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SUBFUNCTORS AND SIEVES IN A TOPOS SetC

Wojciech Bielas

Abstract. We investigate the correspondence between subfunctors
of certain fixed functor F : C → Set and families of sieves. In the
third part of the paper we obtain a characterization of those families
of sieves which are determined by some subfunctor. Uniqueness of such
subfunctors is extensively used in proving that the category SetC has
power objects. Finally, we prove that the category SetC is a topos.
This fact with more or less detailed proofs can be found in [2], [3]
and [4].

1 Basic facts and definitions

In this section we give the definitions of basic categorical notions. For the
definition of a category, functor natural transformation and monomorphism,
the Reader should see for example [1].

Maybe the most intuitive example of a category is a class of all sets
with functions as arrows. We denote this category by Set. This category
has many important properties like having products, coproducts, equalizers
etc. which makes possible advanced constructions in the set theory. These
properties follows from the ZFC axioms, thus they can be repeated in any
model of ZFC. But there are important structures which are formally not
models of ZFC, like Boolean-valued models, in which still the most of the
set-theoretical constructions can be done. These cases are covered by the
concept of topos. In order to define this notion we have to recall some basic
notions from the category theory.

We say that C-object 1 is a terminal object in C if for every C-object
A there is exactly one arrow A→ 1. Every singleton is a terminal object in
the category Set.

We say that the diagram

A C

E B

gh

f

k

1



is a pullback if for every C-arrows h′ : E′ → A and k′ : E′ → B such that
g ◦ k′ = f ◦ h′ there is exactly one C-arrow i : E′ → E such that k ◦ i = k′

and h ◦ i = h′. We also say that the pair h, k is a pullback of the pair f, g.
Notions of a terminal object and a pullback are important for defining

what is the “family of all subsets of a set”. Let C be a category with a
terminal object 1. We say that the category C has a subobject classifier if
there is a C-object Ω with an arrow > : 1→ Ω such that

(i) for each monomorphism m : B → A there is a unique arrow
χ(m) : A→ Ω such that the diagram

A Ω

B 1

>m

χ(m)

is a pullback,

(ii) for every u : A → Ω there is a pullback of the pair u : A → Ω,
> : 1→ Ω.

The category Set has a subobject classifier, it can be taken as Ω = {0, 1}
with > : 1→ Ω, >(0) = 1.

Let C be a category with subobject classifier Ω,>. We say that (PA, eA)
is a power object of a C-object A if for every C-object B and an arrow
f : A × B → Ω there exists exactly one arrow f̂ : B → PA such that the
diagram

A× PA Ω

A×B
f

1A×f̂
eA

commutes. We say that a category has power objects if its every object has
a power object.

We say that a category is a topos if it has finite products, a subobject
classifier and power objects. This is one from a few equivalent definitions,
it is used in [2].

Let C be a small category, i.e. a category with the class of all C-
objects being a set. It is easy observation that the class SetC of all functors
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C → Set with natural transformations as arrows is a category. Since one
of our goals is to show that C → Set is a topos we will make a distinction
for a special kind of a functor: we observe every C-object A determines a
functor HA : C → Set, HAB = C(A,B), (HAf)g = f ◦ g, where C(A,B)
denotes the set of all C-arrows f such that dom f = A and codomF = B.

Let Nat(F,G) denote the class of all natural transformations F → G.
Symbols Ob C,Arr C denote the class of all C-objects and C-arrows, re-
spectively.

We denote the fact that objects A,B are isomorphic in a category by
A ∼= B. In the category Set two objects A,B are isomorphic if and only if
there is a bijection between them.

Below we recall very useful theorem. It says that values of a functor can
be taken as sets of natural transformations. This will help us to determine
the form of some functors. A proof of this theorem can be found in [2].

Theorem 1.1 (Yoneda lemma) If F : C→ Set is a functor then

Nat(HA, F ) ∼= FA

for every C-object A.

2 Category SetC has a terminal object and binary
products

We recall that since a product of the empty diagram is a terminal object,
the category C has finite products if and only if it has a terminal object and
binary products. Thus we should prove the following.

Fact 2.1 Category SetC has a terminal object.

Proof. Let F : C → Set, FA = {0}, for every C-object A, and let Ff be
a unique function {0} → {0}, for every C-arrow f : A → B. Observe that
{0} is a terminal object in Set.

Since a unique function {0} → {0} is the identity 1{0} we have F (1A) =
1FA.

Let us consider C-arrows f : A→ B and g : B → C. Then

F (g ◦ f) = 1{0} = 1{0} ◦ 1{0} = F (g) ◦ F (f).

Thus F is a functor. We will show that this functor is a terminal object
in SetC. To see this let us consider functor G : C→ Set. We define ηA to
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be a unique function GA → {0}. Then for a C-arrow f : A → B we have
that the diagram

GB FB

FAGA

Ff

ηB

Gf

ηA

commutes since there is exactly one function GA→ FB. Thus

η = (ηA)A∈Ob C

is a natural transformation. This η is unique since for every C-object A, the
component ηA is unique. Thus F is a terminal object in SetC. �

Fact 2.2 Category SetC has binary products.

Proof. Let us consider functors F,G : C → Set. We define (F × G)A =
FA × GA for C-object A, and ((F × G)f)(x, y) = ((Ff)(x), (Gf)(y)) for
C-arrow f : A→ B and (x, y) ∈ FA×GA.

Let us consider C-arrows f : A→ B and g : B → C. Then

((F ×G)1A)(x, y) = ((F1A)(x), (G1A)(y)) = (1FA(x), 1GA(y)) = (x, y).

Thus (F ×G)1A = 1FA×GA = 1(F×G)A. Next we have

((F ×G)(g ◦ f))(x, y) = ((F (g ◦ f))(x), (G(g ◦ f))(y)) =

((Fg ◦ Ff)(x), (Gg ◦Gf)(y)) = ((Fg)((Ff)(x)), (Gg)((Gf)(y))) =

((F ×G)g)((Ff)(x), (Gf)(y)) = ((F ×G)g)(((F ×G)f)(x, y)) =

(((F ×G)g) ◦ ((F ×G)f))(x, y)

which proves that (F ×G)(g ◦ f) = ((F ×G)g) ◦ ((F ×G)f). Thus F ×G :
C→ Set is a functor.

For every C-object A, let (π1)A : (F ×G)A→ FA, (π1)A(x, y) = x, and
(π2)A : (F × G)A → GA, (π2)A(x, y) = y, for (x, y) ∈ FA × GA. Let us
consider f : A→ B. Then

(Ff)((π1)A(x, y)) = (Ff)x = (π1)B(((Ff)x, (Gf)y)) =

(π1)B(((F ×G)f)(x, y)).

Thus the diagram
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FB ×GB FB

FAFA×GA
Ff

(π1)B

(F×G)f

(π1)A

commutes and π1 : F × G → F is a natural transformation. Similarly we
show that π2 : F × G → G is a natural transformation. Let K : C → Set
be a functor and let η : K → F , ξ : K → G be natural transformations.

Suppose that α : K → F × G is a natural transformation such that
π1◦α = η and π2◦α = ξ. Let us consider a C-object A. Then (π1)A◦αA = ηA
and (π2)A ◦ αA = ξA. Thus αA(x) = (ηA(x), ξA(x)) for every x ∈ KA. This
shows that α, if exists, is unique.

Let us define αA : KA → FA × GA, αA(x) = (ηA(x), ξA(x)) for every
x ∈ KA and every C-object A.

Let us consider a C-arrow f : A→ B. We see that

((F ×G)f)(αA(x)) = ((F ×G)f)(ηA(x), ξA(x)) =

((Ff)(ηA(x)), (Gf)(ξA(x))) = (ηB((Kf)(x)), ξB((Kf)(x))) = αB((Kf)(x))

which means that α is a natural transformation.
This shows that the functor F × G with natural transformations π1, π2

is a product of F and G. �

We leave the following fact without a proof as it is an easy computation.

Fact 2.3 If F1, F2, G1, G2 : C → Set are functors and η : F1 → G1, ξ :
F2 → G2 are natural transformations then (η × ξ)A = ηA × ξA for every
C-object A.

3 Subfunctors and sieves

In order to find a subobject classifier in the category SetC we will examine
monomorphisms in this category. Let us observe that if m : A → B is a
monomorphism in the category Set then there exists the set C ⊆ B such
that C ∼= A. It is easy to see that C = m[A]. As usual we say that C is a
subset of A. We will show that the similar situation holds in the category
SetC. To do that we need to know what is a subfunctor.

Let G,F : C → Set be functors. We say that G is a subfunctor of F
if for every C-object A we have GA ⊆ FA as sets in the category Set, and
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(Gf)(x) = (Ff)(x) for x ∈ GA and C-arrow f : A → B. We write it as
G ⊆ F . We will show that for each monomorphism m : G → F in SetC

there is a subfunctor K ⊆ F such that K ∼= G. First we have to prove that
each component of a monomorphism is an injection. This is done by the
following Lemma which is an exercise in [3], p. 202.

Lemma 3.1 If m : G → F is a monomorphism in the category SetC then
for every C-object A, component mA : GA→ FA is an injection.

Proof. Suppose that there is C-object A and x, y ∈ GA, x 6= y such that
mA(x) = mA(y). Let σ : GA→ GA be a permutation,

σ(z) =





y, for z = x,
x, for z = y,
z, else.

Let KB = GB for every C-object B. If f is a C-arrow then there are
four possibilities: the object A is the domain of f , in this case we define
Kf = (Gf) ◦ σ, the object A is the codomain of f , in this case we define
Kf = σ ◦ (Gf), the object A is the domain of f and its codomain, in this
case we define Kf = σ ◦ (Gf) ◦ σ, and for the rest we define Kf = Gf . We
will show that such defined K is a functor.

We see that K(1A) = σ ◦ (G(1A))◦σ = σ ◦1GA ◦σ = σ ◦σ = 1GA = 1KA.
If B 6= A is a C-object then K(1B) = G(1B) = 1GB = 1KB. Let us consider
C-objects B,C,D different from A. If f : B → C, g : C → D are C-arrows
then we have

K(g ◦ f) = G(g ◦ f) = (Gg) ◦ (Gf) = (Kg) ◦ (Kf).

Functoriality of K in the rest of cases goes as following:

(i) for f : A→ B, g : B → C, we have

K(g ◦ f) = (G(g ◦ f)) ◦ σ = (Gg) ◦ (Gf) ◦ σ = (Kg) ◦ (Kf),

(ii) for f : B → A, g : A→ C, we have

K(g ◦ f) = G(g ◦ f) = (Gg) ◦ σ ◦ σ ◦ (Gf) = (Kg) ◦ (Kf),

(iii) for f : B → C, g : C → A, we have

K(g ◦ f) = σ ◦ (G(g ◦ f)) = σ ◦ (Gg) ◦ (Gf) = (Kg) ◦ (Kf),
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(iv) for f : A→ A, g : A→ B, we have

K(g ◦ f) = (G(g ◦ f)) ◦ σ = (Gg) ◦ (Gf) ◦ σ =

(Gg) ◦ σ ◦ σ ◦ (Gf) ◦ σ = (Kg) ◦ (Kf),

(v) for f : A→ B, g : B → A, we have

K(g ◦f) = σ ◦ (G(g ◦f))◦σ = σ ◦ (Gg)◦ (Gf)◦σ = (Kg)◦ (Kf),

(vi) for f : B → A, g : A→ A, we have

K(g ◦ f) = σ ◦ (G(g ◦ f)) = σ ◦ (Gg) ◦ (Gf) =

σ ◦ (Gg) ◦ σ ◦ σ ◦ (Gf) = (Kg) ◦ (Kf),

(vii) for f : A→ A, g : A→ A, we have

K(g ◦ f) = σ ◦ (G(g ◦ f)) ◦ σ =

σ ◦ (Gg) ◦ σ ◦ σ ◦ (Gf) ◦ σ = (Kg) ◦ (Kf).

We will show that if ηB = 1KB = 1GB for every C-object B 6= A, and ηA = σ
then η : K → G is a natural transformation. Let us consider f : A → A.
Then Kf = σ ◦ (Gf) ◦ σ thus

(Gf) ◦ ηA = (Gf) ◦ σ = σ ◦ (Kf) = ηA ◦ (Kf).

In case f : A → B and B 6= A we have ηB ◦ (Kf) = Kf = (Gf) ◦ σ =
(Gf) ◦ ηA. In case f : B → A and B 6= A we have (Kf) ◦ ηB = Kf =
σ ◦ (Gf) = ηA ◦ (Gf). If f : B → C and C 6= A in a C-object then
(Kf) ◦ ηB = Kf = ηC ◦ (Kf).

Since the category SetC has binary products there exists G×K : C→
Set. Let π1 : G × K → G, π2 : G × K → K be projections. We define
ξ = η ◦ π2. Then π1, ξ : G×K → G.

Let us consider C-object B 6= A, and (z, t) ∈ GB ×KB. We see that

(m ◦ π1)B(z, t) = mB(z) = mB(ηB(z)) =

mB(ηB((π2)B(z, t))) = (m ◦ η ◦ π2)B(z, t)

and, since mA(x) = mA(y),

(m ◦ π1)A(z, t) = mA(z) = mA(ηA(z)) =
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mA(ηA((π2)A(z, t))) = (m ◦ η ◦ π2)A(z, t).

Thus m ◦ π1 = m ◦ η ◦ π2. Moreover

(π1)A(x, x) = x 6= y = σ(x) = ηA(x) = ηA((π2)A(x, x))

hence π1 6= η◦π2 = ξ. This is a contradiction since m is a monomorphism.�

Lemma 3.2 If G is a subfunctor of F then m : G→ F given by the formula
mA(x) = x is a monomorphism in the category SetC.

Proof. The naturality of m follows directly from the definition of a subfunc-
tor. Let us consider a functor K : C → Set and natural transformations
α, β : K → G such that m ◦ α = m ◦ β. Let us consider a C-object A and
x ∈ KA. Then αA(x) = mA(αA(x)) = mA(βA(x)) = βA(x). This shows
that α = β. �

Lemma 3.3 If m : G → F is a monomorphism in the category SetC then
there exists a subfunctor K ⊆ F , naturally isomorphic to G.

Proof. Let us consider x ∈ GA and C-arrow f : A→ B. Then

(Ff)(mA(x)) = mB((Gf)(x)) ∈ mB[GB].

Thus the function K : C → Set, KA = mA[GA], (Kf)(x) : mA[GA] →
mB[GB], (Kf)(x) = (Ff)(x) for every x ∈ mA[GA] and C-arrow f : A →
B, is defined correctly.

We see that

(K(1A))(x) = (F (1A))(x) = 1FA(x) = x = 1KA(x)

for x ∈ KA, thus K(1A) = 1KA.
Let us consider C-arrows f : A→ B, g : B → C, and x ∈ KA. Then

(K(g ◦ f))(x) = (F (g ◦ f))(x) = (Fg)((Ff)(x)) = (Kg)(Kf)(x)

hence K(g ◦ f) = (Kg) ◦ (Kf). This proves that K is a subfunctor of F .
From the Lemma 3.1 we know that mA : GA→ KA is an isomorphism

for every C-object A. With codomain changed from FA to KA, m becomes
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a natural isomorphism of G and K. �

Let us assume that G is a subfunctor of F . Then GA ⊆ FA for every
C-object A. Thus we have a restriction of the set FA to GA. There is also
a natural restriction of the set of C-arrows: every pair A, x where x ∈ FA
and A is a C-object, determines some special subset S(G,A, x) of C-arrows,

S(G,A, x) = {f ∈ Arr C : dom f = A, (Ff)(x) ∈ G(codom f)}.
This subset has one particular property: if f ∈ S(G,A, x) and dom g =
codom f then g ◦ f ∈ S(G,A, x). Any set S ⊆ Arr C such that

(1) dom f = A for all f ∈ S,

(2) if f ∈ S and dom g = codom f then g ◦ f ∈ S
is called a sieve on A. Thus every subfunctor G ⊆ F determines the family

FG = {S(G,A, x) : A ∈ Ob C, x ∈ FA}
of sieves. For each C-object A we have the function S(G,A, ·) : FA →
ΩA, where ΩA is the set of all sieves on A. This notation suggests that
S(G,A, ·) is a component of a natural transformation, but at this moment
Ω is not a functor. We need to define Ωf for a C-arrow f . If we want
S(G,A, ·) to be a component of a natural transformation F → Ω then there
should be (Ωf)(S(G,A, x)) = S(G,B, (Ff)(x)) for f : A → B. If g ∈
S(G,B, (Ff)(x)) then dom g = B = codom f and

(F (g ◦ f))(x) = (Fg)((Ff)(x)) ∈ G(codom g) = G(codom g ◦ f).

Thus g ◦ f ∈ S(G,A, x) and

S(G,B, (Ff)(x)) = {g ∈ Arr C : g ◦ f ∈ S(G,A, x)}.
We can define this operation for any sieve S on A, taking

Sf = {g ∈ Arr C : g ◦ f ∈ S}.
Then

(Ωf)(S(G,A, x)) = S(G,B, (Ff)(x)) = S(G,A, x)f .

Observe that if g : B → C is an element of Sf and h : C → D is a C-arrow
then h ◦ g ◦ f ∈ S since g ∈ Sf and S is a sieve. Thus h ◦ g ∈ Sf hence Sf
is a sieve on B. Now we can define Ω : C→ Set as follows:

ΩA = {S ⊆ Arr C : S is a sieve on A},
(Ωf)(S) = Sf for S ∈ ΩA and f : A→ B.
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Corollary 3.4 If Ω : C→ Set is defined as above and G is a subfunctor of
F then (S(G,A, ·))A∈Ob C is a natural transformation F → Ω.

Knowing that each subfunctor of F determines the family of sieves on
each C-object, we can expect that Ω, as a place of all sieves of all C-objects,
will be a subobject classifier. Using the Yoneda lemma we will find even
more natural way to the subobject classifier. Now we are interested in
the operation S 7→ Sf for sieves. The Theorem 3.6 below shows that the
statement about a subfunctor generating a family of sieves, can be inverted.
In order to establish this theorem we observe simple but very useful remark
about sieves.

Remark 3.5 Let f : A → B a C-arrow and let S be a sieve on A. Then
we have the following equivalences:

f ∈ S ⇔ 1B ∈ Sf ⇔ Sf = maxB .

Theorem 3.6 Let us assume that F : C→ Set is a functor and {S(A, x) :
A ∈ Ob C, x ∈ FA} is a family of sieves. Then there exist subfunctors
G−, G+ ⊆ F such that

(1) S(G−, A, x) ⊆ S(A, x) ⊆ S(G+, A, x) for every C-object A
and x ∈ FA,

(2) if G′,K ′ are subfunctors of F such that

S(G′, A, x) ⊆ S(A, x) ⊆ S(K ′, A, x)

for every C-object A and x ∈ FA, then G′ ⊆ G− and G+ ⊆ K ′.

Moreover the following conditions are equivalent:

(a) S(A, x)f = S(B, (Ff)(x)) for every C-arrow f : A → B and
x ∈ FA,

(b) S(A, x) = S(G+, A, x) for every C-object A and x ∈ FA,

(c) there exists subfunctor G ⊆ F such that S(A, x) = S(G,A, x)
for every C-object A and x ∈ FA,

(d) S(G−, A, x) = S(G+, A, x), for every C-object A and x ∈
FA,

(e) G− = G+,
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(f) there exists a unique subfunctor G ⊆ F such that S(A, x) =
S(G,A, x) for every C-object A and x ∈ FA.

Proof. We define

G+ = {(Ff)(x) : f ∈ C(C,A) ∩ S(C, x), x ∈ FC,C ∈ Ob C}.

Let us consider f : A → B and x ∈ G+A. We will show that (Ff)(x) ∈
G+B. Since x ∈ G+A there exist C-object C, y ∈ FC and g ∈ C(C,A) ∩
S(C, y) such that (Fg)(y) = x. Then (Ff)(x) = (F (f ◦ g))(y) and since
f ◦g ∈ S(C, y) we obtain (Ff)(x) ∈ G+B. Thus the function G+f : G+A→
G+B, (G+f)(x) = (Ff)(x), is correctly defined.

Let us consider C-object A, x ∈ FA and f ∈ S(A, x), f : A → B.
Then (Ff)(x) ∈ G+B hence f ∈ S(G+, A, x). This shows that S(A, x) ⊆
S(G+, A, x).

Now we define

G−A = {(Ff)(x) : f ∈ C(C,A) ∩ S(C, x), x ∈ FC,C ∈ Ob C,

∀g:B→D∀h:A→D∀y∈FB((F (h ◦ f))(x) = (Fg)(y)→ g ∈ S(B, y))}.
Let us consider f : A → E and x ∈ G−A. We will show that (Ff)(x) ∈
G−E. Since x ∈ G−A there exist C-object C, y ∈ FC and g ∈ C(C,A) ∩
S(C, y) such that (Fg)(y) = x and for all k : B → D, h : A → D and z ∈
FB, if (F (h ◦ g))(x) = (Fk)(z) then k ∈ S(B, z). Of course f ◦ g ∈ S(C, y)
and (Ff)(x) = (F (f ◦ g))(y). Let us consider k : B → D, h : E → D and
z ∈ FB such that (F (h◦f◦g))(y) = (Fk)(z). From the property of g we have
k ∈ S(B, z). Thus (Ff)(x) ∈ G−B and the function G−f : G−A → G−B,
(G−f)(x) = (Ff)(x), is correctly defined.

Let us consider f ∈ S(G−, A, x), f : A→ E. This means that (Ff)(x) ∈
G−E. Thus there exists g : C → E, g ∈ S(C, y) such that (Fg)(y) =
(Ff)(x) and for all k : B → D, h : E → D and z ∈ FB, if (F (h ◦ g))(x) =
(Fk)(z) then k ∈ S(B, z). Taking h = 1E : E → E we see that (Ff)(x) =
(F (1E ◦ g))(y) thus f ∈ S(A, x). This shows that S(G−, A, x) ⊆ S(A, x).

Let us assume that G′,K ′ are subfunctors of F such that S(G′, A, x) ⊆
S(A, x) ⊆ S(K ′, A, x) for every C-object A and x ∈ FA. Let us consider
f ∈ S(G,A, x), f : A → B. This means that (Ff)(x) ∈ GB. It suffices
to show that (Ff)(x) ∈ G−B. Let us consider g : B → D, h : C → D
and y ∈ FC such that (F (g ◦ f))(x) = (Fh)(y). Since (Ff)(x) ∈ GB
we have (Fh)(y) = (F (g ◦ f))(x) ∈ GD, hence h ∈ S(G,C, y) ⊆ S(C, y).
This shows that f has the property asserting that (Ff)(x) ∈ G−B. Thus
f ∈ S(G−, A, x) and S(G,A, x) ⊆ S(G−, A, x).
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Now let us consider f ∈ S(G+, A, x), f : A → B. This means that
(Ff)(x) ∈ G+B. Then there exists g : C → B and y ∈ FC such that
g ∈ S(C, y) and (Ff)(x) = (Fg)(y). Since S(C, y) ⊆ S(K,A, x) we have
g ∈ S(K,A, x). Therefore (Ff)(x) = (Fg)(y) ∈ KB and f ∈ S(K,A, x).
This shows that S(G+, A, x) ⊆ S(K,A, x).

Now we turn to the second part of the theorem.
(a)⇒(b). Let us assume that S(A, x)f = S(B, (Ff)(x)) for every C-

arrow f : A → B and x ∈ FA. Since S(A, x) ⊆ S(G+, A, x) it suffices to
show that S(G+, A, x) ⊆ S(A, x). Let us consider f ∈ S(G+, A, x), f : A→
B. This means that (Ff)(x) ∈ G+B. Thus there exist g : C → B and
y ∈ FC such that (Fg)(y) = (Ff)(x) and g ∈ S(C, y). Since g ∈ S(C, y),
we have from our assumption and the Remark 3.5 that

maxB = S(C, y)g = S(B, (Fg)(y)) = S(B, (Ff)(x)) = S(A, x)f

hence f ∈ S(A, x).
(b)⇒(c). This implication is obvious.
(c)⇒(d). From the point (2) of the Theorem 3.6, we have that

S(G,A, x) ⊆ S(G−, A, x) ⊆ S(G+, A, x) ⊆ S(G,A, x)

thus S(G−, A, x) = S(G+, A, x).
(d)⇒(e). We see that

x ∈ G−A⇔ 1A ∈ S(G−, A, x)⇔ 1A ∈ S(G+, A, x)⇔ x ∈ G+A.

(e)⇒(a). In this case S(G−, A, x) = S(G+, A, x) hence S(G+, A, x) =
S(A, x). Let us consider f : A→ B. Then

S(A, x)f = S(G+, A, x)f = S(G+, B, (Ff)(x)) = S(B, (Ff)(x)).

The point (f) follows from the fact that if S(G,A, x) = S(K,A, x) for ev-
ery C-object A, x ∈ FA, and y ∈ GA\KA then 1A ∈ S(G,A, x)\S(K,A, x)
which is a contradiction. �

If a family F of sieves satisfies the condition (a) in the Theorem 3.6 then
we call F an Ω-matching family, see [2].

Corollary 3.7 If G,K are subfunctors of F : C → Set and S(G,A, x) =
S(K,A, x) for every C-object A and x ∈ FA then G = K.
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4 Subobject classifier in the category SetC

We will investigate the form of a subobject classifier in SetC. In order to do
this we assume for the moment that Ω : C → Set is a subobject classifier.
From the Yoneda lemma we know that ΩA ∼= Nat(HA,Ω). Since there is
a bijection between arrows HA → Ω and subfunctors G ⊆ HA we see that
in order to find ΩA one has to find all subfunctors of HA. In the previous
section we have proved that each subfunctor G ⊆ F determines the family
{S(G,A, x) : A ∈ Ob C, x ∈ FA} of sieves such that G+ = G− = G where
G+, G− are as in the Theorem 3.6. This situation becomes simpler in the
case of subfunctor G ⊆ HA. We have a sieve on A,

S(G,A, 1A) = {f ∈ Arr C : dom f = A, f ∈ G(codom f)} =
⋃

B∈Ob C

GB.

Then GB = {f ∈ S(G,A, 1A) : codom f = B} for every C-object B. Thus
G is determined by just one sieve on A. This is another suggestion to define
Ω as in the previous section.

Fact 4.1 Ω is a functor.

Proof. Let us consider C-arrows f : A→ B, g : B → C, and S ∈ ΩA. Then

(Ω(1A))(S) = S1A = {g ∈ Arr C : g ◦ 1A ∈ S} = S = 1ΩA(S),

thus Ω(1A) = 1ΩA.
Furthermore,

(Ω(g◦f))S = Sg◦f = {h ∈ Arr C : h◦g◦f ∈ S} = {h ∈ Arr C : h◦g ∈ Sf} =

(Sf )g = (Ωg)(Sf ) = (Ωg)((Ωf)(S)),

thus Ω(g ◦ f) = (Ωg) ◦ (Ωf). �

Each C-object A has its maximal sieve maxA, the set of all C-arrows f
such that dom f = A. We define > : 1→ Ω, >A(0) = maxA. Let us consider
C-arrow f : A→ B. Then

(Ωf)(>A(0)) = (Ωf)(maxA) = (maxA)f =

{g ∈ Arr C : dom g = B, g ◦ f ∈ maxA} = maxB = >B(0) = >B((1f)(0)).

Thus > is a natural transformation.
We have to show that for each monomorphism m : G → F there is a

unique χ(m) : F → Ω such that the diagram

13



(1)

F Ω

G 1

>m

χ(m)

is a pullback. We will do this for a subfunctor and then use the Lemma 3.3.
Let us consider subfunctor G ⊆ F and let m : G → F be its monomor-

phism from the Lemma 3.2. Assume that χ(m) is a natural transformation
such that the diagram (1) is a pullback. We will investigate the form of
χ(m), proving also that such χ(m) is unique.

Since the diagram (1) commutes we see that χ(m)A(x) = maxA for
every x ∈ GA. Thus GA ⊆ χ(m)−1

A [{maxA}]. The opposite inclusion uses
universal property of pullbacks.

Lemma 4.2 For every C-object A, χ(m)−1
A [{maxA}] = GA.

Proof. Suppose that there is C-object A and x ∈ FA \ GA such that
χ(m)A(x) = maxA.

Let K : C → Set, KB = GB ∪ {(Ff)(x) : f ∈ C(A,B)}. Observe
that if y ∈ KB and g : B → C, then there exists f : A → B such that
y = (Ff)(x). Thus (Fg)(y) = (Fg)((Ff)(x)) = F (g ◦ f)(x) ∈ KC. Thus
the function Kf : KB → KC, (Kf)(x) = (Ff)(x), for every C-arrow
f : B → C, is defined correctly.

We will show that K : C → Set is a functor. Let us consider C-arrows
g : B → C, h : C → D and y = (Ff)(x) ∈ KB for some f : A → B. Then
K(1B)(y) = F (1B)(y) = y = 1KB(y). Furthermore,

K(g ◦ f)(y) = F (g ◦ f)(y) = F (g)((Ff)(y)) = (Kg)((Kf)(y)).

Since KB ⊆ FB for every C-object B and (Kf)(y) = (Ff)(y), K is
a subfunctor of F . Thus αB : KB → FB, αB(y) = y, is a component of
natural transformation α : K → F . Moreover we see that for y = (Ff)(x) ∈
KB,

χ(m)B(αB(y)) = χ(m)B((Ff)(x)) = (Ωf)(χ(m)A(x)) =

(Ωf)(maxA) = maxB = >B(0).

Thus the diagram

(2)

F Ω

K 1

>α

χ(m)
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commutes. Since the diagram (1) is a pullback there exists exactly one nat-
ural transformation β : K → G such that m◦β = α. Since x ∈ KA we have
x = αA(x) = mA(βA(x)) = βA(x) ∈ GA; a contradiction with the fact that
x ∈ FA \GA. �

Let us consider f : A→ B and x ∈ FA. Using the Remark 3.5 we obtain

f ∈ χ(m)A(x)⇔ (Ωf)(χ(m)A(x)) = maxB .

But χ(m) is a natural transformation hence

χ(m)B((Ff)(x)) = (Ωf)(χ(m)A(x)).

Thus
f ∈ χ(m)A(x)⇔ χ(m)B((Ff)(x)) = maxB .

From the Lemma 4.2 we have

χ(m)A(x) = {f ∈ maxA : (Ff)(x) ∈ G(codom f)}

which proves that χ(m) is unique. Moreover χ(m)A(x) = S(G,A, x) which
under the Corollary 3.4 means that χ(m) is a natural transformation.

Let us consider x ∈ GA. Then (Ff)(x) ∈ G(codom f) for any f ∈ maxA.
Thus χ(m)A(x) = maxA = >A(0) and the diagram (1) commutes.

Lemma 4.3 The diagram (1) is a pullback.

Proof. Assume that there is natural transformation α : K → F such that
the diagram

(3)

F Ω

K 1

>α

χ(m)

commutes. Then for every C-object A also the diagram

(3A)

FA ΩA

KA 1

>AαA

χ(m)A
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commutes. Suppose that βA : KA→ GA is such that αA = mA ◦ βA. Since
mA is an insertion we have βA(x) = αA(x) for every x ∈ KA. Thus βA, if
exists, is unique. In order to define βA in this way we have to know that
αA(x) ∈ GA for every x ∈ KA. But for x ∈ KA, we have 1A ∈ maxA =
>A(0) = χ(m)A(x). Thus x = (F (1A))(x) ∈ G(codom 1A) = GA.

Thus βA is unique and correctly defined. Let us consider f : A→ B and
x ∈ KA. Then

(Gf)(βA(x)) = (Ff)(αA(x)) = αB((Kf)(x)) = βB((Kf)(x))

which means that β : K → G is a natural transformation. From the previ-
ous part of the proof we have also that α = m ◦ β and such a β is unique.�

Fact 4.4 For any natural transformation u : F → Ω there exists a functor
G and monomorphism m : G→ F such that the pair m : G→ F , G→ 1 is
a pullback of the pair u,>.

Proof. Let us consider a natural transformation u : F → Ω. Let GA =
u−1
A [{maxA}] ⊆ FA for every C-object A. Let us assume that x ∈ GA and
f : A→ B is a C-arrow. Then

uB((Ff)(x)) = (Ωf)(uA(x)) = (Ωf)(maxA) = maxB .

Thus the function Gf : GA→ GB, (Gf)(x) = (Ff)(x), is properly defined.
This means that G is a subfunctor of F . From the Lemma 3.2 we know that
m : G → F given by the formula mA(x) = x is a monomorphism. Observe
that uA(mA(x)) = uA(x) = maxA, thus the diagram

(3)

F Ω

G 1

>m

u

commutes. Let us consider a functor K and a natural transformation α :
K → F such that uA(αA(x)) = maxA for every x ∈ KA. We have to show
that there is a unique natural transformation β : K → G such thatm◦β = α.
Any such transformation satisfies the formula βA(x) = mA(βA(x)) = αA(x)
which proves its uniqueness. Since uA(αA(x)) = maxA we see that αA(x) ∈
GA, hence we can define β by the formula βA(x) = αA(x). If f : A→ B is
a C-arrow then

βB((Gf)(x)) = αB((Ff)(x)) = (Kf)(αA(x)) = (Kf)(βA(x))
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which shows that β is a natural transformation. �

5 Power objects in the category SetC

If PF : C → Set is a functor then from the Yoneda lemma there is a
bijection between (PF )A and Nat(HA, PF ). If PF is a power object of
F then there is a bijection between Nat(HA, PF ) and Nat(F ×HA,Ω). In
the previous section we have showed that for each natural transformation
u : F × HA → Ω there is a subfunctor G ⊆ F × HA with monomorphism
m : G → F × HA such that the pair m : G → F × HA, G → 1 is a
pullback of the pair u,>. Thus we should try to define (PF )A as the set
of all subfunctors of F ×HA. We also need to define (PF )f for a C-arrow
f : A→ B. This will be done via families of sieves.

Let G be a subfunctor of F ×HA. Then we have the family

{S(G,C, (x, g)) : C ∈ Ob C, (x, g) ∈ (F ×HA)C}.

We want ((PF )f)G to be a subfunctor of F ×HB. Thus it suffices to find
a sieve for every C-object C and (x, h) ∈ (F ×HB)C = FC ×HBC. This
is done by the formula

S(C, (x, h)) = S(G,C, (x, h ◦ f)).

Let us consider g : C → D. Then

k ∈ S(C, (x, h))g ⇔ k ◦ g ∈ S(C, (x, h))⇔ k ◦ g ∈ S(G,C, (x, h ◦ f))⇔

((F ×HA)(k ◦ g))(x, h ◦ f) ∈ G(codom (k ◦ g))⇔
((F (k ◦ g))(x), (HA(k ◦ g))(h ◦ f)) ∈ G(codom k)⇔

((Fk)((Fg)(x)), k ◦ g ◦ h ◦ f) ∈ G(codom k)⇔
((F ×HA)k)((Fg)(x), g ◦ h ◦ f) ∈ G(codom k)⇔

k ∈ S(G,D, ((Fg)(x), g ◦ h ◦ f))⇔
k ∈ S(D, ((Fg)(x), g ◦ h))⇔

k ∈ S(D, ((Fg)(x), (HBg)(h)))⇔
k ∈ S(D, ((F ×HB)g)(x, h))
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thus S(C, (x, h))g = S(D, ((F ×HB)g)(x, h)) and

{S(C, (x, h)) : C ∈ Ob C, (x, h) ∈ FC ×HBC}

is an Ω-matching family. From the Theorem 3.6 there exists a unique sub-
functor K ⊆ F × HB such that S(C, (x, h)) = S(K,C, (x, h)) for every
C-object C and (x, h) ∈ FC ×HBC. We define ((PF )f)G = K and obtain
the formula

S(((PF )f)G,C, (x, h)) = S(G,C, (x, h ◦ f)).

In the case f = 1A we obtain

S(((PF )1A)G,C, (x, h)) = S(G,C, (x, h ◦ 1A)) = S(G,C, (x, h)),

thus from Corollary 3.7 we have ((PF )1A)G = G and (PF )1A = 1(PF )A.
Let us consider f : A→ B and g : B → D. Then

S(((PF )(g ◦ f))G,C, (x, h)) = S(G,C, (x, h ◦ g ◦ f)) =

S(((PF )f)G,C, (x, h ◦ g)) = S(((PF )g)(((PF )f)G), C, (x, h))

for every C-object C and (x, h) ∈ FC×HDC. From Corollary 3.7 we obtain

((PF )(g ◦ f))G = ((PF )g)(((PF )f)G)

which proves that (PF )(g ◦ f) = ((PF )g) ◦ ((PF )f). Thus PF : C → Set
is a functor.

The last thing to be defined is the evaluation arrow eF : F × PF → Ω.
If A is a C-object then we define

(eF )A : FA× (PF )A→ ΩA, (eF )A(x,G) = S(G,A, (x, 1A)).

Fact 5.1 eF is a natural transformation.

Proof. Let us consider f : A→ B. Then

(Ωf)((eF )A(x,G)) = S(G,A, (x, 1A))f = S(G,B, ((F ×HA)f)(x, 1A)) =

S(G,B, ((Ff)(x), f)) = S(((PF )f)G,B, ((Ff)(x), 1B)) =

(eF )B((Ff)(x), ((PF )f)G) = (eF )B((F × PF )(x,G)).

�
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We have to show that for each η : F × K → Ω there exists a unique
η̂ : K → PF such that η = eF ◦ (1F × η̂). Let us assume that such η̂ exists.
Then

ηA(x, y) = (eF )A((1F × η̂)A(x, y)) = (eF )A(x, η̂A(y)) = S(η̂A(y), A, (x, 1A)).

Let us consider C-object A and y ∈ KA. We define

S(C, (x, g)) = ηC(x, (Kg)(y))

for x ∈ FA and g : A→ C. For f : C → D we compute

S(C, (x, g))f = (Ωf)(S(C, (x, g)) = (Ωf)(ηC(x, (Kg)(y))) =

ηD(((F ×K)f)(x, (Kg)(y))) = ηD((Ff)(x), (Kf)((Kg)(y))) =

ηD((Ff)(x), (K(f ◦ g))(y)) = S(D, ((Ff)(x), f ◦ g)) =

S(D, ((Ff)(x), (HAf)g)) = S(D, ((F ×HA)f)(x, g))

which proves that {S(C, (x, g)) : C ∈ Ob C, (x, g) ∈ FC × HAC} is an Ω-
matching family. From the Theorem 3.6 there exists a unique subfunctor
G ⊆ F ×HA such that for every C-object C and x ∈ FC, g : A→ C,

S(G,C, (x, g)) = S(C, (x, g)) = ηC(x, (Kg)(y)) =

S(η̂C((Kg)(y)), C, (x, 1C)) = S(((PF )g)(η̂A(y)), C, (x, 1C))) =

S(η̂A(y), C, (x, 1C ◦ g)) = S(η̂A(y), C, (x, g)).

From the Theorem 3.6 we obtain G = η̂A(y) thus η̂ is unique.

Fact 5.2 η̂ is a natural transformation.

Proof. Let us consider f : A → B, y ∈ KA and C-object C. Since
η̂B((Kf)(y)) is a subfunctor of F × HB we consider (x, g) ∈ FC × HBC.
Then

S(η̂B((Kf)(y)), C, (x, g)) = ηC(x, (Kg)((Kf)(y))) = ηC(x, (K(g ◦ f))(y)) =

S(η̂A(y), C, (x, g ◦ f)) = S(((PF )f)(η̂A(y)), C, (x, g)).

From the Theorem 3.6 we obtain η̂B((Kf)(y)) = ((PF )f)(η̂A(y)). �

We see that

(eF )A((1F × η̂)A(x, y)) = (eF )A(x, η̂A(y)) = S(η̂A(y), A, (x, 1A)) =

ηA(x, (K1A)(y)) = ηA(x, y)

hence η = eF ◦ (1F × η̂). This shows that the category SetC has power
objects.

Finally, we have proved that the category SetC is a topos.
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