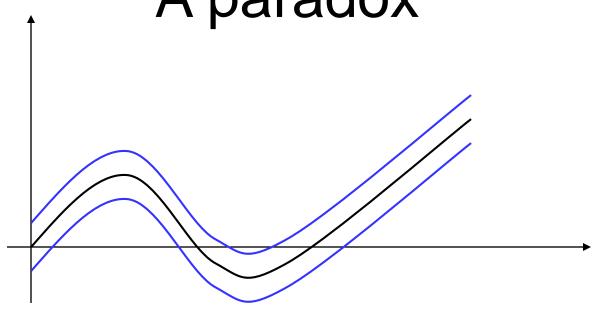
BROWNIAN MOTION A tutorial

Krzysztof Burdzy
University of Washington

A paradox



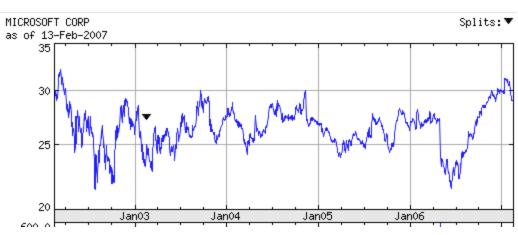
$$f:[0,1] \to R$$
, $\sup_{t \in [0,1]} |f''(t)| < \infty$

$$P(f(t) - \varepsilon < B_t < f(t) + \varepsilon, 0 < t < 1)$$

$$\approx c(\varepsilon) \exp\left(-\frac{1}{2} \int_{0}^{1} (f'(t))^{2} dt\right) \qquad (*)$$

(*) is maximized by f(t) = 0, t>0The most likely (?!?) shape of a Brownian path:

Microsoft stock



м

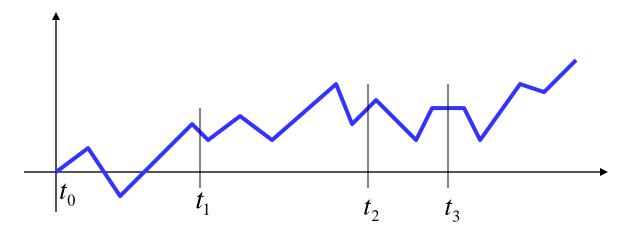
Definition of Brownian motion

Brownian motion is the unique process with the following properties:

- (i) No memory
- (ii) Invariance
- (iii) Continuity

(iv)
$$B_0 = 0$$
, $E(B_t) = 0$, $Var(B_t) = t$

Memoryless process



$$B_{t_1} - B_{t_0}, B_{t_2} - B_{t_1}, B_{t_3} - B_{t_2}, \dots$$

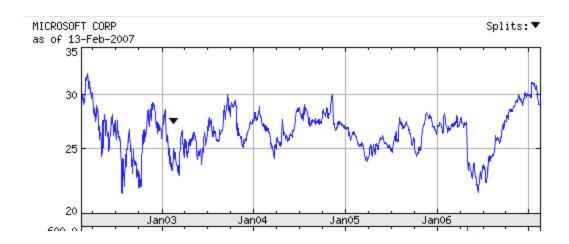
are independent

Invariance

The distribution of $B_{t+s} - B_s$ depends only on t.

Path regularity

- (i) $t \rightarrow B_t$ is continuous a.s.
- (ii) $t \rightarrow B_t$ is nowhere differentiable a.s.



M

Why Brownian motion?

Brownian motion belongs to several families of well understood stochastic processes:

- (i) Markov processes
- (ii) Martingales
- (iii) Gaussian processes
- (iv) Levy processes

H

Markov processes

$$\mathcal{L}\{B_t, t \ge s \mid B_s\} = \mathcal{L}\{B_t, t \ge s \mid B_u, 0 \le u \le s\}$$

The theory of Markov processes uses tools from several branches of analysis:

- (i) Functional analysis (transition semigroups)
- (ii) Potential theory (harmonic, Green functions)
- (iii) Spectral theory (eigenfunction expansion)
- (iv) PDE's (heat equation)

Martingales

$$s < t \Longrightarrow E(B_t \mid B_s) = B_s$$

Martingales are the only family of processes for which the theory of stochastic integrals is fully developed, successful and satisfactory.

$$\int_{0}^{t} X_{s} dB_{s}$$

M

Gaussian processes

$$B_{t_1}, B_{t_2}, \dots, B_{t_n}$$
 is multidimensional normal (Gaussian)

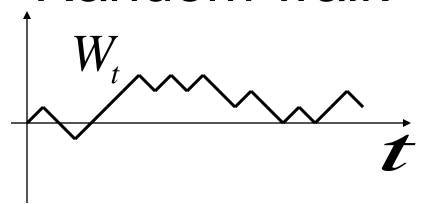
- (i) Excellent bounds for tails
- (ii) Second moment calculations
- (iii) Extensions to unordered parameter(s)

The Ito formula

$$\int_{0}^{t} X_{s} dB_{s} = \lim_{n \to \infty} \sum_{k=0}^{nt} X_{k/n} (B_{(k+1)/n} - B_{k/n})$$

$$f(B_t) = f(B_0) + \int_0^t f'(B_s) dB_s + \frac{1}{2} \int_0^t f''(B_s) ds$$

Random walk



Independent steps, P(up)=P(down)

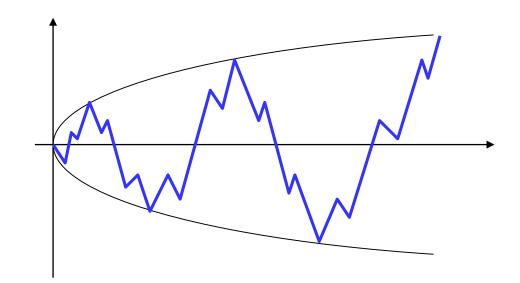
$$\left\{ \sqrt{a}W_{t/a}, t \ge 0 \right\} \quad \xrightarrow{a \to \infty} \quad \left\{ B_t, t \ge 0 \right\}$$

(in distribution)

Scaling

Central Limit Theorem (CLT), parabolic PDE's

$$\{B_t, 0 \le t \le 1\} \stackrel{D}{=} \{\sqrt{a}B_{t/a}, 0 \le t \le 1\}$$



.

Cameron-Martin-Girsanov formula

Multiply the probability of each Brownian path $\{B_t, 0 \le t \le 1\}$ by

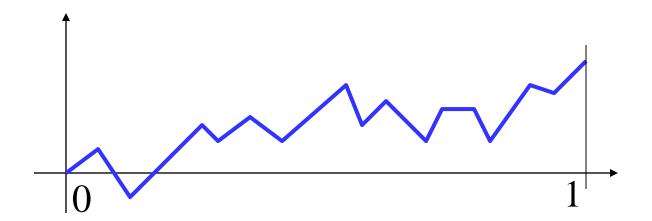
$$\exp\left(\int_{0}^{1} f'(s)dB_{s} - \frac{1}{2}\int_{0}^{1} (f'(s))^{2} ds\right)$$

The effect is the same as replacing $\{B_t, 0 \le t \le 1\}$ with $\{B_t + f(t), 0 \le t \le 1\}$

Invariance (2)

Time reversal

$$\{B_t, 0 \le t \le 1\} \stackrel{D}{=} \{B_{1-t} - B_1, 0 \le t \le 1\}$$



Brownian motion and the heat equation

u(x,t) – temperature at location x at time t

Heat equation:

$$\frac{\partial}{\partial t}u(x,t) = \frac{1}{2}\Delta_x u(x,t)$$

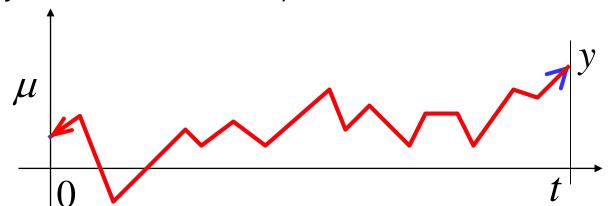
$$\mu(dx) = u(x,0)dx$$

Forward representation

$$u(y,t)dy = P^{\mu}(B_t \in dy)$$

Backward representation (Feynman-Kac formula)

$$u(y,t) = Eu(B_t + y,0)$$

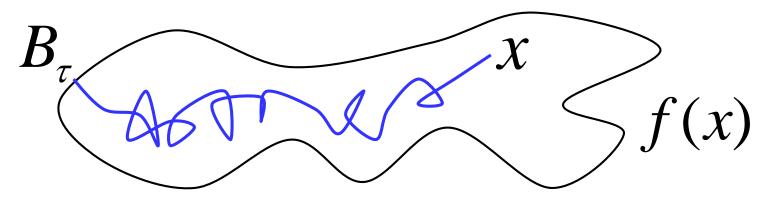


Multidimensional Brownian motion

$$B_t^1, B_t^2, B_t^3, \dots$$
 - independent 1-dimensional Brownian motions

$$(B_t^1, B_t^2, \dots, B_t^d)$$
 - d-dimensional Brownian motion

Feynman-Kac formula (2)



$$\frac{1}{2}\Delta u(x) - V(x)u(x) = 0$$

$$\frac{1}{2}\Delta u(x) - V(x)u(x) = 0$$

$$u(x) = E^{x} \left[f(B_{\tau}) \exp\left[-\int_{0}^{\tau} V(B_{s}) ds\right] \right]$$

м

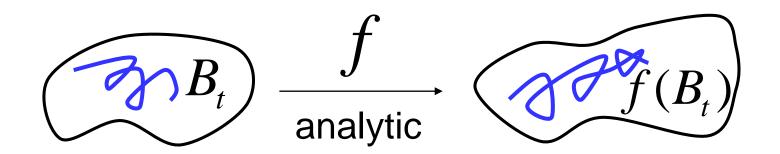
Invariance (3)

The d-dimensional Brownian motion is invariant under isometries of the d-dimensional space. It also inherits invariance properties of the 1-dimensional Brownian motion.

$$\frac{1}{\sqrt{2\pi}} \exp(-x_1^2/2) \frac{1}{\sqrt{2\pi}} \exp(-x_2^2/2)$$

$$= \frac{1}{2\pi} \exp(-(x_1^2 + x_2^2)/2)$$

Conformal invariance



$$\{f(B_t) - f(B_0), t \ge 0\}$$

has the same distribution as

$$\{B_{c^{-1}(t)}, t \ge 0\}, \quad c(t) = \int_{0}^{t} |f'(B_s)|^2 ds$$

The Ito formula Disappearing terms (1)

$$f(B_t) = f(B_0) + \int_0^t \nabla f(B_s) dB_s + \frac{1}{2} \int_0^t \Delta f(B_s) ds$$

If
$$\Delta f \equiv 0$$
 then

$$f(B_t) = f(B_0) + \int_0^t \nabla f(B_s) dB_s$$

×

Brownian martingales

Theorem (Martingale representation theorem). {Brownian martingales} = {stochastic integrals}

$$M_t = \int_0^t X_s dB_s$$

$$E(M_t | F_s^B) = M_s, \quad M_t \in F_t^B = \sigma\{B_s, s \le t\}$$

The Ito formula Disappearing terms (2)

$$f(t, B_t) - f(t, B_0) = \int_0^t \frac{\partial}{\partial x} f(s, B_s) dB_s$$

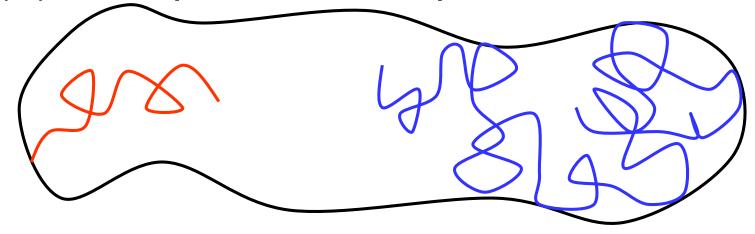
$$+\int_{0}^{t} \frac{\partial}{\partial s} f(s, B_{s}) ds + \frac{1}{2} \int_{0}^{t} \frac{\partial^{2}}{\partial x^{2}} f(s, B_{s}) ds$$

$$Ef(t,B_t)-Ef(t,B_0)$$

$$=E\int_{0}^{t}\frac{\partial}{\partial s}f(s,B_{s})ds+\frac{1}{2}E\int_{0}^{t}\frac{\partial^{2}}{\partial x^{2}}f(s,B_{s})ds$$

Mild modifications of BM

- Mild = the new process corresponds to the Laplacian
- (i) Killing Dirichlet problem
- (ii) Reflection Neumann problem
- (iii) Absorption Robin problem



w

Related models – diffusions

$$dX_{t} = \sigma(X_{t})dB_{t} + \mu(X_{t})dt$$

- (i) Markov property yes
- (ii) Martingale only if $\mu \equiv 0$
- (iii) Gaussian no, but Gaussian tails

100

Related models – stable processes

Brownian motion –
$$dB = (dt)^{1/2}$$

Stable processes – $dX = (dt)^{1/\alpha}$

- (i) Markov property yes
- (ii) Martingale yes and no
- (iii) Gaussian no

Price to pay: jumps, heavy tails, $0 < \alpha \le 2$ $0 < 2 \le 2$

Related models – fractional BM

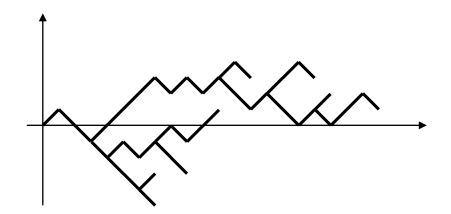
$$dX = (dt)^{1/\alpha}$$

- (i) Markov property no
- (ii) Martingale no
- (iii) Gaussian yes
- (iv) Continuous

$$1 < \alpha < \infty$$

$$1 < 2 < \infty$$

Related models - super BM



Super Brownian motion is related to

$$\Delta u = u^2$$

and to a stochastic PDE.

Related models – SLE

Schramm-Loewner Evolution is a model for <u>non-self-intersecting</u> conformally invariant 2-dimensional paths.

Path properties

- (i) $t \rightarrow B_t$ is continuous a.s.
- (ii) $t \rightarrow B_t$ is nowhere differentiable a.s.
- (iii) $t \rightarrow B_t$ is Holder $(1/2 \varepsilon)$
- (iv) Local Law if Iterated Logarithm

$$\limsup_{t \downarrow 0} \frac{B_t}{\sqrt{2t \log |\log t|}} = 1$$

Exceptional points

$$\limsup_{t \downarrow 0} \frac{B_t}{\sqrt{2t \log |\log t|}} = 1$$

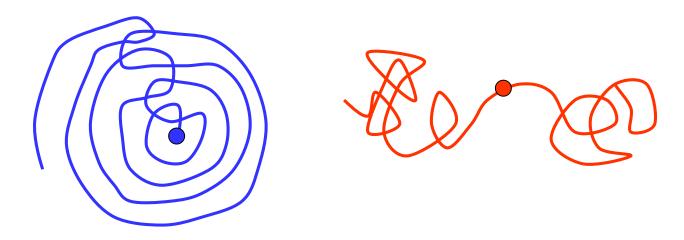
For any fixed s>0, a.s.,

$$\limsup_{t \downarrow s} \frac{B_t - B_s}{\sqrt{2(t-s)\log|\log(t-s)|}} = 1$$

There exist s>0, a.s., such that

$$\limsup_{t\downarrow s} \frac{B_t - B_s}{\sqrt{2(t-s)}} \in (0,\infty)$$

For any fixed t>0, a.s., the 2-dimensional Brownian path contains a closed loop around B_t in every interval $(t, t + \mathcal{E})$ Almost surely, there exist $t \in (0,1)$ such that $B([0,t)) \cap B((t,1]) = \emptyset$



Intersection properties

$$(d = 1) \quad a.s., \forall t \exists s \neq t \quad B_s = B_t$$

$$(d = 2) \quad \forall t \ a.s., \forall s \neq t \quad B_s \neq B_t$$

$$a.s., \exists x \in R^2 \ Card(B^{-1}(x)) = \infty$$

$$(d = 3) \quad a.s., \exists x \in R^3 \ Card(B^{-1}(x)) = 2$$

$$a.s., \forall x \in R^3 \ Card(B^{-1}(x)) \leq 2$$

$$(d = 4) \quad a.s., \forall x \in R^4 \ Card(B^{-1}(x)) \leq 1$$

Intersections of random sets

$$\dim(A) + \dim(B) > d$$

$$\updownarrow$$

$$A \cap B \neq \varnothing$$

The dimension of Brownian trace is 2 in every dimension.

M

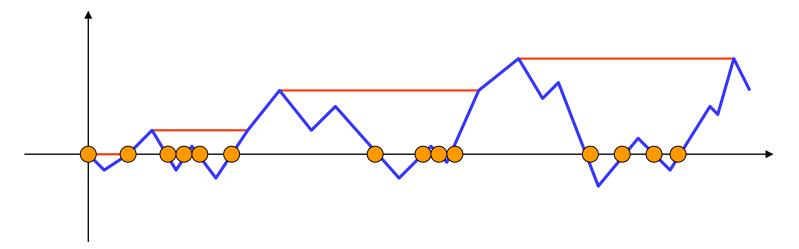
Invariance principle

(i) Random walk converges to Brownian motion (Donsker (1951)) (ii) Reflected random walk converges to reflected Brownian motion (Stroock and Varadhan (1971) - $oldsymbol{C}^2$ domains. B and Chen (2013) – all domains) (iii) Self-avoiding random walk in 2 dimensions converges to SLE (20??) (open problem)

Local time

$$L_{t} = \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \int_{0}^{t} \mathbf{1}_{\{-\varepsilon < B_{s} < \varepsilon\}} ds$$

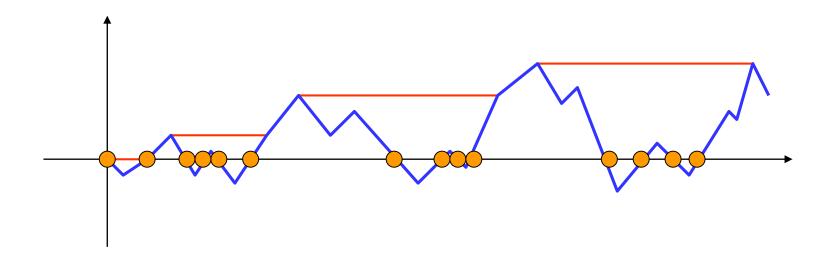
$$M_t = \sup_{s \le t} B_s$$



Local time (2)

$$\{L_t, 0 \le t \le 1\} = \{M_t, 0 \le t \le 1\}$$

$$\{M_t - B_t, 0 \le t \le 1\} = \{|B|_t, 0 \le t \le 1\}$$



Local time (3)

$$\sigma_t = \inf_{s>0} \{ L_s \ge t \}$$

Inverse local time is a stable process with index ½.

References

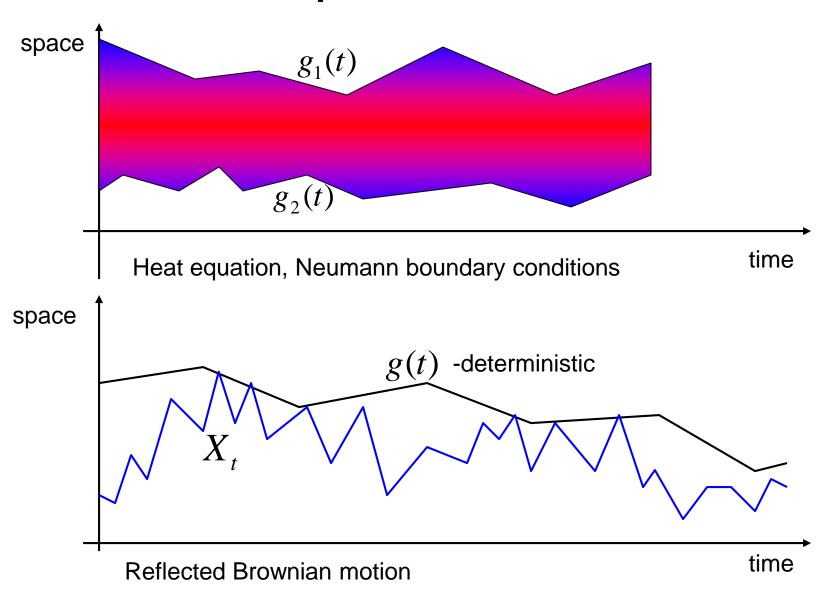
- R. Bass Probabilistic Techniques in Analysis, Springer, 1995
- F. Knight Essentials of Brownian Motion and Diffusion, AMS, 1981
- I. Karatzas and S. Shreve Brownian Motion and Stochastic Calculus, Springer, 1988

Domains with moving boundaries. The heat equation and reflected Brownian motion.

Krzysztof Burdzy

University of Washington

Time dependent domains



Reflected Brownian motion in time dependent domains

- Cranston and Le Jan (1989)
- Knight (2001)
- Soucaliuc, Toth and Werner (2000)
- Zheng (1996)
- Bass and B (1999)
- Lewis and Murray (1995)
- Hofmann and Lewis (1996)
- Lepeltier and San Martin (2004)
- B, Chen and Sylvester (2003, 2004, 2004)
- B and Nualart (2002)

Heat equation

u(t,x) - temperature at time t at point x

$$\begin{cases} \frac{1}{2} \Delta_{x} u(t, x) = u_{t}(t, x), & x < g(t), t > 0, \\ \int_{g(t)}^{g(t)} u(t, x) dx = 1, & t \ge 0, \\ u(0, x) = u_{0}(x). \end{cases}$$
(1)

$$\begin{cases} \frac{1}{2} \Delta_x u(t, x) = u_t(t, x), & x < g(t), t > 0, \\ u_x(t, x) = -g'(t)u(t, x), & x = g(t), \\ u(0, x) = u_0(x). \end{cases}$$
 (2)

Heat equation solutions – existence and uniqueness

Theorem. If g(t) is C^3 then solutions to (1) and (2) exist, are unique and equal to each other.

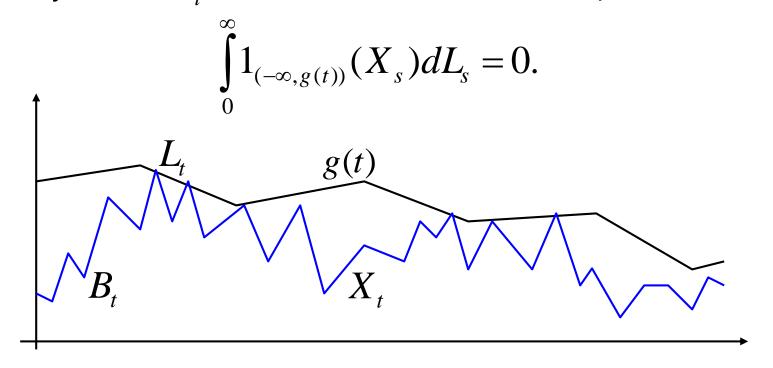
$$\begin{cases} \frac{1}{2} \Delta_{x} u(t, x) = u_{t}(t, x), & x < g(t), t > 0, \\ \int_{-\infty}^{g(t)} u(t, x) dx = 1, & t \ge 0, \\ u(0, x) = u_{0}(x). \end{cases}$$
(1)
$$\begin{cases} \frac{1}{2} \Delta_{x} u(t, x) = u_{t}(t, x), & x < g(t), t > 0, \\ u_{x}(t, x) = -g'(t)u(t, x), & x = g(t), \\ u(0, x) = u_{0}(x). \end{cases}$$
(2)

Lewis and Murray (1995), Hofmann and Lewis (1996)

Skorohod Lemma

 $g(t), B_t$ - continuous functions

Lemma. There exists a unique continuous non-decreasing function L_t such that $X_t = B_t - L_t \le g(t)$ for every t and L_t does not increase when $X_t < g(t)$, i.e.,



Heat equation solution via reflected **Brownian motion**

g(t) - continuous function

 B_{f} - Brownian motion

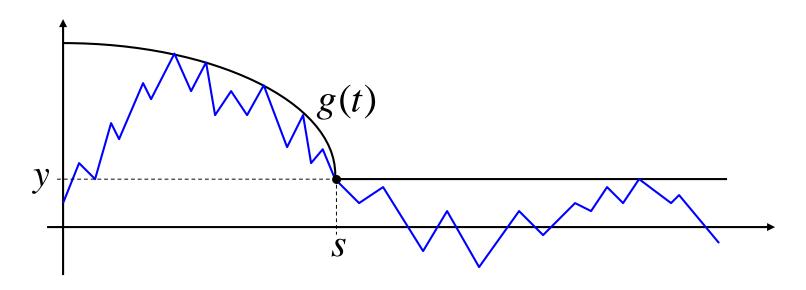
$$X_{t} = B_{t} - L_{t}$$

Theorem. The function $u(t,x)dx = P(X_t \in dx)$ solves (1).

Frem. The function
$$u(t,x)dx = P(X_t \in dx)$$
 solves
$$\begin{cases} \frac{1}{2}\Delta_x u(t,x) = u_t(t,x), & x < g(t), \ t > 0, \\ \int u(t,x)dx = 1, & t \geq 0, \end{cases}$$
 (1)
$$u(0,x) = u_0(x).$$

Lewis and Murray (1995), Hofmann and Lewis (1996)

Heat atoms

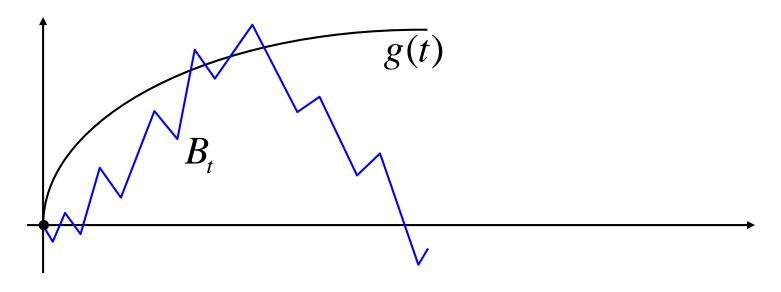


$$\int_{(-\infty,y)} u(s,x)dx < 1$$

$$P(X_s = y) > 0$$

Theorem. Heat atoms exist for some g(t).

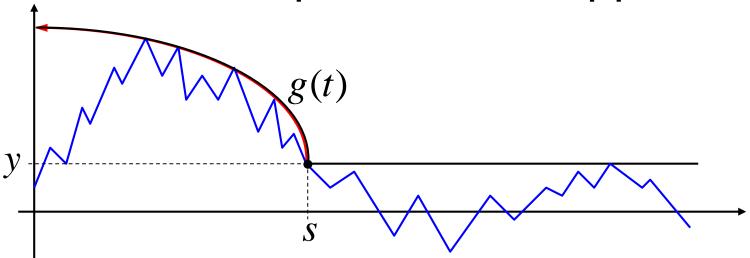
Upper functions for Brownian motion



$$P(\inf\{t > 0 : B_t = g(t)\} = 0) = 0$$

 B_t - Brownian motion

Heat atoms – probabilistic approach



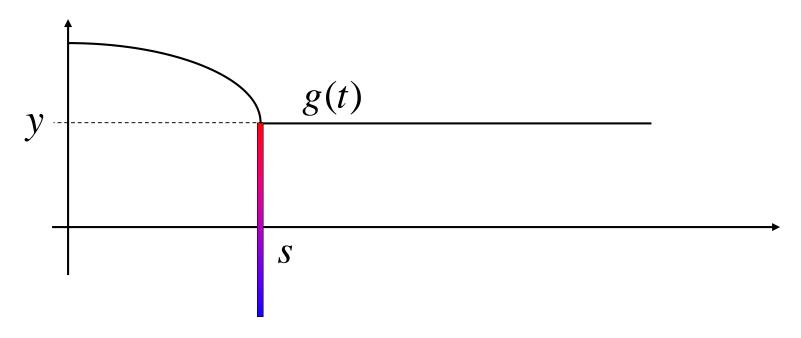
Theorem. g(s) is a heat atom if an only if f(t) = g(s-t) - g(s) is an upper function.

Kolmogorov's criterion: f(t) is upper class if and only if

$$\int_{0}^{1} t^{-3/2} f(t) \exp(-f^{2}(t)/(2t)) dt < \infty$$

Example (LIL): $f(t) = (1+\varepsilon)\sqrt{2t\log|\log t|}$ f(t) is upper class if and only if $\varepsilon > 0$

Singularities



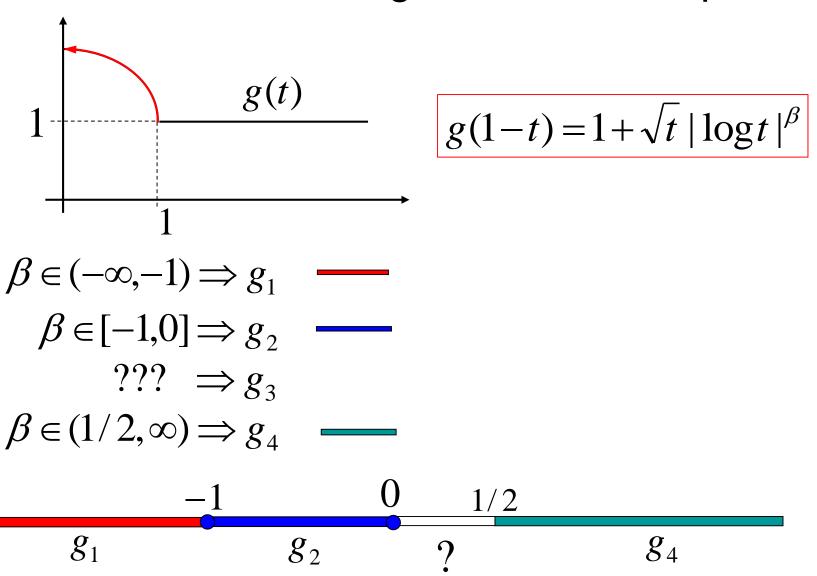
$$\limsup_{x \uparrow y} u(s, x) = \infty$$

Heat atoms and singularities

Theorem: There exist g_1, g_2, g_3, g_4 such that

	Singularity	Heat atom
g_1	No	No
g_2	Yes	No
g_3	Yes	Yes
g_4	No	Yes

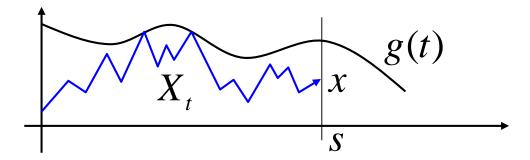
Heat atoms and singularities - examples



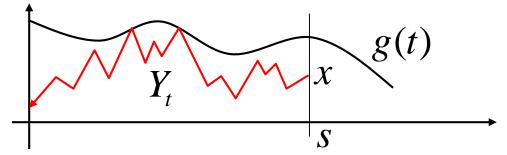
Conjecture: $\beta \in (0,1/2] \Rightarrow g_4$

Probabilistic representations of heat equation solutions

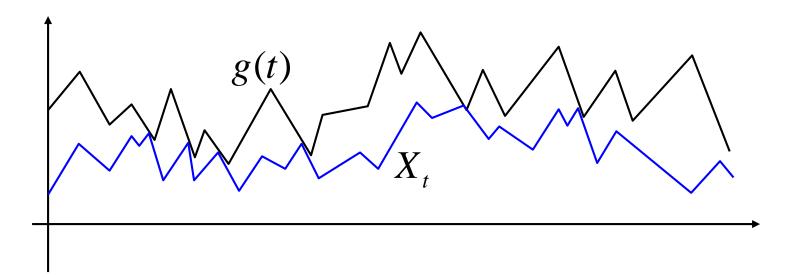
$$u(s,x)dx = P(X_s \in dx)$$



$$u(s,x) = E^{0,x} \left[\exp\left(-\int_0^s 2g'(t)dL_t^Y\right) u(0,Y_s) \right]$$



The set of heat atoms



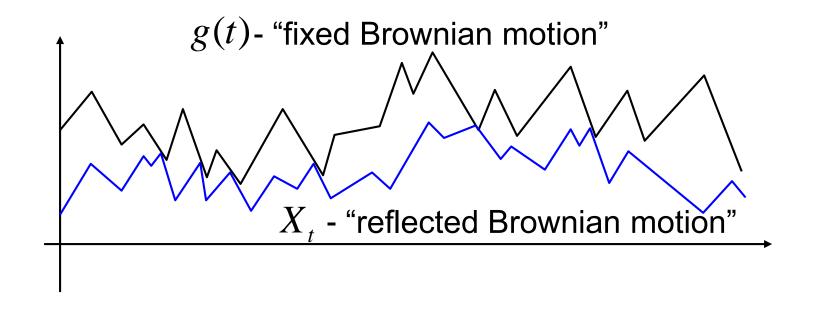
$$A(g) = \{t : g(t) \text{ is a heat atom } \}$$

Theorem:

- (i) $\forall g \quad \dim A(g) \leq 1/2$
- (ii) $\exists g \quad \dim A(g) = 1/2$

Corollary: Lebesgue(A(g)) = 0

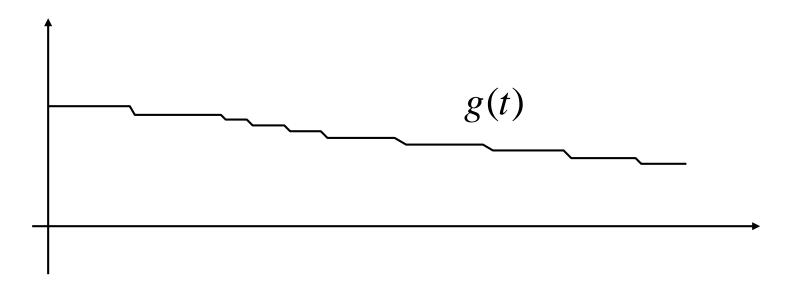
Brownian motion reflected on Brownian motion



Soucaliuc, Toth and Werner (2000)

Theorem: There are no heat atoms on Brownian path.

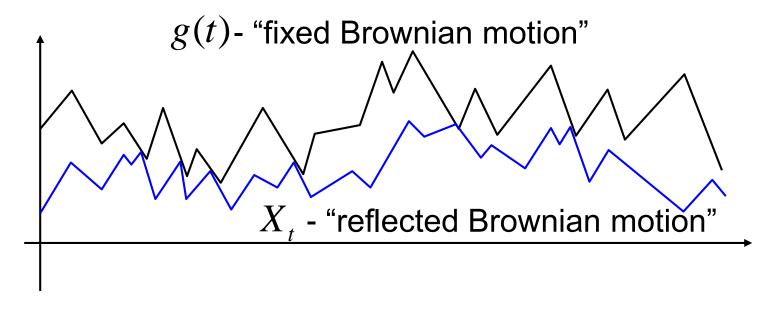
Stable boundary



g(t) - inverse of a stable subordinator

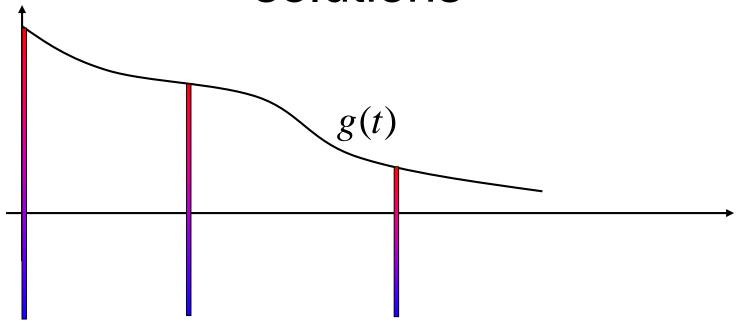
$$\dim A(g) = 1/2$$

Set of singularities



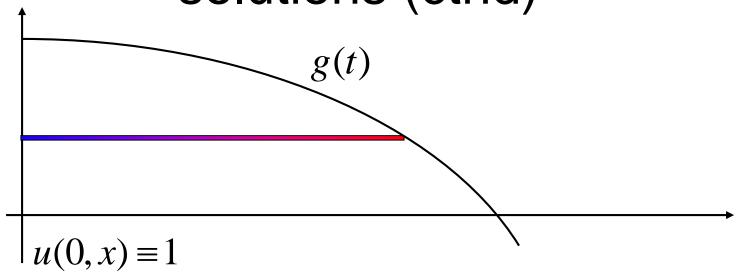
Theorem: Singularities are dense on a Brownian path.

Monotonicity of heat equation solutions



Theorem: If $t \to g(t)$ is decreasing and $x \to u(0,x)$ is increasing then for any t > 0, the function $x \to u(t,x)$ is increasing.

Monotonicity of heat equation solutions (ctnd)



Theorem: If $t \to g(t)$ is decreasing and concave and $u(0,x)\equiv 1$ then for any x, the function $t \to u(t,x)$ is increasing.

Monotonicity- probabilistic proof

$$u(s,x) = E^{0,x} \left[\exp\left(-\int_0^s 2g'(t)dL_t^Y\right) u(0,Y_s) \right]$$

