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A paradox

AL

f:[01] >R, sup|f"(t)|<oo

t[0,1]
P(f(t)-e<B < f(t)+¢,0<t<])

~c(¢) exp(—%j( f'(t))° dtj (*)



(*) is maximized by f(t) = 0, t>0
The most likely (?!?) shape of a

Brownian path:
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Definition of Brownian motion

Brownian motion Is the unigue process
with the following properties:

() No memory

(1) Invariance

(1) Continuity

(v) B,=0, E(B)=0, Var(B)=t



Memoryless process

L t, t,
B, -B,,B, BB —B,...

are independent



Invariance

The distribution of B . —B,
depends only on t.
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Path regularity

(i) t— B, iscontinuous a.s.
() t— B, Isnowhere differentiable a.s.
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Why Brownian motion?

Brownian motion belongs to several families
of well understood stochastic processes:

(i) Markov processes

iy Martingales

(iiy Gaussian processes

(iv) Levy processes
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Markov processes

L{B,t>s|B} = /£{B,t>s|B,,05u<s}

The theory of Markov processes uses

tools from several branches of analysis:

(1) Functional analysis (transition semigroups)
(i) Potential theory (harmonic, Green functions)
(1) Spectral theory (eigenfunction expansion)
(iv) PDE’s (heat equation)




Martingales

s<t=E(B |B.)=B.

Martingales are the only family of processes
for which the theory of stochastic integrals Is
fully developed, successful and satisfactory.
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Gaussian processes

B,,B,,....,B, is multidimensional
n .
normal (Gaussian)

(1) Excellent bounds for tails
(1) Second moment calculations
(1) Extensions to unordered parameter(s)



The Ito formula

t nt
jxs st — !]'_TOZ Xk/n(B(k+1)/n — Bk/n)
0 k=0

t ’ 1’[ )
f(B)= f(BO)+_([f (BS)dBS+§£f (B.)ds



Random walk

W’[
WALV ¢

Independent steps, P(up)=P(down)
Waw,,,t>0; —=2 (B t>0}

(in distribution)
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Scaling

Central Limit Theorem (CLT),
parabolic PDE’s

D
{B,0<t<l} = {JaB,, 0<t<1}

S
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Cameron-Martin-Girsanov formula

Multiply the probability of each Brownian path
{B,,0<t<1} by

epr /(s)dB. —%j(f '(s))st]

The effect Is the same as replacing
{B,,0<t<1} with {B, + f(t),0<t <1}



Invariance (2)

Time reversal

D

{B,0<t<l} = {B,, -B,0<t<I}

W

oV 1
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Brownian motion and the heat equation

U(X,t) —temperature at location x at time t

Heat equation: %u(x,t) = %Axu(x,t)
1(dx) =u(x,0)dx
Bl u(y,tydy = P“(B, edy)

representation

Backward representation u(y,t) — EU(Bt y,O)

(Feynman-Kac formula)

y
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Multidimensional Brownian motion

Bl, BZ, B?’, ___-Independent 1-dimensional
v t Brownian motions

(Btl, Btz,. Cod Btd) - d-dimensional Brownian
motion



Feynman-Kac formula (2)

BT

1
2

u(x)=E"

.

\

f(B,)exp

—Au(X)=V(x)u(x)=0

—_T[V(Bs)ds

A

1/
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Invariance (3)

The d-dimensional Brownian motion Is invariant
under iIsometries of the d-dimensional space.

It also Inherits invariance properties of the
1-dimensional Brownian motion.

1 1
exp(—=x:/2
> p(=x; /2) >
~ L exp(c(x2+x2)/2)

27T

exp(—x; / 2)



Conformal invariance

f
ﬂ/) Bt analytic |

11(B,) - 1(B,), t =0}

has the same distribution as

{B.., =0} c(t)= ! | £/(B.) | ds
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The Ito formula
Disappearing terms (1)

t 1’[
f(B)= f(BO)+_([Vf (B.)dB. +§_([Af (B.)ds

f Af =0 then

f(B,) = f(BO)+_t[Vf(BS)dBS



Brownian martingales

Theorem (Martingale representation theorem).
{Brownian martingales} = {stochastic integrals}

M, =_t[XSdBS
0

E(M, |[F3) =M., M, eF?=c{B, s<t}
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The Ito formula
Disappearing terms (2)

{
f(t,B)—f(t,B,) =j§ f (s, B.)dB.
0
t 2

(0 1¢0
— f(s,B;)ds f(s,B,)ds
#]5 f6BYds 2 | 25 f(5.B)

0

Ef (t, B,) - Ef (t, B,)

=EI%f(s )ds+ > Ej—f(s )ds
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Mild modifications of BM

Mild = the new process corresponds
to the Laplacian

(1) Killing — Dirichlet problem

(i) Reflection — Neumann problem

(il1) Absorption — Robin problem

¢ _B¥
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Related models — diffusions

dX, =o(X,)dB + x(X,)dt

(1) Markov property — yes
(ii) Martingale — only if £ =0
(iif) Gaussian — no, but Gaussian tails



Related models — stable processes

Brownian motion — 0B = (dt)"?
Stable processes — dX = (dt)lf o

(1) Markov property — yes
(1) Martingale — yes and no
(1) Gaussian — no

Price to pay: jumps, heavy tails, 0 <o < 2
0<2<2
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Related models — fractional BM
dX = (dt)” “

(1) Markov property — no
(i) Martingale — no

(i) Gaussian — yes

(iv) Continuous

l<a <o
1<2<o0



Related models — super BM

L A
ANAY

Super Brownian motion Is related to
AU =U?

and to a stochastic PDE.




" A
Related models — SLE

Schramm-Loewner Evolution is a model
for non-self-intersecting conformally invariant
2-dimensional paths.
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Path properties

(i) t— B, iscontinuous a.s.
i) t— B, Isnowhere differentiable a.s.
i) t— B, is Holder (1/2—¢)

(v) Local Law If Iterated Logarithm

limsup 5 =
o /2tlog|logt|

1



Exceptional points

. B,
limsup =1
o /2tlog|logt |

For any fixed s>0, a.s.,

limsup 5 — 5, 1

ts \/2(t s)log|log(t —s)|

There exist s>0, a.s., such that

B, — B,
limsu e (0,
tds p\/Z(t S) ( OO)
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Cut points

For any fixed t>0, a.s., the 2-dimensional
Brownian path contains a closed loop
around B, in every interval (t,t + &)

Almost surely, there exist T (O,l)
such that B([0,1))B((t,1]) =<

(&) fe
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Intersection properties

(d=1) as,Vtds=t B,=B,
(d=2) Vtas.Vs#t B,#B,

a.s., 3x e R* Card(B (X)) = o
(d=3) as.,IxeR’Card(B™(x))=2

a.s., Vxe R’ Card(B™*(x))< 2
(d =4) as., VxeR*Card(B*(x))<1
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Intersections of random sets
dim(A)+dim(B) > d

)
ANB =«

The dimension of Brownian trace Is 2
In every dimension.
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Invariance principle

() Random walk converges to Brownian
motion (Donsker (1951))

() Reflected random walk converges

to reflected Brownian motion

(Stroock and Varadhan (1971) - C* domains,
B and Chen (2013) — all domains)

() Self-avoiding random walk in 2 dimensions
converges to SLE (207?)

(open problem)



Local time
1
L[ — !gl_r)r(')lz_g O 1{—5<BS <¢9}dS
M, =sup B,

S<t

Sl ave /\/\/J M




Local time (2)
D
{L.,0<t<1}={M,,0<t <1}

D
{M,—B ., 0<t<B={|B|,0<t<D

Sl ave /\/\/J M




Local time (3)

O, = ing{L >t}

Inverse local time Is a stable process
with index Y.
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Domains with moving boundaries.
The heat equation and reflected Brownian
motion.
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Time dependent domains

space

0,(t)

g, (t

Heat equation, Neumann boundary conditions time
space |

g(t) -deterministic

X, \%

Reflected Brownian motion time
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Heat equation

U(t,X) - temperature at time 1 at point X

LA U X)=U,(t,x), x<g(t), t>0,

gjt)u(t X)dx=1 t>0, (1)

N\

u(O X) = U,y (X).

LA U X)=u,(t,Xx), x<g(t), t>0,

U, (6L =-g'Out.x), x=g@). ()
U(0, X) = Uy (X).

.




Heat equation solutions — existence and uniqueness

The
are

.

orem. If §(t)is C* then solutions to (1) and (2) exist,
unique and equal to each other.

LA U X)=U,(t,X), x<g(t), t>0,

gf)u(t X)dx=1 t>0, (1)

u(O X) = U,y (X).
LA UL X)=U,(t,X), x<g(t), t>0,
u,(t,x) =—g'(u(t,x), x=g(@t), (2

(0, X) = Uy (X).

Lewis and Murray (1995), Hofmann and Lewis (1996)



Skorohod Lemma

g(t), B, - continuous functions

Lemma. There exists a unique continuous non-decreasing
function L, suchthat X, =B, —L, <g(t)
for every t and L, does not increase when X; < g(t) e,

|10y (X)dL; =0,
0

L g(t)




Heat equation solution via reflected
Brownian motion

g(t) - continuous function
B, - Brownian motion

Xt:Bt_Lt

Theorem. The function U(t, X)dx=P(X, € dX) solves (1).
LA, X)=U,(t,x), x<g(t), t>0,

[utt,xdx=1, t>0, (1)
(—o0,9(1)]
U(0, X) =uy(X).

Lewis and Murray (1995), Hofmann and Lewis (1996)

/\.




Heat atoms

g(t)

Yy e
3 vA\/A“M\
Ju(s,x)dx<1
(—0,Y)
P(X,=y)>0

Theorem. Heat atoms exist for some g(t) .



Upper functions for Brownian motion

P(inf{t>0:B, =g(t)}=0)=0

B, - Brownian motion



Heat atoms — probabilistic approach

Theorem. J(S) is a heat atom if an only if
f (t) =g(s—t)—g(s) is an upper function.

Kolmogorov’s criterion: f(t) is upper class if and only if

jt—?”z f(t)exp(=f 2(t) /(2t)) dt < o0

Example (LIL): f(t)=(1+&)./2tlog|logt |
f (t) is upper class if and only if £ >0



Singularities

limsupu(s, X) =
xTy



Heat atoms and singularities

Theorem: There exist §,,J,, 05, J, such that

Singularity |Heat atom

0, No No
J, Yes No
O, Yes Yes

J,4 No Yes




Heat atoms and singularities - examples

T g(1-t) =1+t |logt |’

pe(-wo-1)=¢g —
pel-10]=9, —
77?7 =0,
pell/2,0)=(Q, =
-1 0 1/2
0. P ? 9,

Conjecture: f€(01/2]=q,



Probabillistic representations of
heat equation solutions

u(s, x)dx=P(X, e dx)

\g(t)
Wi

u(s,x) = E** exp(—ng'(t)de]u(O,Ys)

| ~.g0)




The set of heat atoms

STV

A(g) ={t: g(t) is aheat atom }
Theorem:

() Vg dimA(g)<1/2

(i3g dimA(g)=1/2

Corollary: Lebesgue(A(g))=0



Brownian motion reflected on Brownian motion

g(t)- “fixed Brownian motion”

v

X, - “reflected Brownian motion”

Soucaliuc, Toth and Werner (2000)

Theorem: There are no heat atoms on Brownian path.



Stable boundary

D L LA

g(t) - inverse of a stable subordinator

dimA(g) =1/2



Set of singularities

g(t)- “fixed Brownian motion”

X, - “reflected Brownian motion”

Theorem: Singularities are dense on a Brownian path.



Monotonicity of heat equation
solutions

g(t)

Theorem: If t— g(t) is decreasing and X —U(0, X)
is increasing then for any t > Q , the function X — U(t, X)
IS Increasing.



Monotonicity of heat equation
solutions (ctnd)

g(t)

u(o, x) =1

Theorem: If t— J(t) is decreasing and concave and
u(0,x)=1 thenforany X ,the function t —>u(t, X)
IS Increasing.



Monotonicity- probabilistic proof

u(s, x) = E> exp[—ng'(t)deju(O,Ys)

A WANWAN
AN

YA

u(o,x)=1




