We start by the classical Banach �xed point theorem applied to the Banach space X.

De�nition 2.5.1 ([61] Contraction mapping). Let X be a Banach space and T : X→ X.
We say that T is a contraction mapping if there exists a number k such that 0 < k < 1
and

‖Tx−Ty‖ ≤ k ‖x− y‖ ,

for all x, y ∈ X.

Theorem 2.5.2 ([61] Banach �xed point theorem (1922)). Any contraction mapping
T : X→ X has a unique �xed point, i.e. there exists a unique x0 ∈ X such that

Tx0 = x0.

The result established by Banach has been generalized in number of ways. From
the point of view of applications, we are in particularly interested in extension to
result concerning mappings which are not necessarily contractions, and in particular
multivalued operators.

De�nition 2.5.3 ([61] Fixed point property). A topological space X is said to possess
the �xed point property if every continuous mapping of X to X has a �xed point.

Using this property Schauder proved the following theorem for normed spaces,
and this result was latter generalized by Tichono� to locally convex spaces.

Theorem 2.5.4 ([61] Schauder(1930)�Tichono�(1935) theorem). Any compact con-
vex nonempty subset Y of a locally convex topological vector space has the �xed point
property.

24



The generalization of the Schauder theorem, where the assumptions were relaxed
in a way that the operator could possibly be multivalued, was proved by Kakutani.
Below we present a version of that theorem proved by Fan and Glicksberg.

Theorem 2.5.5 ([2, Corollary 17.55] Kakutani�Fan�Glicksberg �xed point theorem).
Let S ⊂ X be nonempty, compact and convex set, where X is a locally convex Hauss-
dor� topological vector space and let the multifunction ϕ : S → 2S have nonempty con-
vex values and closed graph. Then the set of �xed point of ϕ (i.e. {x ∈ S : x ∈ ϕ(x)})
is nonempty and compact.

2.6 Abstract results of multiple criticial point type

2.6.1 Ricceri three critical points theorem and its known im-

plications

The following theorem is a very well known implication of mountain pass theorem
(Theorem 2.3.19).

Theorem 2.6.1 ([55, Theorem 4] Pucci and Serrin three critical points theorem).
Assume X is a Banach space and f ∈ C1 (X) satis�es the (PS) condition. If f has
two local minima, then has at least three critical points.

As the result of that simple observation by Pucci and Serrin, and more extensive
usage of mountain pass theorem (Theorem 2.3.19) the famous Ricceri theorem was
established.

Theorem 2.6.2 ([40, Corollary 1.30] Ricceri three critical points theorem). Let X
be a separable and re�exive real Banach space, and let Φ: X → R be a continuously
Gâteaux di�erentiable and s.w.l.s.c functional whose Gâteaux derivative admits a con-
tinuous inverse on X∗. Also let Ψ: X → R be a continuously Gâteaux di�erentiable
functional whose Gâteaux derivative is compact, and let Λ ⊂ R be an interval. Assume
that

lim
‖u‖→∞

(Φ(u)− λΨ(u)) =∞,

for all λ ∈ Λ, and that there exists a continuous concave function h : Λ→ R such that

sup
λ∈Λ

inf
u∈X

(Φ(u)− λΨ(u) + h(λ)) < inf
u∈X

sup
λ∈Λ

(Φ(u)− λΨ(u) + h(λ)).

Then there exists an open interval J ⊂ Λ and a positive real number ρ such that, for
each λ ∈ J , the equation

Φ′(u)− λΨ′(u) = 0

has at least three solutions in X whose norms are less than ρ.

Finally we present another result established by Ricceri as an extension of Theorem
2.6.2. The following two theorem are especially useful in obtaining multiplicity results
for problems involving several nonlinear terms.

De�nition 2.6.3 ([57] WX subspace). Let X be a Banach space. We denote WX

the class of functionals E : X → R having the property that if (un) in a sequence
converging weakly to u ∈ X and liminf

n→∞
E(un) ≤ E(u) then (un)n∈N has a subsequence

converging strongly to u.
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Remark 2.6.4. One can easily prove that if (X, ‖·‖) is a uniformly convex Banach
space, and E ∈ X∗ has a following form E(x) = f(‖x‖), f : R+ → R+ with f being
continuous and injective function and when E is a s.w.l.s.c. functional, then E belongs
to WX.

Class WX has an important role in following three critical points theorem.

Theorem 2.6.5 ([57] Ricceri three critical points theorem). Let X be a separable
and re�exive Banach space, let Φ: X → R be a coercive, s.w.l.s.c. C1 functional
belonging to WX, bounded on each bounded subset of X, and whose derivative admits
a continuous inverse on X∗; J1 : X → R a C1 functional with a compact derivative.
Assume that Φ has a strict local minimum at u0 with Φ(u0) = J1(u0) = 0. Setting
the numbers

τ = max

{
0, limsup
‖u‖→∞

J1(u)

Φ(u)
, limsup
u→u0

J1(u)

Φ(u)

}
,

χ = sup
Φ(u)>0

J1(u)

Φ(u)
,

assume τ < χ.
Then for each compact interval [a, b] ⊂ ( 1

χ ,
1
τ ) (with a convention 1/0 = ∞ and

1/∞ = 0) there exists κ > 0 with the following property: for every λ ∈ [a, b] and every
C1 functional J2 : X → R with a compact derivative, there exists δ > 0 such that for
each γ ∈ [0, δ], the equation

Φ′(u)− λJ ′1(u)− γJ ′2(u) = 0,

admits at least three solutions in X having norm less than κ.

2.6.2 Comparison type three critical point theorems

Another type of three critical points existence results can be derived from the following
lemma. We shall refer to those theorems as a comparison type since the geometrical
conditions are formulated using comparison between two or more functionals.

Theorem 2.6.6 ([9] Bonnano three critical points theorem). Let (X, ‖·‖) be a re�ex-
ive Banach space, I ⊆ R+ be an interval, Φ ∈ C1 (X) be a sequentially weakly l.s.c.
functional whose derivative admits a continuous inverse, J ∈ C1 (X) be a functional
with compact derivative. Moreover, assume that there exist x1, x2 ∈ X and σ ∈ R
such that

(i) Φ(x1) < σ < Φ(x2).

(ii) inf
Φ(x)≤σ

J(x) > (Φ(x2)−σ)J(x1)+(σ−Φ(x1))J(x2)
Φ(x2)−Φ(x1) .

(iii) lim
‖x‖→∞

[Φ(x) + λJ(x)] = +∞ for all λ ∈ I.

Then there exists a nonempty open set A ⊆ I such that for all λ ∈ A the functional
Φ + λJ has at least three critical points in X.

Historically the �rst result of this type was the following theorem presented by
Cabada and Iannizotto.

26



Theorem 2.6.7 ([13] Cabada and Iannizzotto three critical points theorem). Let
(X, ‖·‖) be a uniformly convex Banach space with strictly convex dual space, J ∈ C1 (X)
be a functional with compact derivative, x0, x1 ∈ X, p, r ∈ R be such that p > 1 and
r > 0. Let the following conditions be satis�ed

(i) liminf
‖x‖→+∞

J(x)
‖x‖p ≥ 0.

(ii) inf
x∈X

J(x) < inf
‖x−x0‖≤r

J(x).

(iii) ‖x1 − x0‖ < r and J(x1) < inf
‖x−x0‖=r

J(x).

Then there exists a nonempty open set A ⊆ (0,+∞) such that for all λ ∈ A the func-

tional x→ ‖x−x0‖p
p + λJ(x) has at least three critical points in X.

The above theorem initiated some later research as concerning its applicability to
anisotropic problems, see [29], where the term ‖x‖p is replaced by a convex coercive
functional. Namely, the result from [29] reads.

Theorem 2.6.8 ([29] Galewski and Wieteska three critical points theorem). Let
(X, ‖·‖) be a uniformly convex Banach space with strictly convex dual space, J ∈ C1 (X)
be a functional with compact derivative, µ ∈ C1 (X;R+) be a convex coercive func-
tional such that its derivative is an operator µ′ : X → X∗ admitting a continuous
inverse, let x̃ ∈ X and r > 0 be �xed. Assume that the following conditions are
satis�ed

(i) liminf
‖x‖→∞

J(x)
µ(x) ≥ 0.

(ii) inf
x∈X

J(x) < inf
µ(x)≤r

J(x).

(iii) µ (x̃) < r and J(x̃) < inf
µ(x)=r

J(x).

Then there exists a nonempty open set A ⊆ (0,+∞) such that for all λ ∈ A the func-
tional µ+ λJ has at least three critical points in X.

In the end of this section we present the author's result in this area obtained in
cooperation with his supervisor.

Theorem 2.6.9 ([28] Galewski and Kowalski three critical points theorem). Let
(X, ‖·‖) be a uniformly convex Banach space with strictly convex dual space, J ∈ C1 (X)
be a functional with compact derivative. Assume that µ1 ∈ C1 (X) is sequentially
w.l.s.c and coercive. Let µ2 ∈ C1 (X;R+) be a convex coercive functional. Assume
that derivative of µ1 is an operator µ′1 : X → X∗ admitting a continuous inverse. Let
y ∈ X and r > 0 be �xed. Assume the following conditions are satis�ed:

(i) liminf
‖x‖→∞

J(x)
µ2(x) ≥ 0.

(ii) inf
x∈X

J(x) < inf
µ1(x)≤r

J(x).

(iii) µ2 (y) < r and J(y) < inf
µ2(x)=r

J(x).

(iv) ∀x∈Xµ2 (x) ≤ r ⇒ µ1 (x) ≤ µ2 (x) and µ1 (x) ≥ µ2 (x) for ‖x‖ ≥ M ,
where M > 0 is some constant.
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(v) J is convex on the convex hull of B = {x ∈ X : µ1(x) ≤ r}.
Then there exists a nonempty open set A ⊂ (0,+∞) such that for all λ ∈ A the func-
tional x→ µ1 (x) + λJ(x) has at least three critical points.

Proof. We will use Theorem 2.6.6. Set I = (0,+∞) and observe that for any λ ∈ I
we have for su�ciently large ‖x‖ by (i) and (iv) that J(x)

µ2(x) > −
1

2λ . Thus

µ1(x) + λJ(x) > µ2(x)− λ 1

2λ
µ2(x) =

1

2
µ2(x)→ +∞,

as ‖x‖ → +∞. Hence, Condition (iii) of Theorem 2.6.6 is satis�ed.
We de�ne C = {x ∈ X : µ2(x) ≤ r}. We claim there exists x1 such that µ1(x1) < r

and J(x1) = inf
x∈B

J(x). Note that C ⊂ B. Since µ2 is continuous and convex, the set

C is weakly closed. Since µ2 is coercive, it follows that C is weakly compact. Since J
has a compact derivative, so it is s.w.l.s.c. and therefore its restriction to C attains
its in�mum. We shall refer to its minimizer as z.

Take y as in (iii). We can distinguish the three following cases

Case 1. y minimizes also J over B.

Case 2. y does not minimize J over B but z does.

Case 3. neither y and nor z minimize J over B.

In case 1 we put y = x1 since r > µ2(y) ≥ µ1(y). The assertion holds.
In case 2 we take z = x1 since

J(z) = inf
x∈C

J(x) = inf
x∈B

J(x).

Suppose z ∈ ∂C, then

J(z) = inf
x∈∂C

J(x) > J(y) > J(z),

a contradiction. Thus, r > µ2(z) ≥ µ1(z).
In case 3 if neither y and nor z minimize J in B, there would exist such s ∈ B \C

such that J(s) < J(z) ≤ J(y). C is convex and closed thus there would exists such
α ∈ (0, 1) that t = αs+ (1− α)z ∈ ∂C. Then by (v) we see that

J(t) ≥ inf
x∈∂C

J(x) = J(z) > J(s).

Since J in convex
J(t) ≤ αJ(s) + (1− α)J(z) < J(z).

We see that it is impossible. Thus, we have x1 such that µ1(x1) < r and J(x1) = inf
x∈B

J(x).

By (ii) there exist x2 such that µ1(x2) > r and J(x2) < inf
x∈B

J(x) = J(x1). Putting

φ = µ1, δ = r we see that Condition (i) of Theorem 2.6.6 is satis�ed. Finally

inf
x∈B

J(x) = J(x1) = J(x1)(µ1(x2)−µ1(x1))
(µ1(x2)−µ1(x1)) =

= (µ1(x2)−r)J(x1)+(r−µ1(x1))J(x1)
(µ1(x2)−µ1(x1)) >

> (µ1(x2)−r)J(x1)+(r−µ1(x1))J(x2)
(µ1(x2)−µ1(x1)) .

Thus, Condition (ii) of Theorem 2.6.6 holds. The assertion then follows from that
theorem.

For an application please see article written by Marek Galewski and author in [28].
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Chapter 3

Variational multiplicity results

Singular elliptic problems have been intensively and widely studied in recent years.
Among others, p-Laplacian operator appears to be mostly investigated elliptic opera-
tor. In this chapter we are especially interested in eigenvalue problem, well explained
by Lindquist [46]. Usually problem requires to �nd the smallest positive scalar µ ∈ R
for which the equation

−∆pu(x) = µa(x)|u(x)|p−2
u(x) for a. e. x ∈ Ω, (3.1)

with Ω being bounded with su�ciently smooth boundary, has a nontrivial solution
in W1,p

0 (Ω), see [47]. The starting point is usually the simplest case a(x) ≡ 1, but
also the weighted version of this equation �nds a lot of applications. By the solution
we usually understand the weak one. Some researchers are interested in proving
the existence of three solutions for small µ > 0 with a semilinear term on the right-
hand side. For example

−∆pu(x) + µa(x)|u(x)|p−2
u(x) = f(x, u(x)) for a. e. x ∈ Ω, (3.2)

where a ∈ L∞ (Ω) with essinf
x∈Ω

a(x) > 0, e.q., [10] or [21]. We should note that

the problem in (3.2) is essentially di�erent from the problem in (3.1), since in both
cases we assume that µ > 0.

Yet the most interesting cases contain the weight function a unbounded and having
singularity. Stationary problem involving such nonlinearities describes some applied
economical models and several physical phenomena, for instance conduction in elec-
trically conducting materials. In many papers similar problem with |u|p−2

u term on
the right hand side appears, see [20, 25, 26]. The results of Section 3.1 are a direct
generalization of the ones presented in [41].

In this chapter we are interested in problems containing two separate nonlinear
terms, and the main purpose is to prove the existence for two scalar parameters for
which the three critical points are preserved.

The author was introduced to this type of problem by Professor Giovanni Molica
Bisci from Universitá degli Studi Mediterranea at Reggio di Calabria, and the results
provided here cover the results obtained by the author in cooperation with Joanna
Piwnik and Luca Vilasi.
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3.1 Three weak solutions in Laplace eigenvalue prob-

lem

In this section we investigate the existence of at least two nontrivial weak solutions
to the following problem

Problem 3.1. Find u ∈ H1
0 (Ω) such that

−∆u(x) = µu(x)

|x|2 + λf(u(x)) + γg(u(x)) for a. e. x ∈ Ω,

u|∂Ω ≡ 0,

where Ω ⊂ Rn is a bounded domain that contains 0 and has a Lipschitz boundary.

The problem presented above is understand as equivalent to Problem 3.2.

We make the following assumptions. We assume that µ ∈ (0, H) where
√

1
H

is a best constant for the continuous embedding H1
0 (Ω) ↪→ L2

(
|x|−2

; Ω
)
. We also

require a certain conditions on f, g : R→ R.
Namely, we assume the following properties of continuous functions f, g:

H3.1(i) lim
|t|→∞

f(t)
|t| = 0.

H3.1(ii) lim
|t|→0

f(t)
|t| = 0.

H3.1(iii) sup
t∈R

F (t) > 0, where F (t) =
t∫

0

f(s) ds.

H3.1(iv) There exists cg such that

|g(t)| ≤ cg
(

1 + |t|q−1
)

1 < q <∞, for all t ∈ R,

and let G(t) =
t∫

0

g(s) ds.

Problem 3.2. By the weak solution of Problem 3.1 we understand a function u ∈ H1
0 (Ω)

that for any v ∈ H1
0 (Ω) the following equality holds

∫
Ω

∇u(x) · ∇v(x)− µu(x)v(x)

|x|2
dx =

∫
Ω

λf(u(x))v(x) + γg(u(x))v(x) dx.
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3.1.1 Variational properties

We shall prove the existence of three critical points, thus we de�ne the following C1

functionals

Φ, J1, J2, E : H1
0 (Ω)→ R,

Φ(u) =
1

2

∫
Ω

|∇u(x)|2 − µ |u(x)|2

|x|2
dx,

J1(u) =

∫
Ω

F (u(x)) dx,

J2(u) =

∫
Ω

G (u(x)) dx,

E(t) = φ(u)− λJ1(u)− γJ2(u).

One can easily see that E : H1
0 (Ω) → R is the energy functional corresponding to

Problem 3.2. We start by proving that E is well de�ned and sequentially weakly
lower semicontinuous.

Lemma 3.1.1. The functional Φ de�ned as above is well de�ned, s.w.l.s.c. and
bounded on bounded sets.

Proof. Assume u ∈ H1
0 (Ω). By the Hardy inequality (Theorem 2.1.27), we have

the following embedding H1
0 (Ω) ↪→ L2

(
|x|−2

; Ω
)
with the following inequality

H

∫
Ω

|u(x)|2

|x|2
dx ≤

∫
Ω

|∇u(x)|2 dx.

This implies

|Φ(u)| ≤
∫
Ω

|∇u(x)|2 dx+ µ

∫
Ω

|u(x)|2

|x|2
dx

≤ ‖u(x)‖2H1
0(Ω) +

µ

H
‖u(x)‖2H1

0(Ω)

≤
(

1 +
µ

H

)
‖u‖2H1

0(Ω) .

Thus, Φ is well de�ned and bounded on bounded sets. The fact that Φ is s.w.l.s.c
follows immediately from the Montefusco theorem (Theorem 2.3.12) with p = 2.

Now we prove the similar result for J1 and J2.

Lemma 3.1.2. Assume H3.1(i)-H3.1(iii) and H3.1(iv). Then functionals J1 and J2

are well de�ned and s.w.l.s.c.

Proof. By H3.1(i) there exists a Cf > 0 such that for all s ∈ R

|f(s)| ≤ Cf (1 + |s|).
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Thus

|J1(u)| ≤
∫
Ω

∣∣∣∣∣∣∣
u(x)∫
0

|f(s)| ds

∣∣∣∣∣∣∣ dx
≤
∫
Ω

∣∣∣∣∣∣∣
u(x)∫
0

Cf (1 + |s|) ds

∣∣∣∣∣∣∣ dx
≤ Cf

∫
Ω

|u(x)|+ |u(x)|2

2
dx

≤ Cf
∫
Ω

|∇u(x)|2 dx < +∞.

Sequential weak lower semicontinuity is proved in the usual way, by means of the com-
pact embedding H1

0 (Ω) ⊂⊂ L2 (Ω) and by the Lebesgue dominated convergence the-
orem (Theorem A.2). The same argument applied to g implies that both functions
are well de�ned and s.w.l.s.c.

Lemma 3.1.3. Assume H3.1(i)-H3.1(ii) and H3.1(iv). Then all critical points of
the functional E are solutions to Problem 3.2.

Proof. By H3.1(i)-H3.1(ii) and H3.1(iv), we obtain the growth conditions on J1

and J2. Direct calculation of the Gâteaux derivative of the functional E concludes
the proof.

Lemma 3.1.4. Assume H3.1(i)-H3.1(iii) and H3.1(iv). Then functionals J1 and J2

have a compact derivative.

Proof. First, assume that (un)n∈N ⊂ H1
0 (Ω) is a bounded sequence. Thus

∃d > 0 sup
n∈N
‖un‖H1

0(Ω) < d.

By H3.1(i)�H3.1(ii) and continuity of f we conclude that there exists Cf > 0 such
that

|f(s)| ≤ Cf |s|.

We can see that the sequence of derivatives of J1 calculated at un is uniformly bounded
by the uniform boundedness principle since

|〈J ′1(un); v〉| ≤
∫
Ω

|f(un(x))||v(x)|dx ≤
∫
Ω

Cf |un(x)||v(x)| dx

≤ Cf ‖v‖L2(Ω) ‖un‖L2(Ω) ≤ Cf ‖v‖H1
0(Ω) ‖un‖H1

0(Ω) < +∞.

We can assume (up to the subsequence) that it is weakly convergent to certain
h ∈ H−1 (Ω). We argue by contradiction. We assume that for every subsequence
the strong convergence does not hold. We shall refer to this subsequence as un. Then
there exists such δ > 0 that

‖J ′1(un)− h‖H−1(Ω) > δ.
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Then there exists a sequence (vn)n∈N that ‖vn‖H1
0(Ω) = 1 and

〈J ′1(un)− h; vn〉 > δ.

Up to the subsequence we can assume that vn ⇀ v ∈ H1
0 (Ω) since it is bounded.

By the Rellich�Kondrachov theorem (Theorem 2.1.26) up to the subsequence we can
assume that vn → v strongly in L2 (Ω). The following holds in an obvious way

〈J ′1(un)− h; vn〉 = 〈J ′1(un)− h; v〉 + 〈J ′1(un); vn − v〉 + 〈h; v − vn〉 .

The �rst and third term converge to 0. Finally

|〈J ′1(un); vn − v〉| ≤
∫
Ω

|f(un(x))||vn(x)− v(x)| dx ≤
∫
Ω

Cf |un(x)||vn(x)− v(x)| dx

≤ Cf ‖un‖L2(Ω) ‖vn − v‖L2(Ω) → 0

Thus, we have a contradiction.
We proceed in the same way with J2.

Lemma 3.1.5. Functional Φ is coercive.

Proof. Once again we apply Hardy inequality.

2Φ(u) =

∫
Ω

|∇u(x)|2 − µ |u(x)|2

|x|2
dx

≥
(

1− µ

H

)∫
Ω

|∇u(x)|2 dx =
(

1− µ

H

)
‖u(x)‖2H1

0(Ω) .

The assertion is proved.

Lemma 3.1.6. The derivative of Φ has a continuous inverse.

Proof. Functional Φ has a following derivative

〈Φ′(u); v〉 =

∫
Ω

∇u(x) · ∇v(x)− µu(x)v(x)

|x|2
dx.

The derivative admits the following properties - it induces a bilinear, coercive and
bounded form on Hilbert space H1

0 (Ω). By the classical Lax�Milgram theorem (The-
orem 2.2.1) the equation

〈Φ′(u); v〉 = 〈f ; v〉 for all v ∈ H1
0 (Ω) ,

has a unique solution u ∈ H1
0 (Ω) for any �xed f ∈ H−1 (Ω). Thus, Φ′ is invertible.

We prove continuity of (φ′)
−1 . Let (fn)n∈N ⊂ H−1 (Ω) and fn → f ∈ H−1 (Ω)

strongly. Let (un)n∈N ⊂ H1
0 (Ω) be a sequence corresponding to (fn)n∈N by the rela-

tion
〈Φ′(un); v〉 = 〈fn; v〉 for all v ∈ H1

0 (Ω) ,

and let u ∈ H1
0 (Ω) be such that

〈Φ′(u); v〉 = 〈f ; v〉 for all v ∈ H1
0 (Ω) .
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We �x n ∈ N. If un − u ≡ 0 then the assertion holds. Suppose un 6= u. We test
against function v = un − u.

〈Φ′(un)− Φ′(u);un − u〉 = 〈fn − f ;un − u〉 ,(
1− µ

H

)
‖un − u‖2H1

0(Ω) ≤ ‖fn − f‖H−1(Ω) ‖un − u‖H1
0(Ω) ,

‖un − u‖H1
0(Ω) ≤

1

1− µ
H

‖fn − f‖H−1(Ω) .

The above proves the continuity of the inverse, and concludes the proof of the lemma.

3.1.2 Multiple critical point geometry

Remark 3.1.7. It is an easy observation that Φ belongs to WH1
0(Ω).

Proof. Indeed. It su�ces to observe that H1
0 (Ω)×H1

0 (Ω) 3 (u, v) 7→ 〈Φ′ (u) ; v〉 de�nes
a scalar product. Thus, the assertion follows directly from Remark 2.6.4.

We prove the geometrical conditions.

Lemma 3.1.8. Assume H3.1(i)�H3.1(iii) hold. Then

sup
Φ(u)>0,u∈H1

0(Ω)

J(u)

Φ(u)
> 0.

Proof. Since Φ(u) > 0 for any 0 6= u ∈ H1
0 (Ω) we want to construct a function u

di�erent from 0 ∈ H1
0 (Ω) for which J(u) is positive.

By H3.1(iii) there exists such s0 ∈ R that F (s0) > 0. Let δ ∈ (0, 1). We can pick
uδ ∈ H1

0 (Ω) such that there exists x0 ∈ Ω \ ∂Ω, and there exist R > r > 0 such that
following conditions holds

1. suppuδ ⊂ B (x0;R) ⊂ Ω.

2. uδ|B(x0;r+δ(R−r)) ≡ s0.

3. ‖uδ‖∞ ≤ s0. 1

Then

J(uδ) =

∫
B(x0;R)

F (uδ(x)) dx

≥ Vol (N) (r + δ(R− r))NF (s0)−Vol (N)
(
RN − (r + δ(R− r))N

)
max
|t|<|s0|

|F (t)|,

where Vol (N) stays for the volume of N -dimmensional unit ball. As δ → 1 we can
see that J(uδ) tends to a strictly positive value. Let 1 > δ > 0 be su�ciently close to
1 so

J
(
uδ
)
> 0, Φ

(
uδ
)
> 0.

Finally

sup
Φ(u)>0

J(u)

Φ(u)
≥
J
(
uδ
)

Φ
(
uδ
) > 0.

1In fact any condition for boundedness in L∞ (Ω) would be applicable.
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Lemma 3.1.9. Assume H3.1(i)�H3.1(ii) holds. Then

limsup
‖u‖

H1
0(Ω)
→∞

J1(u)

Φ(u)
≤ 0.

Proof. We shall use the following estimates for denominator and numerator.

Φ (u) ≥ 1

2

(
1− µ

H

)
‖u‖2H1

0(Ω) .

Fix ε > 0. Then by H3.1(i)�H3.1(ii) there exists δε ∈ (0, 1) such that

|f(s)| <
(

1

c2

)2(
1− µ

M

)
ε|s| for |s| ∈ [0, δε] ∪ [δ−1

ε ,+∞),

and by continuity of f there exists Mε > 0 such that for a given q ∈ (0, 1) we have

|f(s)| < Mε|s|q with |s| ∈ [δε, δ
−1
ε ].

Then

|f(s)| < Mε|s|q +

(
1

c2

)2(
1− µ

M

)
ε|s|.

This allows to write the following estimates∣∣∣∣∣∣
∫
Ω

F (u(x)) dx

∣∣∣∣∣∣ ≤
∫
Ω

∣∣∣∣∣∣∣
u(x)∫
0

|f(s)| ds

∣∣∣∣∣∣∣ dx
≤ 1

C2
2

(
1− µ

H

)
ε

1

2
‖u‖2L2(Ω) +

Mε

q + 1
‖u‖q+1

q+1

≤
(

1− µ

H

)
ε

1

2
‖u‖2H1

0(Ω) +Mε ‖u‖q+1
H1

0(Ω)
.

Finally, since ε > 0 was chosen arbitrarily

J1(u)

Φ(u)
≤ ε+Mε ‖u‖q−1

H1
0(Ω)

.

Passing to the limit we get

limsup
‖u‖

H1
0(Ω)
→∞

J1(u)

Φ(u)
≤ ε+ 0.

Since ε > 0 was arbitrary small, we conclude that

limsup
‖u‖

H1
0(Ω)
→∞

J1(u)

Φ(u)
≤ 0.

Thus, we have reached the assertion.

Lemma 3.1.10. Assume H3.1(i)�H3.1(ii) holds. Then

limsup
‖u‖

H1
0(Ω)
→0

J1(u)

Φ(u)
≤ 0.
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Proof. We �x ε > 0. Similar to the previous lemma we derive the following two
estimates

|f(s)| < 1

Cpp

(
1− µ

H

)
ε|s|p−1 for |s| ∈ [0, δε] ∪ [δ−1

ε ,+∞)

|f(s)| < Mε|s|p+1 for |s| ∈ [δε, δ
−1
ε ].

Thus ∣∣∣∣∣∣
∫
Ω

F (u(x)) dx

∣∣∣∣∣∣ ≤ 1

Cpp

(
1− µ

H

)
ε

1

p
‖u‖pL2(Ω) +

Mε

p+ 1
‖u‖p+1

p+1 ,

≤
(

1− µ

H

)
ε

1

p
‖u‖p

H1
0(Ω)

+Mε ‖u‖p+1
H1

0(Ω)
.

Finally, since ε > 0 was chosen arbitrarily

J1(u)

Φ(u)
≤ ε+Mε ‖u‖L2(Ω) .

Passing to the limit we get

limsup
‖u‖

H1
0(Ω)
→0

J1(u)

Φ(u)
≤ ε+ 0.

Since ε > 0 was arbitrary small, we conclude that

limsup
‖u‖

H1
0(Ω)
→0

J1(u)

Φ(u)
≤ 0.

The assertion is proved.

Theorem 3.1.11 (Existence of three weak solutions to Problem 3.2). Assume H3.1(i)-
H3.1(iv). Then there exists l ∈ R such that for any compact interval [a, b] ⊂ (l,+∞)
there exists κ > 0 such that for every λ ∈ [a, b] there exists δ > 0 such that for every
γ ∈ [0, δ] Problem 3.2 has at least three weak solutions with norms less than κ.

Proof. The assertion follows from Theorem 2.6.5. Space H1
0 (Ω) is a separable and

re�exive Banach space. The functional Φ is a coercive (by Lemma 3.1.5), s.w.l.s.c.,
bounded on each bounded subset (by Lemma 3.1.1) functional from WH1

0(Ω) (by Re-
mark 3.1.7) and its derivative admits a continuous inverse (by Lemma 3.1.6). Both
J1 and J2 are well de�ned C1 functionals with compact derivative (by Lemmata 3.1.2
and 3.1.4). Furthermore Φ(0) = J1(0) = 0 and 0 is a strict local minimum (by coer-
civity) of Φ. By Lemmata 3.1.10 and 3.1.9 for constants from the Ricceri theorem we
get τ = 0 and χ > 0. The assertion follows directly from Theorem 2.6.5.

3.2 Three weak solutions in p-Laplace negative non-

linear eigenvalue type problem

In this section we investigate the existence of at least two nontrivial weak solutions
to a following problem
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Problem 3.3. Find u ∈W1,p
0 (Ω) such that

−∆pu(x) + µ |u(x)|p−2u(x)
|x|p = λf(u(x)) + γg(u(x)) for a. e. x ∈ Ω

u|∂Ω ≡ 0

where Ω ⊆ Rn is bounded and has a Lipschitz boundary, 0 ∈ Ω and 1 ≤ p ≤ n and
p(p+ 1) ≥ n.

The above presented problem is understand as equivalent to Problem 3.4.

We assume that µ ∈ (0, H) where p

√
1
H is a best constant for a continuous em-

bedding W1,p
0 (Ω) ↪→ Lp

(
|x|−p; Ω

)
. We also require certain conditions on continuous

functions f, g : R→ R, namely

H3.2(i) lim
|t|→0

f(t)

|t|p−1 = 0.

H3.2(ii) lim
|t|→+∞

f(t)

|t|p−1 = 0.

H3.2(iii) sup
t∈R

F (t) > 0, where F (t) =
t∫

0

f(s)ds.

H3.2(iv) There exists cg and 1 < q < +∞ such that

|g(t)| ≤ cg(1 + |t|q−1
) for all t ∈ R.

Problem 3.4. Find u ∈W1,p
0 (Ω) such that for all v ∈W1,p

0 (Ω)∫
Ω

|∇u(x)|p−2∇u(x) · ∇v(x) + µ
|u(x)|p−2

u(x)v(x)

|x|p
dx

= λ

∫
Ω

f(u(x))v(x) dx+ γ

∫
Ω

g(u(x))v(x) dx,

where Ω ⊆ Rn is bounded, has Lipschitz boundary, 0 ∈ Ω and 1 ≤ p ≤ n and
p(p+ 1) ≥ n.

3.2.1 Variational properties

We de�ne the following functionals, Φ, J1, J2, E : W1,p
0 (Ω)→ R given by the formulas

Φ(u) =
1

p

∫
Ω

|∇u(x)|p + µ
|u(x)|p

|x|p
dx,

J1(u) =

∫
Ω

F (u(x)) dx,

J2(u) =

∫
Ω

G(u(x)) dx,

E(u) = Φ(u)− λJ1(u)− γJ2(u),

where G(t) =
t∫

0

g(s)ds. We start by proving that any critical point of E is a weak

solution of Problem 3.4.
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Lemma 3.2.1. Assume, that conditions H3.2(i), H3.2(ii) and H3.2(iv) hold. Then
functionals Φ, J1 and J2 are well de�ned and they have the following Gâteaux deriva-
tives

〈Φ′(u); v〉 =

∫
Ω

|∇u(x)|p−2∇u(x) · ∇v(x) + µ
|u(x)|p−2

u(x)v(x)

|x|p
dx,

〈J ′1(u); v〉 =

∫
Ω

f(u(x))v(x) dx

〈J ′2(u); v〉 =

∫
Ω

g(u(x))v(x) dx.

Proof. All of the functional are well-de�ned.
We calculate the Gâteaux derivative

〈Φ′(u); v〉 = lim
λ↓0

1
p

∫
Ω

|∇(u(x) + λv(x))|p + µ |u(x)+λv(x)|p
|x|p − |∇u(x)|p − µ |u(x)|p

|x|p dx

λ

=
1

p

∫
Ω

lim
λ↓0

|∇u(x) + λ∇v(x))|p − |∇u(x)|p

λ

+
µ

|x|p
lim
λ↓0

|u(x) + λv(x)|p − |u(x)|p

λ
dx

=
1

p

∫
Ω

p|∇v(x)|p−2∇u(x) · ∇v(x) +
µ

|x|p
p|u(x)|p−2

u(x)v(x)dx.

The assertion for J1 and J2 follows easily.

Remark 3.2.2. From the proof of of Lemma 3.2.1, we can conclude that Φ is bounded
on bounded subsets of W1,p

0 (Ω).

We can note that using the functional given above we can rewrite Problem 3.4
also as

Find u ∈W1,p
0 (Ω) such that

〈E′(u); v〉 = 〈Φ′(u); v〉 − λ 〈J ′1(u); v〉 − γ 〈J ′2(u); v〉 = 0,

for all v ∈W1,p
0 (Ω).

Thus, any critical point to E is a solution of Problem 3.4. At �rst we shall
concentrate on properties of functional Φ. We shall prove that it has many similarities
to a norm.

Lemma 3.2.3. Function W1,p
0 (Ω) 3 u 7→ (p·Φ(u))

1
p is a norm on the space W1,p

0 (Ω).

Proof. We denote ρ(u) = (p · Φ(u))
1
p . We will show ρ satis�es norm axioms.

N1) Let ρ(u) = 0. Then (p · Φ(u))
1
p = 0, thus p · Φ(u)=0. We note explicitly∫

Ω

|∇u(x)|p + µ
|u(x)|p

|x|p
dx = 0,

p-power of modulus is non-negative, therefore ∇u(x) ≡ 0 and u(x) ≡ 0 almost
everywhere, hence u = 0. The opposite implication holds instantly.
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N2) Let α ∈ R. Then

ρ(αu) = (p · Φ(αu))
1
p

=

∫
Ω

|∇(αu(x))|p + µ
|αu(x)|p

|x|p
dx

 1
p

= |α|

∫
Ω

|∇(u(x))|p + µ
|u(x)|p

|x|p
dx

 1
p

= |α|(p · Φ(u))
1
p = |α|ρ(u).

N3) De�ne two metrics d1, d2 : W1,p
0 (Ω)×W1,p

0 (Ω)→ R as d1(x, y) = ‖x− y‖W1,p
0 (Ω),

d2 = p
√
µ ‖x− y‖Lp(|x|−p;Ω) . Then by Lemma A.7 d(x, y) = p

√
d1(x, y)p + d2(x, y)p

is also a metric. Thus, for x = u+ w, z = 0, y = w we have

ρ(u+ w) =(p · Φ(u+ w))
1
p

= p
√
d1(u+ w, 0)p + d2(u+ w, 0)p

=d(u+ w, 0) ≤ d(u+ w,w) + d(w, 0)

= p

√
‖u+ w − w‖p

W1,p
0 (Ω)

+ µ ‖u+ w − w‖p
Lp(|x|−p;Ω)

+ p

√
‖w‖p

W1,p
0 (Ω)

+ µ ‖w‖pLp(|x|−p;Ω)

=(p · Φ(u))
1
p + (p · Φ(w))

1
p = ρ(u) + ρ(w).

Hence u 7→ (pΦ(u))
1
p is a norm.

Lemma 3.2.4. Functional Φ is s.w.l.s.c.

Proof. Operator Φ is de�ned as 1
p

∫
Ω

|∇u(x)|p + µ |u(x)|p
|x|p dx, so

Φ(u) =
1

p

(
‖u‖p

W1,p
0 (Ω)

+ µ ‖u‖pLp(|x|−p;Ω)

)
.

Since ‖·‖W1,p
0 (Ω) and ‖·‖Lp(|x|−p,Ω) are sequentially weakly lower semicontinuous, then

Φ is sequentially weakly lower semicontinuous.

Lemma 3.2.5. Operator Φ(u) = 1
p

∫
Ω

|∇u(x)|p + µ |u(x)|p
|x|p dx is coercive.

Proof.

Φ(u) =
1

p

∫
Ω

|∇u(x)|p + µ
|u(x)|p

|x|p
dx ≥ 1

p

∫
Ω

|∇u(x)|p =
1

p
‖u‖p

W1,p
0 (Ω)

‖u‖→∞
−−−−−→∞

Thus, Φ is a coercive operator.

Now we focus on properties of J1 and J2.

Lemma 3.2.6. Assume H3.2(i)-H3.2(ii). Then functional J1 has a compact deriva-
tive.
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Proof. We split the proof into two parts. At �rst we shall prove that the im-
age of a bounded set through J ′1 is bounded, and next we shall prove the exis-
tence of a convergent subsequence within this image. We take a bounded sequence
(un)n∈N ⊂W1,p

0 (Ω), which means there exists M > 0 such that for all n ∈ N

‖un‖W1,p
0 (Ω) ≤M.

We show that the sequence J ′1(un) is also bounded, what is equivalent to

sup
‖v‖

W
1,p
0 (Ω)

=1

|〈J ′1(un); v〉| < +∞.

By the conditions H3.2(i) and H3.2(ii) and the continuity of f we obtain

|f(t)| < cf |t|p−1
, t ∈ R.

Thus ∣∣∣∣∣∣
∫
Ω

f(un(x))v(x) dx

∣∣∣∣∣∣ ≤
∫
Ω

|f(un(x))||v(x)| dx

≤
∫
Ω

cf |un(x)|p−1|v(x)|dx.

From the Hölder inequality it follows that

∫
Ω

|un(x)|p−1|v(x)| dx ≤

∫
Ω

(|un(x)|p−1
)

p
p−1 dx


p−1
p
∫

Ω

|v(x)|p dx

 1
p

= ‖v‖Lp(Ω) ‖un‖Lp(Ω)
p−1

≤ cpp ‖v‖W1,p
0 (Ω) ‖un‖W1,p

0 (Ω)
p−1

≤ cpp1Mp−1,

where cp is the constant from Lemma 2.1.22. It follows that

sup
‖v‖

W
1,p
0 (Ω)

=1

∣∣∣∣∣∣
∫
Ω

f(un(x))v(x) dx

∣∣∣∣∣∣ ≤ cf cppMp−1,

and this means that for all n ∈ N

‖J ′1(un)‖W−1,p′ (Ω) ≤ cfc
p
pM

p−1 < +∞.

Thus, the image of J1 is bounded. We know that in a re�exive Banach space each
bounded sequence has a weakly convergent subsequence. So there exists d ∈W−1,p′ (Ω)
such that J ′1(un) ⇀ d. Suppose, that ‖J ′1(un)− d‖W−1,p′ (Ω) > δ > 0. Then

∃ k ∀ (n ≥ k) sup
‖v‖

W
1,p
0 (Ω)

=1

〈J ′1(un)− d; v〉 > δ > 0.

Then we can construct the sequence (vn)
∞
n=k ⊂ W1,p

0 (Ω) such that ‖vn‖W1,p
0 (Ω) = 1

and
∃ k ∀ (n ≥ k) 〈J ′1(un)− d; vn〉 > δ.
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Since (vn)
∞
n=k is bounded, it admits a weakly convergent subsequence. By the Rellich�

Kondrachov theorem (Theorem 2.1.26) this sequence admits a subsequence convergent
strongly in Lp (Ω). Without any loss at generality we can assume that vn is weakly
convergent in W1,p

0 (Ω) and strongly in Lp (Ω). The following holds in an obvious way〈
J1
′ (un)− d; vn

〉
=
〈
J1
′ (un)− d; v

〉
+
〈
J1
′ (un); vn − v

〉
− 〈d; vn − v〉 .

The �rst and third terms converge to zero. Finally

0 ≤ |〈J ′1(un); vn − v〉| =
∫
Ω

|f(un)| · |vn − v| dx ≤
∫
Ω

cf |un|p−1|vn − v| dx

≤ cf

∫
Ω

|un|p dx


p−1
p
∫

Ω

|vn − v|p dx

 1
p

= cf ‖un‖p−1
Lp(Ω) · ‖vn − v‖Lp(Ω) → 0.

Thus, we have a contradiction.

Almost identically we prove the similar statement for J2.

Lemma 3.2.7. Assume H3.2(iv). Then functional J2 has a compact derivative.

The proof for this fact follows the steps of proof of Lemma 3.2.6.
We will use Theorem 2.2.5 and Lemma A.6 to prove the following lemma:

Lemma 3.2.8. The derivative of operator Φ′ admits a continuous inverse. Namely
for

〈Φ′(u); v〉 =

∫
Ω

|∇u(x)|p−2∇u(x) · ∇v(x) + µ
|u(x)|p−2u(x)v(x)

|x|p
dx

there exists the continuous inverse (Φ′)
−1

: W−1,p′ (Ω)→W1,p
0 (Ω).

Proof. We prove that Φ′ is uniformly monotone.

〈Φ′ (u1)− Φ′ (u2);u1 − u2〉

=

∫
Ω

|∇u1(x)|p−2∇u1(x) · ∇(u1(x)− u2(x)) + µ
|u1(x)|p−2

u1(x)(u1(x)− u2(x))

|x|p

− |∇u2(x)|p−2∇u2(x) · ∇(u1(x)− u2(x))− µ |u2(x)|p−2
(u1(x)− u2(x))

|x|p
dx

=

∫
Ω

(|∇u1(x)|p−2∇u1(x)− |∇u2(x)|p−2∇u2(x)) · (∇u1(x)−∇u2(x))

+ µ
(|u1(x)|p−2

u1(x)|u2(x)|p−2
u2(x))(u1(x)− u2(x))

|x|p
dx.

By Lemma A.6 (applied twice)

〈Φ′ (u1)− Φ′ (u2);u1 − u2〉 ≥ a1

∫
Ω

(
|∇u1(x)−∇u2(x)|p +

µ

|x|p
|u1(x)− u2(x)|p

)
dx

= a1

(
‖u1 − u2‖pW1,p

0 (Ω)
+ µ‖u1 − u2‖pLp(|x|−p,Ω)

)
≥ a1 ‖u1 − u2‖p−1

W1,p
0 (Ω)

‖u1 − u2‖W1,p
0 (Ω) .

One can easily check that this operator is hemicontinuous. Since it is a uniformly
monotone operator it is a monotone and coercive operator. Thus, by Theorem 2.2.5
the assertion holds.
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3.2.2 Multiple critical point geometry

In our problem the role of X space is played by W1,p
0 (Ω). It is a separable and

re�exive Banach space.

Lemma 3.2.9. A space
(

W1,p
0 (Ω) , (pΦ(·))p

)
is uniformly convex Banach space.

Proof. We shall prove that the functional

u 7→ ‖u‖∗ = (p · Φ(u))
1
p = p

√√√√∫
Ω

|∇u(x)|p + µ
|u(x)|p

|x|p
dx

is a uniformly convex norm on the space W1,p
0 (Ω). Since we will use two di�erent

norms on W1,p
0 (Ω) it is essential to add that by ‖u‖W1,p

0 (Ω) = p

√∫
Ω

|∇u(x)|p dx we

understand the usually de�ned norm. In order to prove this, we will use Clarkson's
concept of uniformly convex product. By De�nition 2.1.6 and the Example 2.1.7,
the following functional W1,p

0 (Ω) × Lp
(
|x|−p; Ω

)
3 (u, v) 7→ ‖(u, v)‖∗∗ ∈ R+, given

by the formula
‖(u, v)‖∗∗ = p

√
‖u‖p

W1,p
0 (Ω)

+ µ ‖v‖p
Lp(|x|−p;Ω)

,

is a uniformly convex product; here µ is the same constant as in Φ. By the Clarkson
theorem (Theorem 2.1.8) the space

(
W1,p

0 (Ω)× Lp
(
|x|−p; Ω

)
, ‖·‖∗∗

)
is a uniformly

convex Banach space. We recall that W1,p
0 (Ω) ↪→ L

(
|x|−p; Ω

)
. Thus, we can easily

observe that ‖(u, u)‖∗∗ = ‖u‖∗.
We will now prove that u 7→ ‖u‖∗ is a uniformly convex norm. Let 2 > ε > 0,

‖u‖∗ = ‖v‖∗ = 1 and ‖u− v‖∗ ≥ ε. Whence ‖(u, u)‖∗∗ = 1 and ‖(v, v)‖∗∗ = 1 as well
as ‖(u, u)− (v, v)‖∗∗ ≥ ε. Thus, by the uniform convexity of(

W1,p
0 (Ω)× L

(
|x|−p,Ω

)
; ‖·‖∗∗

)
we get that there exists δε ∈ (0, 1) such that

1− δε ≥
∥∥∥∥ (u, u) + (v, v)

2

∥∥∥∥
∗∗

=

∥∥∥∥(u+ v

2
,
u+ v

2

)∥∥∥∥
∗∗

=

∥∥∥∥u+ v

2

∥∥∥∥
∗
,

which proves that
(

W1,p
0 (Ω) , ‖·‖∗

)
is a uniformly convex Banach space.

Lemma 3.2.10. Φ belongs to WW1,p
0 (Ω).

Proof. Since by the de�nition we have Φ(u) = 1
p ‖u‖

p
∗, where by ‖·‖∗ we denote

the uniformly convex norm from Lemma 3.2.9. Thus, the assertion follows directly
from Remark 2.6.4.

Lemma 3.2.11. Assume, that H3.2(i)�H3.2(iii) holds. Then sup
Φ(u)>0

J1(u)
Φ(u) > 0.

We argument almost identically to the previous case, Lemma 3.1.8.

Proof. We show equivalently there exists uδ such that J1(uδ)
Φ(uδ)

> 0. By H3.2(iii) there
exists s0 ∈ R such that F (s0) > 0. Let δ ∈ (0, 1). Then there exists x0 ∈ Ω \ ∂Ω such
that there exist R, r such that R > r > 0 with B(x0, R) ⊂ Ω \ ∂Ω. We can choose
uδ ∈W1,p

0 (Ω) such that
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1. supp uδ ⊂ B(x0, R) ⊂ Ω.

2. uδ |B(x0,r+δ(R−r))≡ s0.

3. ‖uδ‖∞ ≤ s0.

Then

J1(uδ) =

∫
B(x0,R)

F (uδ(x)) dx ≥ F (s0) ·Vol (N) [r + δ(R− r)]N

− max
t∈[−s0,s0]

|F (t)|
(
Vol (N) [RN − (r + δ(R− r))]N

)
.

As δ → 1, then J1(uδ)→ C > 0. Let δ̄ be such that J1(uδ̄) > 0. Observe, that uδ̄ 6≡ 0.
So Φ(uδ̄) > 0 and J1(uδ) > 0.

Lemma 3.2.12. Assume, that H3.2(i)�H3.2(iii) holds. Then lim
‖u‖→0

J1(u)
Φ(u) ≤ 0.

Proof. Let ε > 0. We will use conditions H3.2(i) and H3.2(ii). For εf1
= 1

(Cp)p ε there
exists by H3.2(i) and H3.2(ii) δε > 0 such that

|f(t)| ≤ 1

(Cp)p
ε|t|p−1 for |t| ∈ [0, δε] ∪ [δ−1

ε ,+∞),

|f(t)| ≤Mε|t|p for |t| ∈ (δε, δ
−1
ε ).

Then for all t ∈ R
|f(t)| ≤ 1

(Cp)p
ε|t|p−1

+Mε|t|p.

|J1(u)| =

∣∣∣∣∣∣∣
∫
Ω

u(x)∫
0

f(t) dt dx

∣∣∣∣∣∣∣ ≤
∫
Ω

∣∣∣∣∣∣∣
u(x)∫
0

|f(t)| dt

∣∣∣∣∣∣∣ dx ≤
∫
Ω

∣∣∣∣∣∣∣
u(x)∫
0

1

(Cp)p
ε|t|p−1

+Mε|t|p dt

∣∣∣∣∣∣∣ dx
=

∫
Ω

1

(Cp)p
ε

1

p
|u(x)|p +Mε

1

p+ 1
|u(x)|p+1 dx

=
1

(Cp)p
ε

1

p

∫
Ω

|u(x)|p dx+Mε
1

p+ 1

∫
Ω

|u(x)|p+1 dx

=
1

(Cp)p
ε

1

p
‖u‖pLp(Ω) +Mε

1

p
‖u‖p+1

Lp+1(Ω)
.

We know that Φ(u) ≥ 1
p ‖u‖

p

W1,p
0 (Ω)

, so by dividing both sides we obtain

J1(u)

Φ(u)
≤

1
(Cp)p ε

1
p ‖u‖

p
Lp(Ω) +Mε

1
p+1 ‖u‖

p+1
Lp+1(Ω)

1
p ‖u‖

p

W1,p
0 (Ω)

≤
ε 1
p ‖u‖

p

W1,p
0 (Ω)

+Mε ‖u‖p+1

W1,p
0 (Ω)

1
p ‖u‖

p

W1,p
0 (Ω)

≤ ε+Mεp ‖u‖W1,p
0 (Ω) .

Since ‖u‖W1,p
0 (Ω) → 0 thus lim

‖u‖→0

J1(u)
Φ(u) ≤ ε. Since ε > 0 is chosen arbitrarily we

obtain lim
‖u‖→0

J1(u)
Φ(u) ≤ 0.
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Lemma 3.2.13. Assume, that H3.2(i)�H3.2(iii) holds. Then lim
‖u‖→∞

J1(u)
Φ(u) ≤ 0.

Proof. Let ε > 0. We will use conditions H3.2(i) and H3.2(ii). For εf1
= 1

(Cp)p ε there
exists by H3.2(i) and H3.2(ii) δε such that

|f(t)| ≤ 1

(Cp)p
ε|t|p−1 for |t| ∈ [0, δε] ∪ [δ−1

ε ,+∞).

|f(t)| ≤Mε|t|p−2 for t ∈ (δε, δ
−1
ε ).

Then

|f(t)| ≤ 1

(Cp)p
ε|t|p−1

+Mε|t|p−2 for t ∈ R.

|J1(u)| =

∣∣∣∣∣∣∣
∫
Ω

u(x)∫
0

f(t) dt dx

∣∣∣∣∣∣∣ ≤
∫
Ω

∣∣∣∣∣∣∣
u(x)∫
0

|f(t)| dt

∣∣∣∣∣∣∣ dx ≤
∫
Ω

∣∣∣∣∣∣∣
u(x)∫
0

1

(Cp)p
ε|t|p−1

+Mε|t|p−2 dt

∣∣∣∣∣∣∣ dx
=

∫
Ω

1

(Cp)p
ε

1

p
|u(x)|p +Mε

1

p+ 1
|u(x)|p−1 dx

=
1

(Cp)p
ε

1

p

∫
Ω

|u(x)|p dx+Mε
1

p+ 1

∫
Ω

|u(x)|p−1 dx

=
1

(Cp)p
ε

1

p
‖u‖Lp(Ω)

p
+Mε

1

p
‖u‖Lp+1(Ω)

p−1
.

We know that Φ(u) ≥ 1
p ‖u‖W1,p

0 (Ω), so by dividing both sides we obtain

J1(u)

Φ(u)
≤

1
(Cp)p ε

1
p‖u‖Lp(Ω)

p
+Mε

1
p+1‖u‖Lp+1(Ω)

p−1

1
p‖u‖W1,p

0 (Ω)
p ≤

ε 1
p‖u‖W1,p

0 (Ω)
p

+Mε‖u‖W1,p
0 (Ω)

p−1

1
p‖u‖W1,p

0 (Ω)
p

≤ ε+
Mεp

‖u‖W1,p
0 (Ω)

.

Since ‖u‖W1,p
0 (Ω) → ∞ thus lim

‖u‖→∞
J1(u)
Φ(u) ≤ ε. Since ε > 0 is chosen arbitrarily, we

have lim
‖u‖→∞

J1(u)
Φ(u) ≤ 0.

Theorem 3.2.14 (The existence of three weak solutions of Problem 3.4). Assume
that conditions H3.2(i)�H3.2(iv) hold. Then there exists β > 0 such that for each
compact interval [a, b] ⊂ (β,+∞), there exists r > 0 with the following property: for
every λ ∈ [a, b], there exists δ > 0 such that, for each γ ∈ [0, δ], the Problem 3.4 has
at least three solutions whose norm are less than r.

Proof. W1,p
0 (Ω) is obviously separable and re�exive. By Theorem 2.6.5 and Lemmas

3.2.1, 3.2.4�3.2.8, and 3.2.10�3.2.13 and since Φ(0) = J1(0) = 0 and 0 ∈ W1,p
0 (Ω)

is a strict minimum of Φ. By the abstract existence result of Ricceri there exists
[a, b] ⊂

(
1
χ ,

1
τ

)
, such that for all J2 ∈ C1, J2 has a compact derivative and Problem

3.4 has three solutions. So two of them must be non trivial.
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3.3 Example

The author would like show the following example of application

Example 3.3.1. We would like to prove the existence of a solution of a following
problem:

−∆pu(x) + µ |u(x)|p−2u(x)
|x|p = λf(u(x)) + γg(u(x)), a. e. x ∈ Ω

u|∂Ω ≡ 0,

with Ω ⊂ Rn, n ≥ 1, p = n− 1 where the function f is given by the following formula

f(u) =

{
|u|p−2+l

u sin(u), u 6= 0
0 u = 0

with 0 < l < 1 and with g : R→ R given by formula

g(u) = |u|q−2
sin(u).

Indeed, Conditions H3.1(i)-H3.1(iii) and Condition H3.1(iv) follows instantly by
the de�nitions of functions f and g.

45



46



Chapter 4

Non variational problems -

equations type

In this chapter we investigate the boundary value variational problem for a Du�ng
type equation. The Du�ng equation is a non-linear second order ordinary di�erential
equation used to model certain damped and driven oscillators, �rstly introduced in
[24] by Georg Du�ng who was inspired by joint works of O. von Martienssen and J.
Biermanns. Variational approach was found successful in proving existence of solution
of this problem. The classical variational problem for a Du�ng type equation with
Dirichlet boundary condition consist in looking for a function x ∈ H1

0 (0, 1) such that

d2

dt2
x(t) + r(t)

d

dt
x(t) +G(t, x(t), u(t)) = 0.

Here r ∈ C1 (0, 1) stands for the friction term, and G is a nonlinear term, satisfying
some suitable assumptions. In fact, G can correspond to a restoring force for a string
in string-damper system.The equation is well known for its chaotic behaviour, well
described by Holmes [30, 31, 32, 33, 34] and jointly by Holmes and Moon [52, 53].
Recently in [3, 4, 27, 62] the variational approach was used to obtain the existence
results for both periodic and Dirichlet type boundary conditions. In particular, in [3,
4, 62] the variational approaches, such as the direct method, mountain pass theorem,
and a min-max theorem due to Manasevich, have been applied for problems governed
by the Du�ng equation. due to Manashevich. In [48], in turn, a topological method
is used.

Since the Du�ng equation is useful as a mechanical model, it is also important
to know whether the solution, once its existence is proved, depends continuously
on a functional parameter and also whether this solution is unique. Hence, we assume
that the term with G depends on the control function u ∈ H1

0 (0, 1) introduced in
the variational problem. Thus, it is of interest to know the conditions which guarantee

(a) the existence of solutions,

(b) their uniqueness,

(c) dependence of solutions on parameters.

If all three conditions are satis�ed, then the problem is said to be well-posed in the
sense of Hadamard. The question of continuous dependence on parameters has a great
impact on future applications of any model since it is desirable to know whether the
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small change in the model parameters yields the solution which does not di�er much
from the solution for the original parameter values. In our investigations we base
somehow on [45], however, we use much simpler approach. As concerns the existence
of solutions we use generalization of our earlier result [37] presented recently in [39].
The current state-of-art on the Du�ng equation can be found in the recent monograph
[11].

The results presented in this section were obtained under the supervision of Pro-
fessor Marek Galewski. The result from the Section 4.1 was published in [39] and
the Section 4.2 is joint work of author and Igor Kossowski that is under preparation.

4.1 Du�ng type non variational equations

We consider the problem in the following form.

Problem 4.1. Find x ∈ H1
0 (0, 1) ∩W2,1 (0, 1) such that

d2

dt2x(t) + r(t) d
dtx(t) + g(t, x(t), u(t))− f(t, x(t)) = 0 for a. e. t ∈ (0, 1),

x(0) = x(1) = 0.

We assume that r ∈ L∞ (0, 1). The function u ∈ Lq (0, 1) shall play the role of
functional parameter. Moreover g,G : [0, 1] × R × R → R and f, F : [0, 1] × R → R
are Carathéodory functions, where those functions are connected through relations

G(t, x, u) =
x∫
0

g(t, s, u) ds and F (t, x) =
x∫
0

f(t, s) ds, satisfying the conditions below

H4.1(i) For all d > 0 there exists fd ∈ L1 (0, 1) such that for all x ∈ [−d, d]

|f(t, x)| ≤ fd(t).

H4.1(ii) There exist constants p ∈ (1, 2), q ∈ (1,+∞), s ∈ (1, q) such that for all
x, u ∈ R we have

|g(t, x, u)| ≤ |x|p−1
a(t)|u|s for a. e. t ∈ (0, 1),

|G(t, x, u)| ≤
(
|x|p a(t)

p + b(t)
)
|u|s for a. e. t ∈ (0, 1),

where a ∈ L
q
q−s (0, 1) and b ∈ L

q
q−s (0, 1). In case a, b ∈ L∞ (0, 1) it is

possible to assume that s ∈ (1, q].

H4.1(iii) For a.e. t ∈ (0, 1) the function

R 3 x 7→ F (t, x)

is convex and (t 7→ f(t, 0)) ∈ L1 (0, 1).

H4.1(iv) There exist constants A,B,C ∈ R such that

F (t, x) ≥ A|x|2 +B|x|+ C and A > −1

2

for all x ∈ R and for a.e. t ∈ (0, 1).
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H4.1(v) For any u ∈ Lq (0, 1) there exists a constant 0 ≤ L(u) < 1 such that

1∫
0

(g(t, x(t), u(t))− f(t, x(t))− g(t, y(t), u(t)) + f(t, y(t)))·

· (x(t)− y(t)) dt ≤ L(u) ‖x− y‖2H1
0(0,1) ,

‖r‖L∞(0,1)

1−L(u) < 1,

for any x, y ∈ H1
0 (0, 1).

H4.1(vi) There exists d∗ ∈ (0, 1), f̄ ∈ L1 (0, 1), M > 0 and fM ∈ L1 (0, 1) such
that

∀|x| ≥M, and for a. e. t ∈ (0, 1), |f(t, x)| ≤ f̄(t)
(

1 + |x|d
∗)
,

∀|x| < M, and for a. e. t ∈ (0, 1), |f(t, x)| ≤ fM (t).

We note that Assumption H4.1(vi) is a stronger version of Assumption H4.1(i).
The stronger condition is required in order to obtain a continuous dependence on
the functional parameter. The simplest case in which Assumption H4.1(v) is ful�lled
is the case of f and g being Lipschitz with respect to theirs second variables with
su�ciently small Lipschitz constants.

In order to solve Problem 4.1 we consider the following auxiliary problem.

Problem 4.2. Find x ∈ H1
0 (0, 1) ∩W2,1 (0, 1) such that

d2

dt2x(t) + r(t)h(t) + g(t, x(t), u(t))− f(t, x(t)) = 0 for a. e. t ∈ (0, 1),

x(0) = x(1) = 0.

where h ∈ L2 (0, 1) is a given function.

We rewrite the above Problem 4.2 in its weak form

Problem 4.3. Find x ∈ H1
0 (0, 1) which satis�es the following equality

1∫
0

(r(t)h(t) + g(t, x(t), u(t))− f(t, x(t)))v(t)− dx(t)

dt

dv(t)

dt
dt = 0,

for all v ∈ H1
0 (0, 1). Such x shall be called a weak solution of Problem 4.2.

4.1.1 The auxiliary problem

We consider the following functional

Ju(x) =

1∫
0

1

2

(
dx

dt

)2

− r(t)h(t)x(t) + F (t, x(t))−G(t, x(t), u(t)) dt.

We prove that critical points to Ju are the weak solutions of Problem 4.2. In order
to prove that Problem 4.2 has at least one solution it is su�cient to show that
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1. Functional Ju is well de�ned and di�erentiable in sense of Gâteaux.

2. Functional Ju is coercive and sequentially weakly lower semicontinuous.

3. Critical points of Ju are the solutions of Problem 4.2.

In the sequel we shall assume u ∈ Lq (0, 1) to be a �xed parameter. In order to
simplify the notation we introduce the following functionals.

J1
u(x) =

1∫
0

1
2

(
dx(t)

dt

)2

dt,

J2
u(x) =

1∫
0

r(t)h(t)x(t)dt,

J3
u(x) =

1∫
0

F (t, x(t)) dt,

J4
u(x) =

1∫
0

G(t, x(t), u(t)) dt.

Then Ju = J1
u − J2

u + J3
u − J4

u.
We start by proving that the functional Ju is well de�ned and has a Gâteaux

derivative.

Lemma 4.1.1. Assume H4.1(i) and H4.1(ii). Then the functional Ju is well de�ned
for any x ∈ H1

0 (0, 1).

The proof of the above fact is elementary.

Lemma 4.1.2. Assume that H4.1(i) holds. Then

lim
λ→0

1∫
0

F (t, x(t) + λv(t))− F (t, x(t))

λ
dt =

1∫
0

lim
λ→0

F (t, x(t) + λv(t))− F (t, x(t))

λ
dt

for every x,v ∈ H1
0 (0, 1).

Lemma 4.1.3. Assume that H4.1(ii) holds. Then

lim
λ→0

1∫
0

G(t,x(t)+λv(t),u(t))−G(t,x(t),u(t))
λ dt =

1∫
0

lim
λ→0

G(t,x(t)+λv(t),u(t))−G(t,x(t),u(t))
λ dt

for every x,v ∈ H1
0 (0, 1).

The proof of the above properties follows from the Lebesgue dominated conver-
gence theorem (Theorem A.2).

Lemma 4.1.4. Assume that H4.1(i) and H4.1(ii). Then the functional Ju is di�er-
entiable in the sense of Gâteaux and its derivative is equal to

〈
Ju
′ (x) ; v

〉
=

1∫
0

dx(t)

dt

dv(t)

dt
+ [−r(t)h(t) + f(t, x(t))− g(t, x(t), u(t))] v(t) dt.

for all v ∈ H1
0 (0, 1).

The proof for the above fact is elementary.
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Lemma 4.1.5. Assume H4.1(i) and H4.1(ii) hold. Let x ∈ H1
0 (0, 1). Then the fol-

lowing conditions are equivalent.

1. x is a critical point to Ju.

2. x is a weak solution of Problem 4.2.

The proof follows from Lemma 4.1.4. We also prove that the solution has better
regularity than H1

0 (0, 1).

Lemma 4.1.6. Let x be a solution of Problem 4.3. If both H4.1(i) and H4.1(ii) are
satis�ed, then this solution is a classical solution of Problem 4.2.

The proof of the above fact follows from the Fundamental Lemma of Calculus of
Variations (Theorem 2.1.28).

Finally we prove the existence of a critical point.

Lemma 4.1.7. Let H4.1(i) and H4.1(ii) holds. Then the functional Ju is sequentially
weakly lower semicontinuous.

Proof. It is obvious that

x 7→
1∫

0

1

2

(
d

dt
x(t)

)2

− r(t)h(t)x(t)dt,

is s.w.l.s.c. It is easy to show that −J4
u is s.w.l.s.c. using the Lebesgue dominated

convergence theorem (Theorem A.2). We prove that J3
u is s.w.l.s.c. Assume xn ⇀ x

in H1
0 (0, 1). We will prove that

liminf J3
u(xn) ≥ J3

u(x).

We argue by contradiction. Suppose there exists such a subsequence that

lim J3
u (xkn) < J3

u(x).

By the Arzela-Ascoli theorem (Theorem A.1) this subsequence admits a subsubse-
quence (xln) convergent strongly in C (0, 1). Thus, it is bounded in C (0, 1) norm.
By H4.1(i) we may reason using the Lebesgue dominated convergence theorem (The-
orem A.2). Then

J3
u(x) > lim J3

u (xln) = J3
u(x).

Thus, it contradicts the supposition. Finally Ju is s.w.l.s.c.

Lemma 4.1.8. Assume that H4.1(i) and H4.1(ii) hold. If additionally either H4.1(iii)
or H4.1(iv) holds then Ju is coercive.

Proof. We will prove that the functional Ju is bounded from below by a coercive
function depending on ‖x‖H1

0(0,1). Let x ∈ H1
0 (0, 1) be arbitrary. Clearly, J1

u(x) =
1
2 ‖x‖

2
H1

0(0,1). By the Hölder inequality one can prove that

−J2
u(x) =

1∫
0

−r(t)h(t)x(t)dt ≥ −‖r‖L∞(0,1) ‖h‖L2(0,1) ‖x‖H1
0(0,1) .
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We easily calculate

1∫
0

−G(t, x(t), u(t)) dt ≥
1∫

0

−
(
|x(t)|p a(t)

p
+ b(t)

)
|u(t)|s dt

≥ −1

p
‖x‖p

H1
0(0,1)

1∫
0

a(t)|u(t)|s dt−
1∫

0

b(t)|u(t)|s dt

≥ −1

p
‖x‖p

H1
0(0,1)

‖a‖
L

q
q−s (0,1)

‖u‖sLq(0,1) − ‖b‖L
q
q−s (0,1)

‖u‖sLq(0,1) .

Assume that H4.1(iii) holds. Then

F (t, x(t)) ≥ F (t, 0) + f(t, 0)x(t) for a. e. t ∈ (0, 1).

Thus
1∫
0

F (t, x(t)) dt ≥ −‖f(·, 0)‖L1(0,1) ‖x‖H1
0(0,1) .

Thus, if we assume H4.1(iii), the functional Ju is obviously bounded from below by
a coercive function. Now we assume H4.1(iv). We start with A < 0. Then

1∫
0

F (t, x(t)) dt ≥ A ‖x‖2H1
0(0,1) − |B| ‖x‖H1

0(0,1) + C.

If A ≥ 0 then instantly

1∫
0

F (t, x(t)) dt ≥ −|B| ‖x‖H1
0(0,1) + C,

and thus Ju is obviously coercive since A > − 1
2 .

We present the following result.

Theorem 4.1.9. Assume H4.1(i) and H4.1(ii) and either H4.1(iii) or H4.1(iv).
Then there exists at least one solution of Problem 4.2.

Proof. By Lemmas 4.1.7 and 4.1.8, and the re�exivity of H1
0 (0, 1), we see that as-

sumptions of Theorem 2.3.17 are satis�ed. Then there exists a critical point. By
Lemma 4.1.6 this critical point is a classical solution of Problem 4.2.

4.1.2 The existence of a �xed point

In this section we shall prove that using equation from Problem 4.2 we may obtain
the solution of Problem 4.1. Since we proved that Problem 4.2 for each h ∈ L2 (0, 1)
admits a classical solution it allows us to de�ne a solution operator Λ. In this section
we assume u ∈ Lq (0, 1) to be a �xed parameter. The �rst result is an easy proposition
of the Theorem 4.1.9.

Proposition 4.1.10. Let the assumptions of Theorem 4.1.9 be ful�lled and let H4.1(v)
holds. Then Problem 4.2 has exactly one solution.
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Proof. By Theorem 4.1.9 it follows that for given h ∈ L2 (0, 1) Problem 4.2 admits
at least one solution. Let x, y ∈ H1

0 (0, 1) denote any distinct two solutions of Problem
4.2. It follows that

1∫
0

(r(t)h(t) + g(t, x(t), u(t))− f(t, x(t)))v(t)− dx(t)

dt

dv(t)

dt
dt = 0,

1∫
0

(r(t)h(t) + g(t, y(t), u(t))− f(t, y(t)))v(t)− dy(t)

dt

dv(t)

dt
dt = 0,

for any test function v ∈ H1
0 (0, 1). We subtract above equations from each other and

we test the resultant equation against v = x− y ∈ H1
0 (0, 1). We get

1∫
0

(g(t, x(t), u(t))− f(t, x(t))− g(t, y(t), u(t)) + f(t, y(t)))(x(t)− y(t)) dt

=
1∫
0

(
dx(t)

dt −
dy(t)

dt

)2

dt.

By H4.1(v) it follows that

L(u) ‖x− y‖2H1
0(0,l) ≥ ‖x− y‖

2
H1

0(0,1) ,

which is impossible (because L(u) < 1) unless x = y, which proves the assertion.

Theorem 4.1.11. Assume that H4.1(i), H4.1(ii) and H4.1(v) are satis�ed and either
H4.1(iii) or H4.1(iv) holds. Then Problem 4.1 has exactly one solution.

Proof. By Proposition 4.1.10 we know that for any function h ∈ L2 (0, 1) there exists
a unique solution of Problem 4.2. This means that for any function v ∈ H1

0 (0, 1) there
exists a solution xv to the following problem,

d2

dt2x(t) + r(t) d
dtv(t) + g(t, x(t), u(t))− f(t, x(t)) = 0, for a. e. t ∈ (0, 1),

x(0) = x(1) = 0.

(4.1)

Let Λ: H1
0 (0, 1)→ H1

0 (0, 1) be a operator which to any v ∈ H1
0 (0, 1) assigns the so-

lution of (4.1) corresponding to this parameter. We will prove that Λ is a contraction.
Let h, v ∈ H1

0 (0, 1). Denote xv = Λv, xh = Λh.Equations (4.1) for h and v are
multiplied by (xv − xh) and then integrated with respect to t ∈ (0, 1).

−
1∫
0

d2xh
dt2 (xh(t)− xv(t)) dt =

1∫
0

(
r(t)dh(t)

dt + g(t, xh(t), u(t)− f(t, xh(t))
)

(xh − xv) dt,

−
1∫
0

d2xv
dt2 (xh(t)− xv(t)) dt =

1∫
0

(
r(t)dv(t)

dt + g(t, xv(t), u(t)− f(t, xv(t))
)

(xh − xv) dt.

After subtracting above equations from each other and integrating by parts we get

‖xh − xv‖2H1
0(0,1) =

1∫
0

(
r(t)dh(t)

dt + g(t, xh(t), u(t))− f(t, xh(t))
)

(xh(t)− xv(t)) dt

−
1∫
0

(
r(t)dv(t)

dt + g(t, xv(t), u(t))− f(t, xv(t))
)

(xh(t)− xv(t)) dt.
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By H4.1(v) and by Theorem 2.1.25

‖xh − xv‖2H1
0(0,1) ≤

(
‖r‖L∞(0,1) ‖h− v‖H1

0(0,1) + L(u) ‖xh − xv‖H1
0(0,1)

)
‖xh − xv‖H1

0(0,1) .

Thus, either xh = xv or

‖xh − xv‖H1
0(0,1) ≤ ‖r‖L∞(0,1) ‖h− v‖H1

0(0,1) + L(u) ‖xh − xv‖H1
0(0,1) .

Finally we get in both cases

‖Λh− Λv‖H1
0(0,1) = ‖xh − xv‖H1

0(0,1) ≤
‖r‖L∞(0,1)

1− L(u)
‖h− v‖H1

0(0,1) .

Thus, Λ is a contraction mapping. Then assumption of Banach �xed point theorem
(Theorem 2.5.2) are satis�ed and thus Λ admits a unique �xed point in H1

0 (0, 1),
which is a solution of Problem 4.1.

We note that although we obtained the uniqueness of the weak solution, the clas-
sical one is also unique since Lemma 4.1.6 holds in this case as well. We can also
prove the similar property in the limit case with p = 2.

Lemma 4.1.12. If 1 − ‖u‖sLq(0,1) ‖a‖L
q
q−s (0,1)

> 0, H4.1(i), H4.1(ii), H4.1(iii) and

H4.1(v) are satis�ed then Problem 4.1 has at least one solution.

Lemma 4.1.13. If 1− |A| − ‖u‖sLq(0,1) ‖a‖L
q
q−s (0,1)

> 0, H4.1(i), H4.1(ii), H4.1(iv)

and H4.1(v) are satis�ed then Problem 4.1 has at least one solution.

The proofs follow the lines of the proof of Theorem 4.1.11. In the next section we
will investigate the impact of functional parameter, which until now was considered
as �xed.

4.1.3 The continuous dependence on functional parameter

We will prove that the sequence of solutions, corresponding to a given sequence of
parameters, is bounded.

Theorem 4.1.14. Let (uk)k∈N ⊂ Lq (0, 1) be a bounded sequence of functional pa-
rameters. Assume H4.1(vi), H4.1(ii), H4.1(v) are satis�ed and either H4.1(iii) or
H4.1(iv) holds. Then there is a sequence (xk)k∈N of solutions to Problem 4.1, such
that each xk corresponds to a parameter uk and the whole sequence is bounded in
H1

0 (0, 1).

Proof. Let (uk)k∈N be a bounded sequence of functional parameters. By Theorem
4.1.11 for any uk there exists xk ∈ H1

0 (0, 1) ∩W2,1 (0, 1), a solution of Problem 4.1.
We may equivalently consider the following problem. For all k ∈ N, and for all
v ∈ H1

0 (0, 1), we have

1∫
0

d2xk(t)

dt2
v(t) +

(
r(t)

dxk
dt

(t) + g(t, xk(t), uk(t))− f(t, xk(t))

)
v(t) dt = 0.

We shall test against the function v = xk. We have

1∫
0

d2xk(t)

dt2
xk(t) +

(
r(t)

dxk
dt

(t) + g(t, xk(t), uk(t))− f(t, xk(t))

)
xk(t) dt = 0.
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We integrate by parts

1∫
0

(
dxk(t)

dt

)2

dt =

1∫
0

(
r(t)

dxk(t)

dt
+ g(t, xk(t), uk(t))− f(t, xk(t))

)
xk(t) dt.

By Lemma 2.1.25 we obtain that

‖xk‖2H1
0(0,1) ≤

 1∫
0

∣∣∣∣r(t)dxk(t)

dt
+ g(t, xk(t), uk(t))− f(t, xk(t))

∣∣∣∣ dt
 ‖xk‖H1

0(0,1) .

If ‖xk‖H1
0(0,1) = 0, the assertion is trivial. We may assume that ‖xk‖H1

0(0,1) > 0. Then

‖xk‖H1
0(0,1) ≤

1∫
0

∣∣∣∣r(t)dxk(t)

dt

∣∣∣∣ dt+

1∫
0

|g(t, xk(t), uk(t))− f(t, xk(t))| dt.

Suppose the sequence xk is unbounded in H1
0 (0, 1). By H4.1(vi) and H4.1(ii) for

su�ciently large k we obtain

‖xk‖H1
0(0,1)

(
1− ‖r‖L∞(0,1)

)
≤ ‖xk‖p−1

H1
0(0,1)

‖u‖sLq(0,1) ‖a‖L
q
q−s (0,1)

+
∥∥f̄ + fM

∥∥
L1(0,1)

(
1 + ‖xk‖d

∗

H1
0(0,1)

)
.

The above is equivalent to

‖xk‖H1
0(0,1)

(
1− ‖r‖L∞(0,1)

)
− ‖xk‖p−1

H1
0(0,1)

‖u‖sLq(0,1) ‖a‖L
q
q−s (0,1)

−
∥∥f̄ + fM

∥∥
L1(0,1)

‖xk‖d∗H1
0(0,1) ≤

∥∥f̄ + fM
∥∥

L1(0,1)
.

(4.2)

Since the left hand side is a coercive functional, its values would go up to in�nity as
k →∞. This contradicts (4.2).

Now we focus on the dependence on the functional parameter.

Theorem 4.1.15. Let (uk)k∈N ⊂ Lq (0, 1), k ∈ N be a bounded sequence of functional
parameters. Assume H4.1(vi), H4.1(ii), H4.1(v) are satis�ed and either H4.1(iii) or
H4.1(iv) holds. Let (xk)k∈N be the sequence of solutions of Problem 4.1 corresponding
to the functions uk. We have

• If uk → u strongly in Lq (0, 1) then xk ⇀ x̄ in H1
0 (0, 1) and x is a solution of

Problem 4.1 corresponding to u.

• If g(t, x, u) = g(t, x)u, and if assumption H4.1(ii) is replaced with

|g(t, x)| ≤ |x|p−1
a(t), a ∈ L

q
q−s (0, 1) ,

then for any sequence of parameters uk ⇀ u converging weakly in Lq (0, 1) there
exists a sequence of solutions to Problem 4.1 such that xk ⇀ x̄ weakly in H1

0 (0, 1)
and x is a solution of Problem 4.1 corresponding to u.
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Proof. By Theorem 4.1.11 for each uk there exists the corresponding solution xk
of Problem 4.1. By Theorem 4.1.14 the sequence xk is bounded in H1

0 (0, 1). By
the Rellich�Kondrachov theorem (Theorem 2.1.26) this sequence admits a subse-
quence xnk convergent strongly in L2 (0, 1) and in C ([0, 1]) and also weakly in H1

0 (0, 1).
Let x be an element such that xnk ⇀ x in H1

0 (0, 1). By the Fundamental Lemma of
Calculus of Variations we can use work with the weak formulation. Let v ∈ H1

0 (0, 1).
Note that

1∫
0

dxnk (t)

dt

dv(t)

dt
dt =

1∫
0

(
r(t)

dxnk (t)

dt
+ g(t, xnk (t), unk (t))− f(t, xnk (t))

)
v(t) dt. (4.3)

Since (xnk) converges weakly in H1
0 (0, 1) then, we can pass to the limit in the �rst

two terms in the above equation.

−
1∫

0

dxnk(t)

dt

dv(t)

dt
dt→ −

1∫
0

dx(t)

dt

dv(t)

dt
dt,

and
1∫

0

r(t)
dxnk(t)

dt
v(t) dt→

1∫
0

r(t)
dx(t)

dt
v(t) dt.

Since (xnk) is bounded then by H4.1(vi) then it follows that there exists a number
d > 0 and a function fd ∈ L1 (0, 1) such that ‖xnk‖ ≤ d and

|f(t, xnk(t))| ≤ fd(t).

By the Krasnoselskii theorem we obtain

−
1∫

0

f(t, xnk(t))v(t) dt→ −
1∫

0

f(t, x(t))v(t)dt.

Assume that uk → u strongly in Lq (0, 1). This sequence is bounded in Lq (0, 1).
By the Lebesgue dominated convergence theorem (Theorem A.2) and since g is
a Carathéodory function, we have

1∫
0

g(t, xnk(t), unk(t))v(t) dt→
1∫

0

g(t, x(t), u(t))v(t) dt.

By the uniqueness in Theorem 4.1.11 and by the Fundamental Lemma x is a solution
of Problem 4.1 corresponding to u. We have obtained a convergent subsequence.

We know that Hausdor� topological spaces have the following property. If from
any subsequence of a sequence we can choose a subsequence that is convergent, and
all of those subsequences converge to the same limit, then the whole sequence is con-
vergent. Since uk → u strongly in Lq (0, 1), then any subsequence of uk is convergent
to the same limit. Let (xsn)n∈N be an arbitrary subsequence of (xn)n∈N. We apply
the above reasoning to xsn which is bounded since (xn) was. Thus, xsn admits a sub-
sequence xksn convergent to a solution of Problem 4.1 with parameter limusn = u in
Lq (0, 1). By Theorem 4.1.11 the solution for a given u is unique. This means that
for an arbitrary subsequence xsn , there exists a convergent subsequence, and each

56



of those subsequences share the same limit. Thus, (xn)n∈N is convergent weakly in
H1

0 (0, 1).
We now consider the second case. Instead of H4.1(ii) we assume that

g(t, x, u) = g(t, x)u

and
|g(t, x)| ≤ |x|p−1

a(t), a ∈ L
q
q−s (0, 1) . (4.4)

We assume that un ⇀ u in Lq (0, 1). By Theorem 4.1.14 for each un there exists
a solution xn of Problem 4.1. Moreover, the sequence of solutions is bounded in
H1

0 (0, 1). Thus, it has a convergent subsequence, weakly in H1
0 (0, 1) and strongly

both in L2 (0, 1) and C ([0, 1]). Let (xnk)n∈N be a subsequence convergent to x. We
proceed as in the previous part of the proof, except for the convergence of the following
term

1∫
0

g(t, xnk(t))unk(t)v(t) dt→
1∫

0

g(t, x(t))u(t)v(t)dt. (4.5)

By the Krasnoselskii theorem (Theorem 2.3.5) we know that

g(t, xnk(t))v(t)→ g(t, x(t))v(t)

in L
q
q−1 (0, 1). By Theorem 2.3.11 we get (4.5).

4.2 Multidimensional Du�ng type non variational

equation

In this section we shall generalize the result of the previous section to the problem
de�ned on domain that is an open, bounded subset of Rn. Taking such general
domain in place of a segment must bring some di�culties. Yet the main purpose
of this section is to show that the approach presented in Section 4.1 can also be
applied in the more general case. Unfortunately this requires the strengthening of
the assumptions in order to obtain weak solutions. Even if we do that, we cannot
obtain higher regularity of the solution without having some more assumptions on
domain.

The problem we consider in this section has the following form, and we are inter-
ested in its weak solutions.

Problem 4.4. Find u ∈ H1
0 (Ω), where Ω ⊂ Rn is open and bounded set, such that

∆u(x) + r(x) · ∇u(x) + g(x, u(x),m(x)) = f(x, u(x)) for a. e. x ∈ Ω
u|∂Ω ≡ 0.

The above presented problem is understand as equivalent to the following one.

Problem 4.5. Find u ∈ H1
0 (Ω), where Ω ⊂ Rn is open and bounded set, such that∫

Ω

∇u(x) · ∇v(x)− r(x) · ∇u(x)v(x)− g(x, u(x),m(x))v(x) + f(x, u(x))v(x) dx = 0,

for all v ∈ H1
0 (Ω).
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We assume that r ∈ L∞ (Ω,Rn), m ∈ Lq (Ω) for 1 < q < +∞ and shall play a role
of a parameter. Moreover we assume that g,G : Ω×R×R→ R and f, F : Ω×R→ R
are Carathéodory functions satisfying the following conditions

H4.2(i) f and F are connected through the relation F (x, u) =
u∫
0

f(x, s)ds and

there exists f̄ ∈ L1 (Ω) such that

∀u ∈ R |f(x, u)| ≤ f̄(x).

H4.2(ii) There exist constants p ∈ (1, 2), s ∈
(
1,
(
1− p

2

)
q
)
such that G and g

are connected through formula G(x, u,m) =
u∫
0

g(t, s,m) ds and for all

u,m ∈ R we have

|g(x, u,m)| ≤ |u|p−1
a(x)|m|s a. e. x ∈ Ω,

|G(x, u,m)| ≤
(
|u|p a(x)

p
+ b(t)

)
|m|s a. e. x ∈ Ω,

where a ∈ L

q

q(1− p
2 )−s (Ω) and b ∈ L

q
q−s (Ω), in case a, b ∈ L∞ (Ω) we can

assume that s ∈
(
1,
(
1− p

2

)
q
]
.

H4.2(iii) For a.e. x ∈ Ω the function

R 3 u 7→ F (x, u)

is convex and (x 7→ f(x, 0)) ∈ L2 (Ω).

H4.2(iv) There exist constants A,B,C ∈ R such that

F (x, u) ≥ A|u|2 +B|u|+ C and A > − 1

2Cp
,

for all u ∈ R, for a.e. x ∈ Ω, where Cp is the best constant in the compact
embedding H1

0 (Ω) ⊂⊂ L2 (Ω).

H4.2(v) For any m ∈ Lq (Ω) there exists a constant 0 ≤ L(m) < 1 such that∫
Ω

(g(x, u(x),m(x))− f(x, u(x))− g(x,w(x),m(x)) + f(x,w(x)))·

· (u(x)− w(x)) dx ≤ L(m) ‖u− w‖2H1
0(Ω) ,

‖r‖L∞(Ω,Rn)Cp

1−L(m) < 1,

for any u,w ∈ H1
0 (Ω).

In order to solve Problem 4.5 we introduce an auxiliary problem.

Problem 4.6. Find u ∈ H1
0 (Ω), where Ω ⊂ Rn is open and bounded set, such that∫

Ω

∇u(x) · ∇v(x)− r(x) · h(x)v(x)− g(x, u(x),m(x))v(x) + f(x, u(x))v(x) dx = 0,

for all v ∈ H1
0 (Ω), where h ∈ L2 (Ω;Rn).
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4.2.1 The auxiliary problem

We consider the following functional

J(u) =

∫
Ω

1

2
(∇u(x))

2 − r(x) · h(x)u(x) + F (x, u(x))−G(x, u(x),m(x)) dx.

We will prove that critical points to J are the weak solutions to Problem 4.6. In order
to prove that Problem 4.6 has at least one solution it is su�cient to show that

1. The functional J is well de�ned and di�erentiable in sense of Gâteaux.

2. The functional J is coercive and sequentially weakly lower semicontinuous.

3. The critical points of J are the solutions of Problem 4.6.

In the sequel we shall assume m ∈ Lq (Ω) to be a �xed parameter. In order to simplify
the proofs we introduce the following functionals

J1(u) =
∫
Ω

1
2 |∇u(x)|2 dx,

J2(u) =
∫
Ω

r(x) · h(x)u(x) dx,

J3(u) =
∫
Ω

F (x, u(x)) dx,

J4(u) =
∫
Ω

G(x, u(x),m(x)) dx.

Then J = J1 − J2 + J3 − J4.
We start by proving that the functional J is well de�ned and admits a Gâteaux

derivative.

Lemma 4.2.1. Assume that H4.2(i) and H4.2(ii) hold. Then the functional J is well
de�ned for any u ∈ H1

0 (Ω).

The proof of the above fact is elementary.

Lemma 4.2.2. Assume that H4.2(i) holds. Then

lim
λ→0

∫
Ω

F (x, u(x) + λv(x))− F (x, u(x))

λ
dx =

∫
Ω

lim
λ→0

F (x, u(x) + λv(x))− F (x, u(x))

λ
dx

for every u,v ∈ H1
0 (Ω).

Lemma 4.2.3. Assume that H4.2(ii) holds. Then

lim
λ→0

∫
Ω

G(x,u(x)+λv(x),m(x))−G(x,u(x),m(x))
λ

dx =
∫
Ω

lim
λ→0

G(x,u(x)+λv(x),m(x))−G(x,u(x),m(x))
λ

dx

for every u,v ∈ H1
0 (Ω).

The proof of above properties follows from the Lebesgue dominated convergence
theorem (Theorem A.2).

Lemma 4.2.4. Assume H4.2(i) and H4.2(ii) holds. Then functional J is di�eren-
tiable in the sense of Gâteaux and its derivative is given by

〈J ′ (u) ; v〉 =

∫
Ω

∇u(x) ·∇v(x)+[−r(x) · h(x) + f(x, u(x))− g(x, u(x),m(x))] v(x)dx.

(4.6)
for all v ∈ H1

0 (Ω).
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The proof of the above fact is elementary.

Lemma 4.2.5. Assume that H4.2(i) and H4.2(ii) hold. Let u ∈ H1
0 (Ω). Then

the following conditions are equivalent.

1. u is a critical point of J .

2. u is a weak solution of Problem 4.6.

The proof follows from Lemma 4.2.4.

Finally we prove the existence of a critical point.

Lemma 4.2.6. Assume H4.2(i) and H4.2(ii) hold. Then the functional J is sequen-
tially weakly lower semicontinuous.

Proof. It is obvious that

u 7→
∫
Ω

1

2
|∇u(x)|2 − r(x) · h(x)u(x)dx,

is s.w.l.s.c. It is easy to show that −J4 and J3 are s.w.l.s.c. using the Lebesgue
dominated convergence theorem (Theorem A.2).

Lemma 4.2.7. Assume that H4.2(i) and H4.2(ii) hold. If additionally either H4.2(iii)
or H4.2(iv) holds then J is coercive.

Proof. We will prove that the functional J is bounded from below by a coercive func-
tion dependent on ‖u‖H1

0(Ω). Let u ∈ H1
0 (Ω) be arbitrary. We see that J1(u) = 1

2 ‖u‖
2
H1

0(Ω).
By the Hölder and Poincaré inequalities one can prove that

−J2(x) =

∫
Ω

−r(u) · h(x)u(x) dx ≥ −Cp ‖r‖L∞(Ω,Rn) ‖h‖L2(Ω,Rn) ‖u‖H1
0(Ω) ,

where Cp is a constant from Theorem 2.1.21. We can easily calculate that∫
Ω

−G(x, u(x),m(x)) dx ≥
∫
Ω

−
(
|u(x)|p a(x)

p
+ b(x)

)
|m(x)|s dx

≥ −1

p

∫
Ω

|u(x)|pa(x)|m(x)|s dx−
∫
Ω

b(x)|m(x)|s dx

≥ −1

p
Cpp ‖u‖

p
H1

0(Ω)
‖a‖

L

q

q(1− p
2 )−s (Ω)

‖m‖sLq(Ω) µ (Ω)(
q−s
q + 2−p

2 )

− ‖b‖
L

q
q−s (Ω)

‖m‖sLq(Ω) µ (Ω)(
q−s
q ) ,

where µ (Ω) is the n-dimensional Lebesgue measure of the set Ω. Assume that
H4.2(iii) holds. Then

F (x, u(x)) ≥ F (x, 0) + f(x, 0)u(x) for a. e. x ∈ Ω.

Then as we integrate both sides, we obtain∫
Ω

F (x, u(x)) dx ≥ −‖f(·, 0)‖L2(Ω) Cp ‖u‖H1
0(Ω) .
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If we assume H4.2(iii), the functional J is obviously bounded from below by a coercive
function. Now we assume H4.2(iv). At �rst assume A < 0, then∫

Ω

F (x, u(x)) dx ≥ AC2
p ‖x‖

2
H1

0(Ω) − |B|Cp
√
µ (Ω) ‖x‖H1

0(Ω) + C µ (Ω) .

If A ≥ 0 then instantly∫
Ω

F (x, u(x)) dx ≥ −|B|Cp
√
µ (Ω) ‖x‖H1

0(Ω) + C µ (Ω) ,

and thus the functional is obviously coercive since A > − 1
2C2

p
.

We present the following result.

Theorem 4.2.8. Assume H4.2(i) and H4.2(ii) and either H4.2(iii) or H4.2(iv).
Then there exists at least one solution of Problem 4.6.

Proof. By Lemmas 4.2.6 and 4.2.7, and the re�exivity of H1
0 (Ω), we see that assump-

tions of Theorem 2.3.17 are satis�ed. Then there exists a critical point. By Lemma
4.2.5 this critical point is a weak solution of Problem 4.6.

4.2.2 The existence of a �xed point

In this section we shall prove that using equation from Problem 4.6 we may obtain
the solution of Problem 4.5. Since we proved that Problem 4.6 for each h ∈ L2 (Ω;Rn)
admits a weak solution it allows us to de�ne a solution operator Λ. In this section
we assume m ∈ Lq (Ω) is a �xed parameter. The �rst result is an easy proposition of
the Theorem 4.2.8.

Proposition 4.2.9. Let the assumptions of Theorem 4.2.8 be satis�ed and assume
that H4.2(v) holds. Then Problem 4.6 has exactly one solution.

Proof. By Theorem 4.2.8 it follows that for given h ∈ L2 (Ω,Rn) Problem 4.6 admits
at least one solution. Let u,w ∈ H1

0 (Ω) denote any distinct two of them. It follows
that∫

Ω

∇u(x) · ∇v(x)− r(x) · h(x)v(x)− g(x, u(x),m(x))v(x) + f(x, u(x))v(x) dx = 0,

∫
Ω

∇w(x) · ∇v(x)− r(x) · h(x)v(x)− g(x,w(x),m(x))v(x) + f(x,w(x))v(x) dx = 0,

for any test function v ∈ H1
0 (Ω). We subtract above equations from each other and

we test against v = x− y ∈ H1
0 (Ω).∫

Ω

|∇u−∇v|2 dx =

∫
Ω

(g(x, u(x),m(x))− f(x, u(x))− g(x,w(x),m(x)) + f(x,w(x)))(u(x)− w(x)) dx.

By H4.1(v) it follows that

L(m) ‖u− w‖2H1
0(Ω) ≥ ‖u− w‖

2
H1

0(Ω) ,

which is impossible (because L(m) < 1) unless u = w, which proves the assertion.
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Theorem 4.2.10. Assume that H4.2(i), H4.2(ii) and H4.2(v) are satis�ed and either
H4.2(iii) or H4.2(iv) holds. Then Problem 4.5 has exactly one solution.

Proof. By Theorem 4.2.9 we know that for any function h ∈ L2 (Ω,Rn) there exists
a unique solution of Problem 4.6. This means that for any function w ∈ H1

0 (Ω) there
exists a solution uw of the following problem,∫

Ω

∇uw(x) · ∇v(x)− r(x) · ∇w(x)uw(x)− g(x, uw(x),m(x))v(x) + f(x, uw(x))v(x)dx = 0 (4.7)

for all v ∈ H1
0 (Ω). Let Λ: H1

0 (Ω)→ H1
0 (Ω) be an operator which to any w ∈ H1

0 (Ω)
assigns the solution of (4.7) corresponding to this parameter. We prove that Λ is
a contraction.

Let h,w ∈ H1
0 (Ω). Denote uw = Λw, uh = Λh. Assume uw 6= uh. Otherwise

condition for contraction mappings holds. Equation (4.7) for h and v are tested
against v = (uw − uh). Thus∫

Ω

∇uh(x) · ∇(uh(x)− uw(x)) dx =

=
∫
Ω

(r(x) · ∇h(x) + g(x, uh(x),m(x))− f(x, uh(x))) (uh(x)− uw(x)) dx,

∫
Ω

∇uw(x) · ∇(uh(x)− uw(x)) dx =

=
∫
Ω

(r(x) · ∇w(x) + g(x, uw(x),m(x))− f(x, uw(x))) (uh(x)− uw(x)) dx.

After subtracting above equations from each other we get

‖uh − uw‖2H1
0(Ω) =

∫
Ω

(r(x) · ∇h(x) + g(x, uh(x),m(x))− f(x, uh(x))) (uh(x)− uw(x)) dx

−
∫
Ω

(r(x) · ∇w(x) + g(x, uw(x),m(x))− f(x, uw(x))) (uh(x)− uw(x)) dx.

By uh 6= uw relation and H4.2(v) and by the Hölder inequality

‖uh − uw‖2H1
0(Ω) ≤

(
‖r‖L∞(Ω) Cp ‖h− v‖H1

0(Ω) + L(m) ‖uh − uw‖H1
0(Ω)

)
‖uh − uw‖H1

0(Ω) .

Thus

‖uh − uw‖H1
0(Ω) ≤ ‖r‖L∞(Ω) Cp ‖h− v‖H1

0(Ω) + L(m) ‖uh − uw‖H1
0(Ω) .

Finally we get for both cases

‖Λh− Λv‖H1
0(Ω) = ‖uh − uw‖H1

0(Ω) ≤
‖r‖L∞(Ω) Cp

1− L(m)
‖h− v‖H1

0(Ω) .

Thus, Λ is a contraction mapping. Then assumptions of the Banach �xed point
theorem (Theorem 2.5.2) are satis�ed and thus Λ admits a unique �xed point in
H1

0 (Ω), which is a solution of Problem 4.5.

4.3 Example

We present the following example
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Example 4.3.1. We would like to prove the existence of a weak solution of a following
problem

d2x

dt2
(t) + 0.25 · e− t

2

2
dx

dt
(t) +

1

4

x(t)

1 + x(t)2
arcsin t · un(t)− 1

2
e−tx(t) = t+ 1, (4.8)

where

un(t) =

{
1, t ∈ [0, 1

n ]
0, t ∈ ( 1

n , 1]

is a control function. Condition H4.1(i) is satis�ed, since

F (·, x) =
1

2
e−(·)x2 ∈ L1 (0, 1) ,

and for any d > 0 and x ∈ [−d, d] we have that

f(t, x) =
1

2
e−tx ≤ 1

2
e−td ∈ L1 (0, 1) .

Condition H4.1(ii) is satis�ed since

G(t, x, u) =
1

4

x

1 + x2
arcsin t · u ≤ |x|

(
1

4
arcsin t · u

)
and 1

4 arcsin t · u(t) ∈ L∞ (0, 1).

Also Condition H4.1(iii) is satis�ed since F (·, x) = 1
2e
−(·)x2 is convex with respect

to its second variable. We observe that

|f(t, x)− f(t, y)| =
∣∣∣∣12e−t(x− y)

∣∣∣∣.
After integrating both sides with respect to t ∈ (0, 1), and knowing that

|x(t)− y(t)| ≤ ‖x− y‖L∞(0,1) ≤ ‖x− y‖H1
0(0,1) .

We obtain

1∫
0

|f(t, x)− f(t, y)| dt ≤ ‖x− y‖H1
0(0,1)

1∫
0

1

2
e−tdt =

e− 1

2e
‖x− y‖H1

0(0,1) .

Moreover, we have

|g(t, x, u)− g(t, y, u)| =
∣∣∣∣14 x

1 + x2
arcsin t · u− 1

4

y

1 + y2
arcsin t · u

∣∣∣∣
=

1

4
|arcsin t · u|

∣∣∣∣ x

1 + x2
− y

1 + y2

∣∣∣∣
≤ 1

4
|arcsin t · u||x− y| |1− xy|

(1 + x2) · (1 + y2)

≤ 1

4
· | arcsin t · u||x− y| ≤ π

8
|x− y|.

Similarly we obtain

1∫
0

|g(t, x, u)− g(t, y, u)|dt ≤ π

8
‖x− y‖H1

0(0,1)
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which jointly implies that

1∫
0

(g(t, x, u)− f(t, x)− g(t, y) + f(t, y))(x− y)dt

≤‖x− y‖H1
0(0,1)

 1∫
0

|g(t, x, u)− g(t, y, u)|dt+

1∫
0

|f(t, x)− f(t, y)|dt


≤π

8
‖x− y‖2H1

0(0,1) +
e− 1

2e
‖x− y‖2H1

0(0,1) ≤ L ‖x− y‖
2
H1

0(0,1)

with L = 0, 71 < 1. Since ‖r‖L∞(0,1) =
∥∥∥0.25 · e− t

2

2

∥∥∥
L∞(0,1)

= 0.25 and

‖r‖L∞(0,1)

1−L = 0.25
1−0.71 < 0.87 < 1 then by Proposition 4.1.12 we conclude that problem

(4.8) has at least one solution for each un. Then it follows from Theorem 4.1.15 that
the solution for u such that un → u is x such that xn ⇀ x. Thus, x is a solution of

d2x

dt2
(t) + 0.25 · e− t

2

2
dx

dt
(t)− 1

2
e−tx(t) = t+ 1,

x(0) = x(1) = 0.
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Chapter 5

Non variational problems -

inclusions

In this chapter we investigate the boundary value problem for a Du�ng type di�eren-
tial equation with multivalued terms. The equation originates in the model of a cer-
tain damped and driven oscillators. The variational approach was found successful in
proving the existence of a solution of this problem, see for example [27, 38, 62]. Later,
the problem was generalized into di�erential inclusion in [38]. The concept presented
in [37, 38, 39] is a two step approach that relies on solving the auxiliary problem �rst,
and then using the iterative procedure and appropriate �xed point theorem to obtain
the solution of the original problem. Such approach was used also in [14], where, as in
[38], the auxiliary problem was solved using the theory of pseudomonotone operators
presented well for example in [15, 50].

This article presents the extension of the results from [38] to cover a wider class of
problems. This generalization is possible due to the replacement of the argument of
[38] based on the Banach contraction principle with the one based on Kakutani�Ky
Fan�Glicksberg �xed point theorem and a truncation argument. In particular, the re-
sults of [38] concerning variational approach to Du�ng type equations and inclusions
allow to deal only with the nonlinearities of at most linear growth. This case does
not cover the original equation introduced by Du�ng in [24], where the nonlinearity
grows cubical. The approach of this article allows, as a particular case, the Du�ng
equation with the nonlinearity of cubic growth. The methods of the present paper
also allow to handle the multifunctions appearing in the boundary conditions, see
Section 5.2. Since the assumptions on the multifunctions are satis�ed by the gener-
alized subdi�erentials in the sense of Clarke, the main results hold for a particular
case where the multivalued nonlinearity has the form of the Clarke subdi�erential (see
[16, 50]).

The existence results for ordinary di�erential inclusions which use the Kakutani�
Fan�Glicksberg �xed point theorem were obtained earlier for example in [44], or, more
recently, in [5] where the model corresponds to the problem with the dry friction term
depending on the velocity.

In this chapter we shall prove the existence for two boundary value problems
governed by the Du�ng equation. The classical formulation of two problems under
consideration will be the following
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Problem (Du�ng type inclusion with Dirichlet boundary value conditions). Find
x ∈ H1

0 (0, 1) ∩W2,1 (0, 1) such that

− d2

dt2
x(t)− r(t) d

dt
x(t) +N1(t, x(t)) 3 f(t) for a. e. t ∈ (0, 1),

x(0) = x(1) = 0.

The second problem is as follows

Problem (Du�ng type equation with multivalued generalized Robin boundary value
condition). Find x ∈ H1

0 (0, 1) ∩W2,1 (0, 1) such that

− d2

dt2
x(t)− r(t) d

dt
x(t) = f(t) for a. e. t ∈ (0, 1),

x(0) = 0,

− d

dt
x(1) ∈ N2(x(1)).

In this chapter we shall present that the two-step approach presented in Chapter 4
can be extended to problem concerning di�erential inclusions.

The results presented in this chapter were obtained by author in cooperation with
Piotr Kalita, and they are a direct generalization of the author's result presented in
[38] obtained under the supervision of Professor Anna Ochal.

5.1 Du�ng type inclusions

Problem 5.1. Find x ∈ H1
0 (0, 1) ∩W2,1 (0, 1) such that

− d2

dt2
x(t)− r(t) d

dt
x(t) +N1(t, x(t)) 3 f(t) a. e. t ∈ (0, 1), (5.1)

x(0) = x(1) = 0. (5.2)

In a standard way we obtain the following weak formulation of Problem 5.1.

Problem 5.2. Find (x, η) ∈ H1
0 (0, 1) × L2 (0, 1) such that for all v ∈ H1

0 (0, 1) we
have

1∫
0

dx(t)

dt

dv(t)

dt
− r(t)dx(t)

dt
v(t) + η(t)v(t)dt =

1∫
0

f(t)v(t) dt,

and for a. e. t ∈ (0, 1) we have η(t) ∈ N1(t, x(t)).

5.1.1 Existence result for growth condition on N1

We make the following hypotheses on the problem data which will be valid only in
this section.

H5.1(i) f ∈ L1 (0, 1) and r ∈ L∞ (0, 1) is such that ‖r‖L∞(0,1) < π.

H5.1(ii) N1 : (0, 1) × R → 2R, the sets N1(t, ξ) are nonempty, convex and closed
for all ξ and a. e. t,
(t, ξ) ∈ (0, 1) × R, and for every ξ ∈ R the multifunction t → N1(t, ξ)
has a measurable selection.
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H5.1(iii) For a.e. t ∈ (0, 1) the graph of the multivalued mapping ξ → N1(t, ξ) is
closed in R2,

H5.1(iv) For all ξ ∈ R and a. e. t ∈ (0, 1) with η ∈ N1(t, ξ) and with constants
C1, C2 > 0.

|η| ≤ C1 + C2|ξ|.

H5.1(v) C2 < π − ‖r‖L∞(0,1).

5.1.2 The auxiliary problem

Consider the auxiliary problem.

Problem 5.3. Let g ∈ L2 (0, 1) be given. Find x ∈ H1
0 (0, 1) such that for all

v ∈ H1
0 (0, 1) we have

1∫
0

dx(t)

dt

dv(t)

dt
− r(t)dx(t)

dt
v(t) + g(t)v(t) dt =

1∫
0

f(t)v(t) dt. (5.3)

Theorem 5.1.1. Let H5.1(i) hold. Then Problem 5.3 has a unique solution x ∈ H1
0 (0, 1).

Proof. We set

B(x, v) =

1∫
0

dx(t)

dt

dv(t)

dt
− r(t)dx(t)

dt
v(t)dt.

Clearly B : H1
0 (0, 1)× H1

0 (0, 1)→ R and it is a continuous bilinear form. Coercivity
of B follows directly from the Poincaré inequality (Theorem 2.1.22). By the Lax�
Milgram theorem (Theorem 2.2.1) the Problem 5.3 has a unique solution x ∈ H1

0 (0, 1).

Denote by Λ1 : L2 (0, 1) → H1
0 (0, 1) the mapping that assigns to the function

g ∈ L2 (0, 1) the unique solution x ∈ H1
0 (0, 1) of Problem 5.3. We have the following

Lemmata.

Lemma 5.1.2. Let H5.1(i) hold. Then the operator Λ1 satis�es

‖Λ1g‖H1
0(0,1) ≤

‖g‖L2(0,1)

π − ‖r‖L∞(0,1)

+
π ‖f‖L1(0,1)

π − ‖r‖L∞(0,1)

.

Proof. The assertion follows directly by taking v = x in (5.3) and application of
Schwarz and Poincaré inequalities.

Lemma 5.1.3. Let H5.1(i) hold. The graph of Λ1 is sequentially closed in
(L2 (0, 1) , weak)× (H1

0 (0, 1) , weak) topology.

Proof. Let gn ⇀ g weakly in L2 (0, 1) and xn ⇀ x weakly in H1
0 (0, 1) be sequences

such that xn solves Problem 5.3 with gn in place of g. We must show that x solves
Problem 5.3 with g. Let v ∈ H1

0 (0, 1) be �xed arbitrarily. By the de�nition of weak
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convergence

1∫
0

dxn(t)

dt

dv(t)

dt
dt→

1∫
0

dx(t)

dt

dv(t)

dt
dt,

1∫
0

r(t)
dxn(t)

dt
v(t)dt→

1∫
0

r(t)
dx(t)

dt
v(t) dt,

1∫
0

gn(t)v(t)dt→
1∫

0

g(t)v(t) dt,

for any v ∈ H1
0 (0, 1). Thus

1∫
0

dxn(t)

dt

dv(t)

dt
− r(t)dxn(t)

dt
v(t) + gn(t)v(t) dt =

1∫
0

f(t)v(t) dt,

↓ ↓
1∫

0

dx(t)

dt

dv(t)

dt
− r(t)dx(t)

dt
v(t) + g(t)v(t) dt =

1∫
0

f(t)v(t) dt.

Since v ∈ H1
0 (0, 1) was arbitrary, the above states that x = Λ1g which proves closed-

ness.

5.1.3 The existence of a �xed point

We are in position to de�ne the multivalued mapping Λ: L2 (0, 1)→ 2L2(0,1) in the fol-
lowing way

η ∈ Λg ⇐⇒ η is mesurable and η(t) ∈ N1(t, (Λ1g)(t)) a. e. t ∈ (0, 1).

Obviously η is a �xed point of Λ if and only if (Λ1η, η) solves Problem 5.2. We
formulate several lemmata on properties of the multivalued mapping Λ.

Lemma 5.1.4. Under assumptions H5.1(i)-H5.1(iv) the mapping Λ: L2 (0, 1)→ 2L2(0,1)

has nonempty and convex values.

Proof. We already proved that Λ1 is a well de�ned single-valued operator. Let
g ∈ L2 (0, 1) be arbitrary �xed. We will consider the multifunction M : (0, 1) → 2R

de�ned by
M(t) = N1 (t, (Λ1g)(t)) .

First we show that this multifunction has a measurable selection. Denote u = Λ1g.
Let vn : (0, 1) → R be a sequence of simple (i.e. piecewise constant and measurable)
functions such that |vn(t)| ≤ |u(t)| and vn(t) → u(t) a.e. t ∈ (0, 1). By H5.1(ii) it
follows that there exists a sequence of measurable functions ξn : (0, 1)→ R such that
ξn(t) ∈ N1(t, vn(t)) for a.e. t ∈ (0, 1). By H5.1(iv) it follows that

‖ξn‖2L2(0,1) =

1∫
0

ξn(t)2 dt ≤ 2C2
1 + 2C2

2 ‖vn‖
2
L2(0,1) ≤ 2C2

1 + 2C2
2 ‖u‖

2
L2(0,1) ,
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and hence, for a subsequence, not renumbered, we have

ξn ⇀ ξ weakly in L2 (0, 1) for certain ξ ∈ L2 (0, 1).

Since for a.e. t ∈ (0, 1) we have

|ξn(t)| ≤ C1 + C2|vn(t)| ≤ C1 + C2|u(t)|,

we can de�ne G(t) = {z ∈ R : |z| ≤ C1 + C2|u(t)|} and we can use Lemma 2.4.8
concluding that

ξ(t) ∈ conv K- limsup
n→∞

{ξn(θ)} a.e. t ∈ (0, 1).

Now z ∈ K- limsupn→∞{ξn(t)}, whenever ξnk(t)→ z. Keeping in mind that

ξnk(t) ∈ N1(t, vnk(t))

and vnk(t) → u(t) we can use H5.1(iii) to conclude that z ∈ N1(t, u(t)) for a.e.
t ∈ (0, 1). Hence we have

ξ(t) ∈ conv N1(t, u(t)) = N1(t, u(t)) a.e. t ∈ (0, 1),

ξ being the required measurable selection.
Now we must prove that every measurable selection ξ of the multifunction M

belongs to L2 (0, 1). This fact, however, is a simple consequence of H5.1(iv) and
the fact that Λ1g belongs to L2 (0, 1). Finally, the fact that the values of N1 are
convex implies that a convex combination of any two measurable selections of M is
also a measurable selection of M . The assertion is proved.

Lemma 5.1.5. Under assumptions H5.1(i)-H5.1(iv) the graph of Λ is sequentially
closed in (L2 (0, 1) ,weak)× (L2 (0, 1) ,weak) topology.

Proof. Let (gn)n∈N ⊂ L2 (0, 1) , gn ⇀ g weakly in L2 (0, 1) and (ηn)n∈N ⊂ L2 (0, 1),
ηn ⇀ η weakly in L2 (0, 1) be such that ηn ∈ Λ(gn) for all n ∈ N. By Lemma 5.1.2,
up to a subsequence, we can assume that the sequence Λ1gn is weakly convergent in
H1

0 (0, 1). By the Rellich�Kondrachov theorem (Theorem 2.1.26) it follows that this
sequence has a subsequence that converges strongly in L2 (0, 1). By Lemma 5.1.3 it
follows that the limit must be equal to Λ1g. Once again since every subsequence
has a subsequence convergent to the same limit in Hausdor� topological space we
know that the convergence must hold for the whole sequence. The assertion holds by
the fact that the compact embedding of H1

0 (0, 1) ⊂ C ([0, 1]) implies that Λ1gn → Λ1g
strongly in C ([0, 1]) and the application of Lemma 2.4.9.

Lemma 5.1.6. Under assumptions H5.1(i)-H5.1(v) there exists R > 0 such that,

denoting BR =
{
g ∈ L2 (0, 1) : ‖g‖L2(0,1) ≤ R

}
, we have Λ(BR) ⊂ BR. Moreover if

g ∈ Λ(g), then g ∈ BR.
Proof. Let g ∈ L2 (0, 1) and η ∈ Λg. By H5.1(iv) we get, for a.e. t ∈ (0, 1)

|η(t)| ≤ C1 + C2|(Λ1g)(t)|.

By a direct calculation we get

|η(t)|2 ≤ C2
2 |(Λ1g)(t)|2 + C2

1 + 2C1C2|(Λ1g)(t)|

= C2
2 |(Λ1g)(t)|2 + C2

1 + ε|(Λ1g)(t)|2 +
C2

1C
2
2

ε
−
(√

ε|(Λ1g)(t)| − C1C2√
ε

)2

≤ (C2
2 + ε)|(Λ1g)(t)|2 + C2

1 +
C2

1C
2
2

ε
.
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for any ε > 0 and a.e. t ∈ (0, 1). It follows that

‖η‖2L2(0,1) ≤ C
2
1 +

C2
1C

2
2

ε
+ (C2

2 + ε)‖(Λ1g)‖2L2(0,1).

We use Lemma 5.1.2 whence it follows that

‖η‖2L2(0,1) ≤ C
2
1 +

C2
1C

2
2

ε
+(C2

2 +ε)
‖g‖2L2(0,1) + π2 ‖f‖2L1(0,1) + 2‖g‖L2(0,1)π ‖f‖L1(0,1)

(π − ‖r‖L∞(0,1))
2

.

A direct computation implies

‖η‖2L2(0,1) ≤ C
2
1 +

C2
1C

2
2

ε
+ (C2

2 + ε)
‖g‖2L2(0,1) (1 + ε) + π2 ‖f‖2L1(0,1) (1 + 1

ε )

(π − ‖r‖L∞(0,1))
2

.

Denoting by C(ε) a nonnegative constant dependent only on ε and C1, C2, ‖r‖L∞(0,1),
and ‖f‖L1(0,1), we get

‖η‖2L2(0,1) ≤ C(ε) +
(C2

2 + ε)(1 + ε)

(π − ‖r‖L∞(0,1))
2
‖g‖2L2(0,1) .

As C2 < π − ‖r‖L∞(0,1), we can choose ε > 0 small enough, such that the inequality
(C2

2+ε)(1+ε)
(π−‖r‖L∞(0,1))

2 < 1 holds. We have

‖η‖2L2(0,1) ≤ D2 +D1 ‖g‖2L2(0,1) ,

where D2 > 0 and D1 ∈ (0, 1). De�ne R =
√

D2

1−D1
. The assertion follows easily.

We continue with a theorem that establishes the existence of a �xed point of Λ
and, in consequence, existence of solutions of Problem 5.2.

Theorem 5.1.7. Under assumptions H5.1(i)-H5.1(v) the set of �xed points of Λ is
nonempty and weakly compact in L2 (0, 1).

Proof. The space L2 (0, 1) equipped with its weak topology is a locally convex Haus-
dor� topological vector space. Let R be as in Lemma 5.1.6. The ball BR is nonempty,
convex and weakly compact, whereas, by Lemma 5.1.6, the multifunction Λ|BR leads
from BR into itself. Moreover, by Lemma 5.1.4 this multifunction has nonempty and
convex values. Finally, by Lemma 5.1.5, the graph of Λ|BR is sequentially closed
in (L2 (0, 1) , weak) × (L2 (0, 1) , weak) topology. But, as it is a subset of a weakly
sequentially compact set BR × BR it must be weakly sequentially compact, and, by
the Eberlein��mulyan theorem, also a weakly compact set. Hence, the graph of Λ|BR
is weakly closed. The assertion follows by application of Theorem 2.5.5.

5.1.4 The case without growth condition on N1

We relax the hypotheses from the previous subsection, namely the hypotheses H5.1(iv)-
H5.1(v) are relaxed to the following hypotheses H̃5.1(iv)-H̃5.1(v).

H̃5.1(iv) Multivalued map ξ → N1(t, ξ) is bounded on bounded sets uniformly
with respect to a.e. t ∈ (0, 1) (i.e. for all K > 0 there exists R(K) > 0
such that for a.e. t ∈ (0, 1) and all ξ ∈ R with |ξ| ≤ K we have
|η| ≤ R(K) for all η ∈ N1(t, ξ)).
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H̃5.1(v) For a.e. t ∈ (0, 1), all ξ ∈ R, and all η ∈ N1(t, ξ) we have ηξ ≥ −C̃1ξ
2−C̃2

with 0 ≤ C̃1 < π(π − ‖r‖L∞(0,1)) and C̃2 ≥ 0.

Theorem 5.1.8. Under assumptions H5.1(i)-H5.1(iii) and H̃5.1(iv)-H̃5.1(v) there
exists (x, η) the solution of Problem 5.2.

Proof. Fix K > 0 and consider the following truncation

NK
1 (t, ξ) =

{
N1(t, ξ) for |ξ| ≤ K,
N1

(
t, Kξ|ξ|

)
otherwise.

It is straightforward to verify that NK
1 satis�es H5.1(ii)-H5.1(iv), where the constant

C2 in H5.1(iv) can be made arbitrarily small. Hence, also H5.1(v) must hold. Then
the following auxiliary problem would admit a solution.

Problem 5.4. Find (xK , ηK) ∈ H1
0 (0, 1)× L2 (0, 1) such that for all v ∈ H1

0 (0, 1) we
have

1∫
0

dxK(t)

dt

dv(t)

dt
− r(t)dxK(t)

dt
v(t) + ηK(t)v(t) dt =

1∫
0

f(t)v(t) dt,

and for a. e. t ∈ (0, 1) we have ηK(t) ∈ NK
1 (t, x(t)).

Indeed, from the results of Section 5.1.3 it follows that for all K ≥ 1 there exists
(xK , ηK) the solution of Problem 5.4. We will prove that if K is large enough, then
actually (xK , ηK) solve Problem 5.2. Take v = xK in Problem 5.4. We get

∥∥xK∥∥2

H1
0(0,1)

−
1∫

0

r(t)
dxK(t)

dt
xK(t) dt+

1∫
0

ηK(t)xK(t) dt =

1∫
0

f(t)vK(t) dt, (5.4)

with ηK(t) ∈ NK
1 (t, xK(t)) for a.e. t ∈ (0, 1). We have, by Theorem 2.1.22, Theorem

2.1.25, and the Schwarz inequality,

1∫
0

r(t)
dxK(t)

dt
xK(t) dt ≤

‖r‖L∞(0,1)

π
‖xK‖2H1

0(0,1), (5.5)

1∫
0

f(t)xK(t) dt ≤ ‖f‖L1(0,1) ‖x
K‖H1

0(0,1). (5.6)

Moreover, from H̃5.1(v) we have

1∫
0

ηK(t)vK(t) dt =

∫
|vK |≤K

ηK(t)vK(t) dt+

∫
|vK |>K

ηK(t)
KvK(t)

|vK(t)|
|vK(t)|
K

dt

≥ −
∫

|vK |≤K

C̃1|vK(t)|2 + C̃2 dt−
∫

|vK |>K

(
C̃1

∣∣∣∣KvK(t)

|vK(t)|

∣∣∣∣2 + C̃2

)
|vK(t)|
K

dt

≥ −C̃1‖vK‖2L2(0,1) − C̃2(1 + ‖vK‖L∞(0,1))

≥ − C̃1

π2
‖vK‖2H1

0(0,1) − C̃2(1 + ‖vK‖H1
0(0,1)). (5.7)
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Using (5.5)-(5.7) in (5.4) we get

∥∥xK∥∥2

H1
0(0,1)

(
1− C̃1

π2
−
‖r‖L∞(0,1)

π

)
≤ C̃2 + (C̃2 + ‖f‖L1(0,1))

∥∥xK∥∥
H1

0(0,1)
.

It follows that
∥∥xK∥∥

H1
0(0,1)

is bounded from above by a constant independent of K

and hence also
∥∥xK∥∥

C([0,1])
is bounded from above by a constant independent of K.

Hence, if we take K greater than this bound it follows that (xK , ηK) solve Problem
5.2. The proof is complete.

5.1.5 Regularity of solutions

We conclude with the following regularity result.

Theorem 5.1.9. Let (x, η) ∈ H1
0 (0, 1)×L2 (0, 1) solve Problem 5.2. Let r ∈ L∞ (0, 1)

and f ∈ L1 (0, 1). Then x ∈W2,1 (0, 1).

Proof. De�ne h(t) = f(t) + r(t)dx(t)
dt − η(t). Obviously, h ∈ L1 (0, 1), and x satis�es

the integral equation
1∫

0

dx(t)

dt

dv(t)

dt
dt =

1∫
0

h(t)v(t) dt.

for all v ∈ H1
0 (0, 1) and moreover for all v ∈ C∞0 (0, 1). Thus, by the du Bois-Reymond

lemma we have −d2x(t)
dt2 = h(t) and the proof is complete.

5.2 Du�ng type equation with multivalued Robin

boundary condition

Problem 5.5. Find x ∈ H1
0 (0, 1) ∩W2,1 (0, 1) such that

− d2

dt2
x(t)− r(t) d

dt
x(t) = f(t) a. e. t ∈ (0, 1), (5.8)

x(0) = 0, (5.9)

− d

dt
x(1) ∈ N2(x(1)). (5.10)

Recalling V1 (0, 1) =
{
v ∈ H1 (0, 1) | v(0) = 0

}
, which, equipped with the norm

‖v‖2V1(0,1) =
1∫
0

(
d
dtv(t)

)2
dt, is a Hilbert space, we obtain the following weak formula-

tion of Problem 5.5.

Problem 5.6. Find (x, η) ∈ V1 (0, 1)× R such that for all v ∈ V1 (0, 1) we have

1∫
0

dx(t)

dt

dv(t)

dt
− r(t)dx(t)

dt
v(t) dt+ ηv(1) =

1∫
0

f(t)v(t) dt,

and η ∈ N2(x(1)).
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5.2.1 The case with growth condition on N2

We make the following hypotheses on the problem data

H5.2(i) f ∈ L1 (0, 1) and r ∈ L∞ (0, 1) is such that ‖r‖L∞(0,1) <
π
2 .

H5.2(ii) N2 : R → 2R, the sets N2(ξ) are nonempty, convex and closed for all
ξ ∈ R.

H5.2(iii) The graph of the multivalued mapping ξ → N2(ξ) is closed in R2.

H5.2(iv) There exists constants D1, D2 > 0 such that for all ξ ∈ R with η ∈ N2(ξ)
|η| ≤ D1 +D2|ξ|.

H5.2(v) D2 <
1
π (π − 2 ‖r‖L∞(0,1)).

We �x c ∈ R and we consider the following auxiliary problem.

Problem 5.7. Find x ∈ V1 (0, 1) such for all v ∈ V1 (0, 1) we have

1∫
0

dx(t)

dt

dv(t)

dt
− r(t)dx(t)

dt
v dt+ cv(1) =

1∫
0

f(t)v(t) dt.

Lemma 5.2.1. Let H5.2(i) hold. Then Problem 5.7 has a unique solution x ∈ V1 (0, 1).

Proof. Once again we set B(x, v) =
1∫
0

dx(t)
dt

dv(t)
dt − r(t)

dx(t)
dt v(t)dt. Also in this case

B : V1 (0, 1)× V1 (0, 1)→ R and it is a bilinear, continuous, and coercive functional
on a Hilbert Space V1 (0, 1). Other terms in problem are functionals from V1 (0, 1)

∗
.

Thus, by the Lax�Milgram Theorem 2.2.1 Problem 5.7 has a unique solution x ∈
V1 (0, 1).

We de�ne the mapping Ψ1 : R → V1 (0, 1) which assigns to c ∈ R the unique
solution of Problem 5.7. We are in the position to de�ne the multivalued operator
Ψ: R→ 2R as follows

s ∈ Ψ(r) ⇐⇒ s ∈ N2((Ψ1r)(1)).

Obviously r is a �xed point of Ψ if and only is (Ψ1r, r) solves Problem 5.6. We
can formulate several lemmata on the properties of Ψ1 and Ψ.

Lemma 5.2.2. Assume H5.2(i)-H5.2(ii). The mapping Ψ: R → 2R has nonempty
and convex values.

Proof. Since V1 (0, 1) ⊂ C ([0, 1]), the value (Ψ1r)(1) is well de�ned for all r ∈ R.
Both nonemptiness and convexity of Ψ(r) follow from the fact that N2 has nonempty
and convex values.

Now we concentrate on obtaining the required compact and convex set in which
a �xed point is located.

Lemma 5.2.3. Let H5.2(i) hold. Then the operator Ψ1 satis�es

‖Ψ1c‖V1(0,1) ≤ π
|c|+ ‖f‖L1(0,1)

π − 2 ‖r‖L∞(0,1)

.
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Proof. Let x = Ψ1(c), then x solves

∀v ∈ V1 (0, 1)

1∫
0

d

dt
x(t)

d

dt
v(t)− r(t) d

dt
x(t)v(t)dt+ cv(1) =

1∫
0

f(t)v(t) dt.

We test using v = x, whence we obtain

‖x‖2V1(0,1) ≤ ‖r‖L∞(0,1) ‖x‖
2
V1(0,1)

2
π + |c| ‖x‖V1(0,1)

+ ‖f‖L1(0,1) ‖x‖V1(0,1) ,(
1− ‖r‖L∞(0,1)

2
π

)
‖x‖V1(0,1) ≤ |c|+ ‖f‖L1(0,1) ,

‖x‖V1(0,1) ≤ π |c|+‖f‖L1(0,1)

π−2‖r‖L∞(0,1)
.

Lemma 5.2.4. Under assumptions H5.2(i)-H5.2(v) there exists R > 0 such that,
denoting BR = {c ∈ R | |c| ≤ R}, we have Ψ(BR) ⊂ BR. Moreover if c ∈ Ψc, then
c ∈ BR.
Proof. Let η ∈ Ψ(c). By H5.2(iv) we have

|η| ≤ D1 +D2|Ψ1c(1)|.

By Lemma 5.2.3

|η| ≤ D1 +D2 ‖Ψ1c‖V1(0,1) ≤ D1 +D2π
|c|+ ‖f‖L1(0,1)

π − 2 ‖r‖L∞(0,1)

= D1 +D2π
‖f‖L1(0,1)

π − 2 ‖r‖L∞(0,1)

+
D2π

π − 2 ‖r‖L∞(0,1)

|c|.

Thus, we can de�ne the constants E1 ≥ 0 and E2 ∈ (0, 1) such that

|η| ≤ E1 + E2|c|.

As we take a radius R = E1

1−E2
, we clearly see that Ψ(BR) ⊂ BR. Moreover if c ∈ Ψc

we have

|c| ≤ E1 + E2|c|,

|c| ≤ E1

1− E2
,

thus c ∈ BR.

We conclude the list of properties of Ψ with some properties of its graph.

Lemma 5.2.5. Under assumptions H5.2(i)-H5.2(iv) the graph of Ψ1 is sequentially
closed in R× (V1 (0, 1) ,weak) topology.

Proof. We assume cn → c, xn ⇀ x weakly in V1 (0, 1) and xn = Ψ1cn. We prove that
x = Ψ1c. Let v ∈ V1 (0, 1) be a �xed function. Then the following convergences holds

1∫
0

d

dt
xn(t)

d

dt
v(t)dt→

1∫
0

d

dt
x(t)

d

dt
v(t)dt,

1∫
0

r(t)
d

dt
xn(t)v(t)dt→

1∫
0

r(t)
d

dt
x(t)v(t) dt,

cnv(1)→ cv(1).
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Since the solution of Problem 5.7 is unique, then x = Ψc, which concludes the proof.

Lemma 5.2.6. Under assumptions H5.2(i)-H5.2(v) the graph of Ψ is closed in R2.

Proof. Assume cn → c and ηn → η. Let xn = Ψcn with ηn ∈ Ψcn. By Lemma
5.2.3 the sequence xn belongs to a bounded set in V1 (0, 1), and hence, passing to
a subsequence, not renumbered, we have xn ⇀ x weakly in V1 (0, 1). By Lemma
5.2.5 we know that x = Ψc. Since we know that V1 (0, 1) is compactly embedded in
C ([0, 1]), it follows that xn(1) → x(1). But the graph of N2 is closed in R2, whence
η ∈ x(1), which concludes the proof.

We now present the following result on a solution existence.

Theorem 5.2.7. Under assumptions H5.2(i)-H5.2(v) the set of �xed points of Ψ is
nonempty and compact in R.

Proof. The space R equipped with usual norm is a locally convex Hausdor� topological
vector space. Let R > 0 be as in Lemma 5.2.4. BR is nonempty, convex and compact
set and Ψ(BR) ⊂ BR. By Lemma 5.2.2 the multifunction Ψ has nonempty and convex
values. Since every bounded closed set is compact, we can apply an abstract existence
result Theorem 2.5.5.

5.2.2 The case without growth condition on N2

We relax the hypotheses from the previous subsection, namely the hypotheses H5.2(iv)-
H5.2(v) are relaxed to the following hypotheses H̃5.2(iv)-H̃5.2(v).

H̃5.2(iv) Multivalued map ξ → N2(ξ) is bounded on bounded sets (i.e. for all
K > 0 there exists R(K) > 0 such that for all ξ ∈ R with |ξ| ≤ K we
have |η| ≤ R(K) for all η ∈ N2(ξ)).

H̃5.2(v) For all ξ ∈ R, and all η ∈ N2(ξ) we have ηξ ≥ −D̃1ξ
2 − D̃2 with

0 ≤ D̃1 < 1− 2‖r‖L∞(0,1)

π and D̃2 ≥ 0.

Theorem 5.2.8. Under assumptions H5.2(i)-H5.2(iii) and H̃5.2(iv)-H̃5.2(v) there
exists (x, η) ∈ V1 (0, 1)× R the solution of Problem 5.6.

Proof. Fix K > 0 and consider the following truncation

NK
2 (ξ) =

{
N2(ξ) for |ξ| ≤ K,
N2

(
Kξ
|ξ|

)
otherwise.

It is straightforward to verify that NK
2 satis�es H5.2(ii)-H5.2(iv), where the con-

stant D2 in H5.2(iv) can be made arbitrarily small. Hence, also H5.2(v) must hold.
Consider the following auxiliary problem.

Problem 5.8. Find (xK , ηK) ∈ V1 (0, 1)× R such that for all v ∈ V1 (0, 1) we have

1∫
0

dxK(t)

dt

dv(t)

dt
− r(t)dxK(t)

dt
v(t) dt+ ηK(t)v(1) =

1∫
0

f(t)v(t) dt,

and we have ηK ∈ NK
2 (xK(1)).
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From the results of Section 5.2.1 it follows that for all K ≥ 1 there exists (xK , ηK)
the solution of Problem 5.8. We will prove that if K is large enough, then actually
(xK , ηK) solve Problem 5.6. Take v = xK in Problem 5.8. We get

‖xK‖2V1(0,1) −
1∫

0

r(t)
dxK(t)

dt
xK(t) dt+ ηKxK(1) =

1∫
0

f(t)xK(t) dt, (5.11)

with ηK(t) ∈ NK
2 (xK(1)). We have, by theorems 2.1.23, 2.1.25, and the Schwarz

inequality
1∫

0

r(t)
dxK(t)

dt
xK(t) dt ≤

2 ‖r‖L∞(0,1)

π

∥∥xK∥∥2

V1(0,1)
, (5.12)

1∫
0

f(t)xK(t)dt ≤ ‖f‖L1(0,1)

∥∥xK∥∥
V1(0,1)

. (5.13)

Moreover, from H̃5.1(v) we have in the case |vK(1)| ≤ K,

ηKvK(1) ≥ −D̃1|vK(1)|2 − D̃2 ≥ −D̃1

∥∥xK∥∥2

V1(0,1)
− D̃2,

while in the case |vK(1)| > K

ηKvK(1) = ηK
KvK(1)

|vK(1)|
|vK(1)|
K

≥ (−D̃1K
2 − D̃2)

|vK(1)|
K

≥ −D̃1

∥∥xK∥∥2

V1(0,1)
− D̃2

∥∥xK∥∥
V1(0,1)

,

whence we have

ηKvK(1) ≥ −D̃1

∥∥xK∥∥2

V1(0,1)
− D̃2

∥∥xK∥∥
V1(0,1)

− D̃2. (5.14)

Using (5.12)-(5.14) in (5.11) we get

∥∥xK∥∥2

V1(0,1)

(
1− D̃1 −

2 ‖r‖L∞(0,1)

π

)
≤ (‖f‖L1(0,1) + D̃2)

∥∥xK∥∥
V1(0,1)

+ D̃2.

It follows that
∥∥xK∥∥

V1(0,1)
is bounded from above by the constant independent of

K and hence also
∥∥xK∥∥

C((0,1)) is bounded from above by the constant independent

of K. Hence, if we take K greater than this bound it follows that (xK , ηK) solve
Problem 5.2. The proof is complete.

5.2.3 Regularity of solutions

In this section we prove a regularity result in which we use a slightly altered du
Bois-Reymond lemma

Theorem 5.2.9. Assume that f ∈ L1 (0, 1) and r ∈ L∞ (0, 1). Let (x, η) ∈ V1 (0, 1)×
R solve Problem 5.6. Then x ∈W2,1 (0, 1).
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Proof. De�ne v(t) = d
dtx(t), w(x) = −f(t) − r(t) d

dtx(t) and c = −η. Obviously
v ∈ L2 (0, 1) and w ∈ L1 (0, 1). Also x satis�es the equation

1∫
0

v(t)
d

dt
h(t) dt = −ηh(1)−

1∫
0

(
−f(t)− r(t) d

dt
x(t)

)
h(t) dt

= ch(1)−
1∫

0

w(t)h(t) dt,

for all h ∈ V1 (0, 1). By Theorem 2.1.29 we have v ∈ W1,1 (0, 1) which means that
x ∈W2,1 (0, 1).

5.3 Example

Although the Du�ng type equations have several very well described applications - for
example systems that model dump and driven oscillators or some relations between
�ux and current. The question that appears is whether the consideration of inclusion is
valid. The recent paper of Jan Andres and Hana Mach· [5] shows that such problems
actually appear. A suitable example would be a forced pendulum inclusion of a form

d2x(t)

dt2
+ a

dx(t)

dt
+ bx(t) ∈ p(t)− cSgn

(
dx(t)

dt

)
x(0) = 0 = x(T ),

with T > 0 and

Sgn (z) =

 −1, z ∈ (−∞, 0),
[−1, 1] , z = 0,
1, z ∈ (0,+∞).

That problem was solved by Lasota and Opial (see [44]).
The paper by Andres and Mach· [5] considers a generalized equation of the type

d2x(t)

dt2
+ a

dx(t)

dt
+ bx(t) ∈ P (t) + F1(x(t)) + F2

(
dx(t)

dt

)
− cSgn

(
dx(t)

dt

)
,

x(0) = 0 = x(T ),

and delivers a condition for this problem to admit a solution.
Below we present an example of di�erential inclusion for which the method pre-

sented above is applicable.

Example 5.3.1. The above schema can be applied for the following equation

d2x
dt2 (t) + 0.25 · e− t

2

2
dx
dt (t)− t− 1 ∈ ∂x 1

2e
−t|x(t)|

x(0) = x(1) = 0.

Indeed, we can easily see that Condition H5.1(i) is satis�ed since f(t) = t+ 1 and∥∥∥0.25e−
t
2

∥∥∥
L∞(0,1)

= 0.25 < π.

The Condition H5.1(ii) follows from the properties of Clarke subdi�erential. Since
∂xe
−t|x(t)| is for all t ∈ (0, 1) a signum like function and thus for all η ∈ ∂xe−t|x(t)|

we have
|η| ≤ 1.
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Thus, Conditions H5.1(iii)-H5.1(v) are easily ful�lled. Thus, the existence of a solu-
tion follows from the Theorem 5.1.7.
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Appendix A

Appendix

Theorem A.1 ([1, Theorem 1.33] Ascoli�Arzela theorem). Let Ω ⊂ Rn be a bounded
domain. A subset K of C

(
Ω
)
is precompact in C

(
Ω
)
if the following two conditions

holds

A.1.(i) There exists a constant M such that |φ(x)| ≤ M holds for every φ ∈ K
and x ∈ Ω.

A.1.(ii) For every ε > 0 there exists δ > 0 such that if φ ∈ K, x, y ∈ Ω. and
|x− y| < δ, then |φ(x)− φ(y)| < ε.

Theorem A.2 ([1, Theorem 1.50] Lebesgue dominated convergence theorem). Let
A ⊂ Rn be a measurable and let (fj)

∞
j=1 be a sequence of measurable functions con-

verging to a limit pointwise on A. If there exists a function g ∈ L1 (A) such that
|fj(x)| ≤ g(x) for every j and all x ∈ A then

lim
j→∞

∫
A

fj(x) dx =

∫
A

(
lim
j→∞

fj(x)

)
dx.

Theorem A.3 ([60, Chapter 4, Theorem 36] Egorov theorem). Let (fn)n∈N be a se-
quence of measurable mappings from space X into metric space F . Moreover, we
assume that this sequence is µ-almost everywhere convergent to function f . Then for
any compact subset K ⊂ X and any �xed δ > 0 there exists such subset Kδ ⊂ K such
that, µ (K \Kδ) ≤ δ and fn converge uniformly to f on Kδ.

Theorem A.4 ([36, Chapter VI, Theorem 15] Fatou Lemma). For every sequence
(fn)n∈N of measurable functions fn : A→ [0,+∞] the following inequality holds∫

A

liminf
n→∞

fn dµ ≤ liminf
n→∞

∫
A

fn dµ.

Theorem A.5 ([1, Theorem 2.4] Hölder inequality). Let 1 < p <∞ and let p′ denote
a conjugate exponent de�ned by

1

p
+

1

p′
= 1,

which also satis�es 1 < p′ <∞. If u ∈ Lp (Ω) and v ∈ Lp
′
(Ω), then uv ∈ L1 (Ω), and∫

Ω

|u(x)v(x)| dx ≤ ‖u‖Lp(Ω) ‖v‖Lp′ (Ω) .
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Moreover equality holds if and only if |u(x)|p and |v(x)|p
′
are proportional.

The following inequality is useful.

Lemma A.6 ([17, Page 2]). Let p ≥ 2. Then the exists a constant a1 ∈ (0,+∞) that
for each x, y ∈ Rn we have

(|x|p−2
x− |y|p−2

y) · (x− y) ≥ a1|x− y|p.

Lemma A.7. Let d1, d2 be two metrics on the metric space X. Then

d(x, y) = p
√
d1(x, y)p + d2(x, y)p

is also a metric on X.

Proof. We shall prove metric axioms are satis�ed.

M1) Let x = y. Then

d(x, y) = d(x, x) = p
√
d1(x, x)p + d2(x, x)p = p

√
0p + 0p =

p
√

0 = 0.

Conversely d (x, y) = 0 then d1 (x, y) = 0. Hence x = y.

M2) Let x, y ∈ X.

d(x, y) = p
√
d1(x, y)p + d2(x, y)p = p

√
d1(y, x)p + d2(y, x)p = d(y, x).

Hence d is symmetric.

M3) Let x, y, z ∈ X. Then

d(x, z) = p
√
d1(x, z)p + d2(x, z)p

≤ p
√

(d1(x, y) + d1(y, z))p + (d2(x, y) + d2(y, z))p

= ‖(d1(x, y), d2(x, y)) + (d1(y, z), d2(y, z))‖Lp(R2)

≤ ‖d1(x, y), d2(x, y)‖Lp(R2) + ‖d1(y, z), d2(y, z)‖Lp(R2)

= p
√
d1(x, y)p + d2(x, y)p + p

√
d1(y, z)p + d2(y, z)p = d(x, y) + d(y, z).

Thus, d is a metric.
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