
PRODUCTIVE PROPERTIES IN TOPOLOGICAL
GROUPS
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Abstract. According to the celebrated theorem of Comfort and
Ross (1966), the product of an arbitrary family of pseudocompact
topological groups is pseudocompact. We present an overview of
several important generalizations of this result, both of “absolute”
and “relative” nature. One of them is the preservation of func-
tional boundedness for subsets of topological groups. Also we con-
sider close notions of C-compactness and r-pseudocompactness for
subsets of Tychonoff spaces and establish their productivity in the
class of topological groups.

Finally, we give a very brief overview of productivity properties
in paratopological and semitopological groups.

1. Introduction

Given a class C of topological spaces, it is always a good idea to find
out whether this class is closed under taking (finite) products, continu-
ous (open, closed) mappings, and passing to (closed, open) subspaces.
In other words, it is important to know what the permanence properties
of the class C are. In this short course we will be primarily interested
in finding productive properties in the class of topological groups.

Main Problem. Given a topological (topological group) property P,
find out whether P is productive in the class of topological groups.

In other words, we wonder whether a product
∏

i∈I Gi has property
P provided that each factor Gi is a topological group having property
P. In fact, the same question makes sense in the wider classes of
paratopological and semitopological groups which will be introduced in
Section 5.

This problem has been intensively studied in the case when the fac-
tors Gi’s are topological spaces. We present below relatively brief lists
of productive and non-productive properties (many results from the
two lists can be found in [8]):
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“ABSOLUTELY” PRODUCTIVE PROPERTIES FOR ALL SPACES:

• compactness and τ -boundedness, for each τ ≥ ω;
• connectedness and pathwise connectedness;
• axioms of separation (T0 to T3.5);
• completeness (realcompactness, Dieudonné-completeness);
• total disconnectedness and zero-dimensionality (i.e., ind = 0);
• calibers, precalibers, the Knaster and Shanin properties;
• countable cellularity (under the additional assumption of Mar-

tin’s Axiom plus negation of the Continuum Hypothesis), etc.

We recall that a space X is τ -bounded, for an infinite cardinal τ , if
the closure in X of every subset of cardinality ≤ τ is compact.

We also say that a spaceX the Knaster property if every uncountable
family of open sets in X contains an uncountable subfamily such that
every two elements of the subfamily have a non-empty intersection.
Similarly, a space X has the Shanin property if every uncountable
family of open sets in X contains an uncountable subfamily with the
finite intersection property. It is clear that the Shanin property is
stronger than the Knaster one:

Shanin property =⇒ Knaster property =⇒ countable cellularity

NON-PRODUCTIVE PROPERTIES IN SPACES:

1) countable compactness (also in topological groups, requires MA);
2) pseudocompactness (productive in topological groups);
3) normality (also in topological groups);
4) the Lindelöf property (also in topological groups);
5) countable cellularity (under CH, also in topological groups);
6) countable tightness (also in topological groups);
7) sequentiality (also in topological groups, in some models);
8) Fréchet–Urysohn property (also in topological groups, in some

models), etc.

COUNTEREXAMPLES:

A. Novák’s example of two subspaces X and Y of βN (see [8, Ex-
ample 3.10.19]); it serves for the above items 1) and 2).

Even if Novák’s construction is well known, it deserves a brief repro-
duction here. The subspaces X and Y of βN are constructed to satisfy
the following three simple conditions:

(i) |X| = c, where c = 2ω;
(ii) X ∩ Y = N;

(iii) X and Y are countably compact.
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Let X0 = N. We will define an increasing sequence {Xα : α < ω1} of
subspaces of βN such that for every α < ω1, |Xα| ≤ c and each infinite
subset of Xα has an accumulation point in Xα+1. This is possible
since the family Exp(Xα) of all countable subsets of Xα has cardinality
|Xα|ω ≤ cω = c.

Let X =
⋃
α<ω1

Xα. It is clear that |X| = c. To see that X is
countably compact, take an infinite subset A of X. It follows from our
definition of X that A ∩ Xα is infinite, for some α < ω1. Let B be a
countably infinite subset of A ∩ Xα. Then B (and, hence, A) has an
accumulation in Xα+1 ⊆ X. Thus A has an accumulation point in X,
so X is countably compact.

Let Y = N ∪ (βN \ X). Since the closure of every infinite subset
of βN has cardinality 2c and |X| = c, the subspace Y of βN is also
countably compact.

Finally, we claim that the product space X ×Y is neither countably
compact nor even pseudocompact. Indeed, let D = {(n, n) : n ∈ N}.
The infinite subspace D of X×Y consists of isolated points and has no
accumulation points in X×Y because of the equality D = (X×Y )∩∆,
where the diagonal ∆ = {(x, x) : x ∈ βN} is a closed subspace of
βN× βN. This shows that X × Y is not pseudocompact.

[Observation: The subspace Y of βN has cardinality 2c, but a small
modification of the above construction gives a countably compact sub-
space Z of βN such that |Z| = c, N ⊆ Z, and X × Z is not pseudo-
compact.]

B. The Sorgenfrey line S is a counterexample to 3) and 4). Indeed,
the space S is regular and Lindelöf, hence normal. However, the prod-
uct S×S contains a closed discrete subset C = {(x, y) ∈ S×S : x+y =
0} of cardinality c. Since the spaces S and S × S are separable, the
latter space is neither Lindelöf nor normal.

C. Laver and Galvin’s examples serve for 5), see [9].

D. Sequential fan with 2ℵ0 spines does the job for 6), 7) and 8)
(Arhangel’skii [1] for spaces, Okunev [19] for topological groups).

Fréchet–Urysohn property is not finitely productive even in the class
of compact spaces (P. Simon [27]), but sequentiality and countable
tightness do remain finitely (and countably) productive in compact
spaces (Malykhin [17] for tightness). In fact, countable tightness is
productive in the wider class of regular initially ℵ1-compact spaces
(Alan Dow).
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WHY TOPOLOGICAL GROUPS?

Topological groups constitute a very interesting subclass of homoge-
neous spaces. The degree of homogeneity in topological groups is even
higher than in spaces: Given two points a, b of a topological group G,
there exists a homeomorphism ϕ of G onto itself such that ϕ(a) = b
and ϕ(b) = a. It is worth noting that the long line is a homogeneous
locally compact space which does not have this property!

Let us mention the following special features of topological groups
(to list a few):

a) T0 ⇐⇒ T3.5 (Pontryagin, [21]);
b) first countable ⇐⇒ metrizable (Birkhoff–Kakutani’s theorem);
c) all σ-compact topological groups have countable cellularity (even

more, they have the Knaster property). See [28] and [3, Corol-
lary 5.4.8]);

d) every topological group has a maximal group extension %G,
called the Răıkov completion of G, and all other group ex-
tensions of G are subgroups of %G containing G (compare the
one-point compactification αN with the Stone–Čech compacti-
fication βN of the discrete space N).

As usual, if G is a dense subgroup of a topological group H, we
say that H is an extension of G. It is known that if H1 and H2 are
maximal group extensions of a topological group G, then there exists a
topological isomorphism ϕ : H1 → H2 such that ϕ(x) = x for each x ∈
G [3, Theorem 3.6.14]. Hence the Răıkov completion of a topological
group is essentially unique.

Summing up, the above items a)–d) give a hope that some non-
productive topological properties become productive in the class of
topological groups. This is indeed the case!

2. Around the Comfort–Ross’ theorem.

Problem 1. Do there exist Novák type topological groups?

We ask for two countably compact topological groups G and H such
that G × H is not pseudocompact (or at least fails to be countably
compact).

Does normality help? We have in mind the simple fact that a pseu-
docompact normal space is countably compact. Therefore, if both nor-
mality and pseudocompactness were finitely productive in topological
groups, the product of two normal and countably compact topological
groups would also be countably compact. Unfortunately, the product
of two countably compact, hereditarily normal topological groups can
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simultaneously fail to be countably compact and normal. This fact can
be deduced from the combination of [11] and [7]. All known construc-
tions of this kind of groups, however, depend on additional axiomatic
assumptions like CH or MA.

It turns out that the product of two normal, countably compact topo-
logical groups need not be normal, in ZFC alone. Indeed, let Σ be the
Σ-product of ω1 copies of the circle group T, considered as a subgroup
of Tω1 . Clearly both groups Σ and Tω1 are normal and countably
compact, and the Stone–Čech compactification of Σ is Tω1 . Hence
Tamano’s theorem [8, Theorem 5.1.38] implies that the product space
Σ× Tω1 is not normal.

Historically, the first example of a Hausdorff topological group which
is not normal was given by A.H. Stone in 1948. It was the group Zω1

with the usual Tychonoff product topology, where Z is the discrete
group of integers.

In what follows we will frequently work with precompact topological
groups.

Definition 2.1. A topological group G is called precompact if for every
open neighborhood U of the neutral element in G, one can find a finite
set K ⊆ G such that KU = G (equivalently, UK = G).

Precompact topological groups admit a nice characterization given
by Weil in 1937.

Theorem 2.2. (A. Weil, [36]) A topological group G is precompact if
and only if it is topologically isomorphic to a dense subgroup of a com-
pact topological group.

Weil’s characterization of precompact groups yields the following
simple fact:

Corollary 2.3. A topological group G is precompact iff %G is compact.

A clear relation between precompactness and pseudocompactness in
topological group was found by Comfort and Ross in [6]:

Proposition 2.4. Every pseudocompact topological group is precom-
pact.

It is a good idea to imitate Novák’s approach and construct two
countably compact subgroups, say, H1 and H2 of a “big” compact
topological group G such that their intersection H1 ∩H2 is countable
and infinite. If ∆ is the diagonal in G×G, then

S = ∆ ∩ (H1 ×H2)
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is a closed, countable, infinite subgroup of H1 × H2. Hence S cannot
be countably compact—otherwise it would be compact and would have
uncountable cardinality. Since S is closed inH1×H2, the product group
H1 ×H2 is not countably compact either.

There is, however, a serious obstacle for a construction of Novák
type topological groups. We recall that the spaces X and Y in Novák’s
example were defined as subspaces of the compact space βN, and all
infinite closed subsets of the latter space have cardinality 2c. In partic-
ular, βN does not contain non-trivial convergent sequences. Compact
topological groups are very different in this respect, by the Ivanovskii–
Kuz’minov theorem [16] proved in 1959:

Theorem 2.5. Every compact topological group G is dyadic. There-
fore, if G is infinite, it contains non-trivial convergent sequences.

Let us deduce the second claim of the above theorem from the first
one. Since G is dyadic, there exists a continuous mapping f : Dτ →
G of the generalized Cantor discontinuum Dτ onto G, where D =
{0, 1} and τ is an infinite cardinal. Denote by Σ the corresponding Σ-
product of the factors lying in Dτ . Then Σ is a dense ω-bounded and
ω-monolithic subspace of Dτ , i.e., the closure of every countable subset
of Σ is a compact metrizable subspace of Σ. Hence f(Σ) is also a dense
ω-bounded and ω-monolithic subspace of G. If G is infinite, so is f(Σ).
Thus the latter space contains non-trivial convergent sequences.

In fact, compact groups have a stronger property which can be es-
tablished by methods of the Pontryagin–van Kampen duality theory:
Every infinite compact topological group contains a non-discrete com-
pact metrizable subgroup.

Conclusion: To construct, ‘a la Nov́ak’, two countably compact topo-
logical groups whose product fails to be countably compact, we have to
find an infinite countably compact topological group without non-trivial
convergent sequences.

There are several subclasses of pseudocompact spaces in which pseu-
docompactness becomes productive. One of these classes was found by
I. Glicksberg:

Theorem 2.6. (Glicksberg, [10]) A Cartesian product of locally com-
pact, pseudocompact spaces is pseudocompact.

Let us now look at topological groups.

Fact. A locally compact pseudocompact topological group is compact.

Therefore, Glicksberg’s theorem does not give anything new for topo-
logical groups. Nevertheless, Comfort and Ross proved in 1966 the
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following remarkable result which is a starting point for numerous gen-
eralizations:

Theorem 2.7. (COMFORT and ROSS, [6])] The Cartesian prod-
uct of arbitrarily many pseudocompact topological groups is pseudocom-
pact.

SKETCH OF THE PROOF. Every pseudocompact topological group
is precompact, by Proposition 2.4. It turns out that a precompact
topological group H is pseudocompact iff H intersects each non-empty
Gδ-set in the Răıkov completion %H of H, i.e., H is Gδ-dense in %H.
The latter property of precompact topological groups is productive, as
well as precompactness itself.

Corollary 2.8. The product of any two countably compact topological
groups is pseudocompact.

We come once again to the problem whether the conclusion about
pseudocompactness of the product in Corollary 2.8 can be strengthened
to countable compactness. It turns out that this is impossible, at least
in ZFC:

Example 2.9. (E. van Douwen, [7]) Under Martin’s Axiom, there exist
countably compact topological groups H1 and H2 such that the product
H1 ×H2 is not countably compact.

IDEA OF THE CONSTRUCTION. First, van Douwen uses MA to pro-
duce an infinite countably compact topological group G (a dense sub-
group of the compact Boolean group {0, 1}c, where c = 2ω) such that G
does not contain non-trivial convergent sequences. In fact, the group
G as well as every infinite closed subset of G have the same cardinality
c (the latter property of G follows from MA). Once the group G is
constructed, the rest is a simple application of Novák’s idea.

Take a countable infinite subgroup S of G and construct by recursion
of length c two countably compact subgroups H1 and H2 of G such that
H1 ∩H2 = S. Then H1 ×H2 fails to be countably compact.

For a deeper insight into the matter of productivity of pseudocom-
pactness in topological groups, one may wish to find out the ‘real’
reason of this phenomenon.

Problem 2. Do topological groups possess a special topological property
that makes pseudocompactness productive?

In 1982, A. Chigogidze answered this question affirmatively. He used
the following interesting concept introduced earlier by E.V. Ščepin.
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Definition 2.10. (E.V. Ščepin) A space X is called κ-metrizable if it
admits a non-negative “distance” function %(x,O) from a point x ∈ X
to a regular closed subset O of X satisfying the following conditions:

1) x ∈ O ⇐⇒ %(x,O) = 0;
2) if U , V are open in X and U ⊆ V then %(x, V ) ≤ %(x, U) for

each x ∈ X;
3) %(x,O) is continuous in the first argument;

4) %(x,
⋃
γ) = inf{%(x,

⋃
µ) : µ ⊆ γ, |µ| < ℵ0} for any family γ

of open sets in X.

The class of κ-metrizable spaces is very wide and has nice perma-
nence properties:

Proposition 2.11. (Ščepin, [25])

(a) All metrizable spaces are κ-metrizable.
(b) A dense (open, regular closed) subspace of a κ-metrizable space

is κ-metrizable.
(c) The product of any family of κ-metrizable spaces is κ-metrizable.
(d) Every locally compact topological group is κ-metrizable.

Items (b) and (d) of Proposition 2.11 together with the Weil’s char-
acterization of precompact groups given in Theorem 2.2 imply that all
precompact (hence pseudocompact) topological groups are κ-metrizable.

Here is a generalization of the Comfort–Ross theorem obtained by
Chigogidze:

Theorem 2.12. (Chigogidze, [5]) A Cartesian product of κ-metrizable
pseudocompact spaces is pseudocompact.

IDEA OF THE PROOF. If X is κ-metrizable and pseudocompact, then
βX is also κ-metrizable (Chigogidze). Let {Xi : i ∈ I} be a family
of pseudocompact κ-metrizable spaces. Each Xi is Gδ-dense in βXi,
and the latter compact space is κ-metrizable. Hence the product space∏

i∈I βXi is κ-metrizable by (c) of Proposition 2.11, and X =
∏

i∈I Xi

is Gδ-dense in
∏

i∈I βXi.
Every regular closed subset of a κ-metrizable space is a zero-set. In

other words, every κ-metrizable space is perfectly κ-normal or, equiv-
alently, is an Oz-space. It is not difficult to verify that a Gδ-dense
subspace of an Oz-space is C-embedded, so X is C-embedded in the
compact space

∏
i∈I βXi. This implies that X is pseudocompact.

Theorem 2.12 implies several results established earlier by Trigos–
Arrieta and Uspenskij:
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Theorem 2.13. Suppose that Xi is a pseudocompact subspace of a
topological group Hi, for i ∈ I. Then

∏
i∈I Xi is pseudocompact in each

of the following cases:

(1) (Trigos–Arrieta, [34]) Xi is regular closed in Hi for each i ∈ I;
(2) (Uspenskij, [35]) Xi is a retract of Hi for each i ∈ I;
(3) (Uspenskij, [35]) Xi is a Gδ-set in Hi for each i ∈ I.

Proof. To deduce (1), consider the inclusions Xi ↪→ Hi ↪→ %Hi and
notice that the closure of Xi in %Hi, say, Xi is a regular closed subset of
%Hi. Since Xi is pseudocompact and the group %Hi is Răıkov complete,
the set Xi is compact. Hence the group %Hi is locally compact. It now
follows from (d) of Proposition 2.11 that the group %Hi is κ-metrizable,
and so is its regular closed subset Xi. Then Xi is κ-metrizable as
a dense subspace of Xi and, therefore, the product space

∏
i∈I Xi is

pseudocompact by Theorem 2.12.
For 2) and 3), we note that βXi is a Dugundji compact space for each

i ∈ I (Uspenskij) and hence is κ-metrizable (Ščepin). The rest of the
argument is identical to the one given above. �

It is worth noting that in Theorem 2.13, item (3) implies (1). Indeed,
let C be the subgroup of %Hi generated by Xi. Since Xi is compact
and has a non-empty interior in %Hi, the subgroup C is open in %Hi

and σ-compact. It remains to note that every regular closed subset of
a σ-compact group is a zero-set [29, Theorem 1]. So Xi is a zero-set in
C and in %Hi.

Finally, we recall that a compact space X is Dugundji if for every
closed subspace Y of a zero-dimensional compact space Z, every con-
tinuous mapping f : Y → X admits a continuous extension f̃ : Z → X
(see [20]). It turns out that every Dugundji compact space has a multi-
plicative lattice of continuous open mappings onto compact metrizable
spaces, and this property characterizes the class of compact Dugundji
spaces [26].

3. Relative pseudocompactness

In this section we consider ‘relative’ properties, i.e., properties of
how a subspace is placed in the whole space, and how certain relative
properties behave with respect to the product operation.

Let us start with precompact subsets of topological groups. A sub-
set X of a topological group G is called precompact if for every open
neighborhood U of identity in G there exists a finite set K ⊆ G such
that X ⊆ K · U ∩ U ·K.

The following two facts are quite easy to verify (see [3, Section 3.7]).
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Proposition 3.1. A subset X of a topological group G is precompact
in G iff cl%GX is compact.

Proposition 3.2. Let Xα be a precompact subset of a topological group
Gα, α ∈ A. Then

∏
α∈AXα is precompact in

∏
α∈AGα.

In the following definition we introduce one of the most interesting
relative properties. It has a close relation with pseudocompactness.

Definition 3.3. A subset Y of a space X is functionally bounded in X
if for every continuous function f : X → R, the image f(Y ) is bounded
in R.

Every pseudocompact subspace Y ⊆ X is functionally bounded in
X, but not vice versa. Indeed, denote by ω1 +1 the space of all ordinals
≤ ω1 endowed with the order topology. Let us take

Y = ω × {ω1} ⊆ (ω + 1)× (ω1 + 1) \ {(ω, ω1)} = X.

Then Y is an infinite, closed, discrete, functionally bounded subset of
X. Clearly, Y is not pseudocompact.

It is also clear that

X is functionally bounded in itself ⇐⇒ X is pseudocompact.

It is worth mentioning that the product of functionally bounded sets
Y1 ⊆ X1 and Y2 ⊆ X2 need not be functionally bounded in X1 × X2

(let Y1 = X1 and Y2 = X2 in Novák’s example).

It turns out that the Comfort–Ross theorem follows from the next
‘relative’ version of it:

Theorem 3.4. (Tkachenko, [31]) Let Bi be a functionally bounded sub-
set of a topological group Gi, where i ∈ I. Then

∏
i∈I Bi is functionally

bounded in
∏

i∈I Gi.

Note that the groups Gi in Theorem 3.4 are NOT assumed to sat-
isfy any restriction. The Comfort–Ross theorem is immediate from
Theorem 3.4 if one takes Bi = Gi for each i ∈ I.

Corollary 3.5. Let X and Y be functionally bounded subsets of a
topological group G. Then:

a) X · Y is functionally bounded in G;
b) if 〈X〉 is dense in G then the cellularity of G is countable and

G has the Knaster property.

Once again, we can try to find a ‘topological’ reason for the produc-
tivity of functional boundedness in topological groups. The explanation
of this phenomenon can be given in the following ‘advanced’ terms:
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Every Hausdorff topological group has an ω-directed lattice of open
continuous mappings onto Dieudonné-complete spaces.

This is exactly the property which makes functional boundedness
stable under the product operation. Let us explain briefly the terms
and basic ideas behind the above sentence.

Suppose that G is a topological group. We will call a subgroup
N of G admissible if there exists a sequence {Un : n ∈ ω} of open
neighborhoods of the neutral element in G such that

(a) Un = U−1
n for each n ∈ ω;

(b) U3
n ⊂ Un for each n ∈ ω;

(c) N =
⋂
n∈ω Un.

Denote by AG the family of all admissible subgroups of G. It is easy to
verify that the family AG is closed under countable intersections, i.e.,⋂
γ ∈ AG for every countable family γ ⊂ AG. For every N ∈ AG, let

πN : G→ G/N be the quotient mapping of G onto the left coset space
G/N . Then the mapping πN is open.

One of the basic facts we are going to use is that the space G/N is
submetrizable for each N ∈ AG, i.e., G/N admits a coarser metrizable
topology:

Lemma 3.6. If N is an admissible subgroup of a Hausdorff topological
group G, then the quotient space G/N is submetrizable.

Proof. There exists a sequence {Un : n ∈ ω} of open neighborhoods of
the identity in G such that U−1

n = Un and U3
n+1 ⊂ Un for each n ∈ ω,

and N =
⋂
n∈ω Un. We define

Vn = {(x, y) ∈ G×G : x−1y ∈ Un}, n ∈ ω.

It follows from Theorem 8.1.10 of [8] that there exists a continuous
pseudometric d on G such that

Vn+1 ⊂ {(x, y) ∈ G×G : d(x, y) < 2−n−1} ⊂ Vn,

for each n ∈ ω. Obviously d(x, y) = 0 if x−1y ∈ N . Thus there exists
a metric d∗ on G/N satisfying d∗(π(x), π(y)) = d(x, y) for all x, y ∈ G,
where π : G → G/N is the naturel quotient mapping. The continuity
of the metric d∗ on the quotient space G/N follows from the fact that
π is an open continuous mapping. �

Therefore, it follows from Lemma 3.6 thatG/N is Dieudonné-complete
for each N ∈ AG or, equivalently, G/N is homeomorphic to a closed
subspace of a product of metrizable spaces [8, 8.5.13]. In its turn, this
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implies that the closure of every functionally bounded subset of G/N is
compact. In addition, we see that

{πN : N ∈ AG}

is an ω-directed family of open mappings onto Dieudonné-complete
spaces, as we claimed above.

The next lemma is a crucial step towards the proof of Theorem 3.4.
This lemma says us that functional boundedness of subsets of a topo-
logical group G is ‘reflected’ in quotient spaces G/N , with N ∈ AG.

Lemma 3.7. A subset B of a topological group G is functionally bounded
in G if and only if πN(B) is functionally bounded in the quotient space
G/N , for each admissible subgroup N of G.

Proof. Suppose that B is not bounded in G. Then there exists a locally
finite family {Vn : n ∈ ω} of open subsets of G each element of which
intersects B. For each n ∈ ω, we pick a point xn ∈ Vn ∩ B and an
open neighborhood Wn of the identity in G such that xnW

2 ⊂ Vn. Let
also Hn be an admissible subgroup of G with Hn ⊂ Wn. Then H =⋂
n∈ωHn is an admissible subgroup of G. For the quotient mapping

πn : G→ G/Hn we have

π−1
n πn(xnWn) = xnWnHn ⊂ xnW

2
n ⊂ Vn.

Consequently π−1π(xnWn) ⊂ Vn for each n ∈ ω, where π : G → G/H
is the quotient mapping. The mapping π is open, hence the previous
inclusion implies that the family {π(xnWn) : n ∈ ω} of open sets in
G/H is locally finite in G/H. Evidently, each element of this family
meets π(B), hence π(B) is not bounded in G/H. This proves the
lemma. �

Let us turn back to the proof of Theorem 3.4. Suppose that Bi is a
functionally bounded subset of a topological group Gi, where i ∈ I. Let
B =

∏
i∈I Bi. Suppose for a contradiction that B is not functionally

bounded in G =
∏

i∈I Gi. By Lemma 3.7, there exists an admissible
subgroup N of G such that πN(B) fails to be functionally bounded in
G/N . Since N is admissible, we can find, for every i ∈ I, an admissible
subgroup Ni of the group Gi such that

∏
i∈I Ni ⊂ N . [Notice that our

choice of the subgroups Ni’s can be made in a way that Ni 6= Gi for at
most countably many i ∈ I; however, we won’t use this observation.]

Put N∗ =
∏

i∈I Ni and let ϕ : G → G/N∗ be the canonical quo-
tient mapping. Since N∗ ⊂ N , there exists a continuous mapping
f : G/N∗ → G/N satisfying the equality πN = f ◦ ϕ. Hence the set
ϕ(B) is not functionally bounded in G/N∗.
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For every i ∈ I, let πi : Gi → Gi/Ni be the canonical quotient map-
ping. Let also π =

∏
i∈I πi be the Cartesian product of the mappings

πi’s. Then π is a continuous open mapping of the group G =
∏

i∈I Gi

onto
∏

i∈I Gi/Ni. Since N∗ =
∏

i∈I Ni, consider the canonical mapping
i of G/N∗ onto

∏
i∈I Gi/Ni which satisfies the equality π = i ◦ ϕ.

G
ϕ //

π

$$

G/N∗

i
��∏

i∈I Gi/Ni

Since the mappings π and ϕ are continuous and open, i is a homeo-
morphism. Hence π(B) = i(ϕ(B)) cannot be functionally bounded in∏

i∈I Gi/Ni.
It is clear that πi(Bi) is a functionally bounded subset of Gi/Ni, for

each i ∈ I. Since the space Gi/Ni is Dieudonné-complete, the closure
of πi(Bi) in Gi/Ni, say, Ki is compact. We conclude, therefore, that
the set π(B) is contained in the compact subset K =

∏
i∈I Ki of the

space
∏

i∈I Gi/Ni and, hence, is functionally bounded in this space.
This contradiction completes the proof of Theorem 3.4.

M. Hušek [15] gave an alternative proof of Theorem 3.4 via factoriza-
tion of continuous functions on weakly Lindelöf subgroups of Cartesian
products.

Let us consider another concept of relative boundedness:

Definition 3.8. A subset Y of a Tychonoff space X is C-compact
(equiv., hyperbounded) in X if the image f(Y ) is compact, for any
continuous real-valued function f on X.

It is immediate from the above definition that

pseudocompact =⇒ C-compact =⇒ functionally bounded

Examples. a) Evidently N is functionally bounded in αN, the one-
point compactification of N, but N is not C-compact in αN. Further,
let D be an uncountable discrete space. Then D is C-compact in αD,
but D is not pseudocompact.
b) C-compactness is strictly stronger than functional boundedness in
topological groups. Indeed, let Y = {1/n : n ∈ N+} be a subspace of
G = R. Then Y is functionally bounded in G, but it obviously fails to
be C-compact in G.

Proposition 3.9. (S. Hernández and M. Sanchis, [13]) A functionally
bounded subset Y of a topological group H is C-compact in H if and
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only if Y is Gδ-dense in cl%HY , where %H is the Răıkov completion of
H.

Proof. Let Y be a functionally bounded subset of H. Then the closure
of Y in %H, say, Y is compact. Therefore, if Y is not Gδ-dense in Y ,
we can find a continuous, non-negative, real-valued function f on Y
such that f(x0) = 0 for some x0 ∈ Y \ Y and f(y) > 0 for each y ∈ Y .
Let g be a continuous extension of f over %H and h the restriction
of g to H. Then h(y) = f(y) > 0 for each y ∈ Y , while zero is an
accumulation point for h(Y ) = g(Y ) in R, so h(Y ) is not compact and
Y is not C-compact in H.

Conversely, suppose that Y is Gδ-dense in Y and take an arbitrary
continuous, non-negative, real-valued function f on H. Then the re-
striction of f to Y is uniformly continuous with respect to the two-sided
uniformity of the group H (see [30, Corollary 2.29]). It is clear that the
two-sided uniformly of H is the restriction of the two-sided uniformity
of %H to H. Therefore, f �Y extends to a continuous function g on Y .
Since Y is Gδ-dense in Y , we conclude that f(Y ) = g(Y ) = g(Y ) is a
compact subset of R. Hence Y is C-compact in H. �

Novák’s example shows that C-compactness is not productive. How-
ever, the situation is different in the class of topological groups. It
turns out that C-compactness behaves in topological groups similarly
to functional boundedness:

Theorem 3.10. (Hernández and Sanchis, [13]) Let Yi be a C-compact
subset of a topological group Gi, where i ∈ I. Then the set Y =

∏
i∈I Yi

is C-compact in G =
∏

i∈I Gi.

Proof. The set Y is functionally bounded in G by Theorem 3.4. Ac-
cording to [3, Corollary 3.6.23], %(

∏
i∈I Gi) ∼=

∏
i∈I %Gi. Therefore,

the closure of Y in %G is homeomorphic to
∏

i∈I cl%Gi
Yi. It remains to

apply Proposition 3.9. �

Notice that Theorem 3.10 also implies the Comfort–Ross theorem
(let Yi = Gi for each i ∈ I).

Exercise 3.11. Let B be a C-compact subset of a topological group
G. Then B is C-compact in the subgroup 〈B〉 of G generated by B.
(Hint: see [14, Proposition 3.7].)

4. If one of the factors is not a group

In the case of two factors, both Theorem 3.4 and Theorem 3.10 (on
the productivity of functional boundedness and C-compactness, resp.)
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admit a more general form. In what follows the second factor will be
a space, not necessarily a topological group.

We start with functional boundedness and then describe advances
obtained in the case of C-compactness.

Proposition 4.1. (Tkachenko, [32]) Let A be a functionally bounded
subset of a topological group G and B a functionally bounded subset of
a space Y . Then A×B is functionally bounded in G× Y .

The proof of Proposition 4.1 requires the next definition.

Definition 4.2. A subset B of a space X is strongly bounded in X
if every infinite family of open subsets of X meeting B contains an
infinite subfamily {Un : n ∈ ω} which has the following property:

(∗) For each filter F consisting of infinite subsets of ω,⋂
F∈F

clX

(⋃
n∈F

Un

)
6= ∅.

It is clear from Definition 4.2 that every strongly bounded subset of
X is functionally bounded in X. The lemma below is the crucial step
towards the proof of Proposition 4.1.

Lemma 4.3. Let X0 and X1 be spaces, Φ a filter of infinite subsets
of ω, and x0 ∈ X0. Suppose also that {Un : n ∈ ω} and {Vn :
n ∈ ω} are families of open sets in X0 and X1, respectively, such
that x0 ∈ clX0(

⋃
n∈F Un) for each F ∈ Φ and {Vn : n ∈ ω} satisfies

(∗) of Definition 4.2. Then there exists a point x1 ∈ X1 such that
(x0, x1) ∈ clX0×X1(

⋃
n∈F Un × Vn) for each F ∈ Φ.

Proof. Let B be a neighborhood base for x0 in X0. For U ∈ B and
F ∈ Φ, let S(U, F ) = {n ∈ F : U ∩ Un 6= ∅}. Then the family

S = {S(U, F ) : U ∈ B, F ∈ Φ}
consists of infinite subsets of ω and has the finite intersection property.
Denote by F the filter on ω generated by S. Since the family {Vn :
n ∈ ω} satisfies (∗), there exists a point x1 ∈ X1 which is in the
closure of the set

⋃
n∈P Vn, for each P ∈ F. Then for every F ∈ Φ, the

point (x0, x1) is in the closure of the set
⋃
n∈F Un × Vn. Indeed, take

a neighborhood U × V of (x0, x1) in X0 × X1, where U ∈ B. Then
V ∩ Vn 6= ∅ for some n ∈ S(U, F ) and hence (U × V ) ∩ (Un × Vn) 6= ∅.
This proves the lemma. �

Corollary 4.4. If B0 is a functionally bounded subset of a space X0

and B1 is a strongly bounded subset of a space X1, then B0 × B1 is
functionally bounded in X0 ×X1.
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Proof. Consider an infinite family {On : n ∈ ω} of open sets in X0×X1

such that On ∩ (B0 ×B1) 6= ∅ for each n ∈ ω. We can assume without
loss of generality that each On has the rectangular form Un×Vn. Hence
Un ∩ B0 6= ∅ and Vn ∩ B1 6= ∅ for each n ∈ ω. Since B1 is strongly
bounded in X1, the family {Vn : n ∈ ω} contains an infinite subfamily
satisfying (∗) of Definition 4.2. We can assume that this subfamily is
{Vn : n ∈ ω} itself.

As B0 is functionally bounded in X0, the family {Un : n ∈ ω} has an
accumulation point in X0, say, x0. For every neighborhood U of x0, let
FU = {n ∈ ω : U ∩ Un 6= ∅}. Denote by Φ the filter on ω generated by
the family {FU : U is a neighborhood of x0 in X0}. Clearly Φ consists
of infinite sets. According to Lemma 4.3, there exists a point x1 ∈ X1

such that (x0, x1) is in the closure of
⋃
n∈F Un×Vn for each F ∈ Φ. This

means that (x0, x1) is an accumulation point of the family {Un × Vn :
n ∈ ω}. Hence B0 ×B1 is functionally bounded in X0 ×X1. �

Exercise 4.5. Let Bi be a strongly bounded subset of a space Xi,
where i ∈ I. Prove that

∏
i∈I Bi is strongly bounded in

∏
i∈I Xi. (Hint:

modify the proof of [18, Theorem 3.4].)

In topological groups, ‘functionally bounded’ and ‘strongly bounded’
coincide:

Lemma 4.6. Every functionally bounded subset of a topological group
is strongly bounded.

Proof. Let B be a bounded subset of a topological group G. Denote
by A the family of admissible subgroups of G. For every N ∈ A, let
πN be the canonical quotient mapping of G onto the (left) coset space
G/N .

Suppose that {Uk : k ∈ ω} is a family of open subsets of G each
of which meets B. For every k ∈ ω, pick a point xk ∈ Uk ∩ B. As
the family A generates the topology of G (this was shown implicitly
in the proof of Lemma 3.7), we can find, for every k ∈ ω, an element
Nk ∈ A and an open subset Vk ⊂ G/Nk such that xk ∈ π−1

Nk
(Vk) ⊂ Uk.

We choose N ∈ A with N ⊆ Nk for every k ∈ ω. There exist open
subsets Wk of the space Y = G/N such that xk ∈ π−1

N (Wk) ⊂ Uk for
k ∈ ω. The set πN(B) is bounded in the Dieudonné-complete space
Y , hence K = clY πN(B) is compact. Hence for each filter Φ on ω, the
set
⋂
P∈Φ clY (

⋃
k∈P Wk) is not empty. Since the mapping πN is open,

we see that π−1
N (clYW ) = clGπ

−1
N (W ) for each open set W ⊆ Y . In
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particular, the intersection⋂
P∈Φ

clG

(⋃
k∈P

Uk

)
⊇
⋂
P∈Φ

clG

(⋃
k∈P

π−1
N (Wk)

)
= π−1

N

(⋂
P∈Φ

clY

(⋃
k∈P

Wk)

))
is not empty. This completes the proof of the lemma. �

Corollary 4.7. If G is a pseudocompact topological group and Y is a
pseudocompact space, then G× Y is pseudocompact.

We conclude, therefore, that pseudocompact topological groups are
“strongly” pseudocompact.

Notice that combining Lemma 4.6 and Exercise 4.5, one obtains an
alternative proof of Theorem 3.4.

Our next step is to consider and comment on the following problem:

Problem 3. Does Proposition 4.1 hold for C-compactness in place of
functional boundedness?

In other words, we wonder whether the product of two C-compact
subsets is C-compact in the product of two spaces provided that one
of the spaces is a topological group.

In view of Proposition 4.1, the following definition comes naturally.

Definition 4.8. A subset A of a space X is strongly functionally
bounded in X if A× B is functionally bounded in X × Y for any pair
(Y,B), where B is a functionally bounded subset of the space Y .

Similarly, one defines strongly C-compact subsets of a space X, etc.
Reformulating Proposition 4.1, we can say that functionally bounded
subsets of a topological group are strongly functionally bounded. Sim-
ilarly, Corollary 4.4 says that every strongly bounded subset of a space
is strongly functionally bounded.

Therefore, Problem 3 actually asks whether C-compact subsets of
topological groups are strongly C-compact.

The following notion helps to solve Problem 3.

Definition 4.9. (Arhangel’skii and Genedi, [2]) A subset A of a space
X is relatively pseudocompact (r-pseudocompact, for short) in X if
every infinite family of open sets in X meeting A has a cluster point
in A.

The implications below are almost immediate from Definition 4.9:

pseudocompact =⇒ r-pseudocompact =⇒ C-compact

The following examples help us to distinguish between several con-
cepts of (relative) boundedness.



18 M. TKACHENKO

Examples.

a) Let A be a maximal almost disjoint family of infinite subsets
of ω and let Ψ(A) = ω ∪A be the Mrówka–Isbell space. Then
Ψ(A) is pseudocompact. Since A is a maximal almost disjoint
family (and each point of ω is isolated in Ψ(A)), the set A is
r-pseudocompact in Ψ(A). However, A is discrete and uncount-
able =⇒ A is not pseudocompact.

b) If D is an uncountable discrete space, then D is C-compact in
the one-point compactification αD of D, but D is not r-pseudo-
compact in αD.

c) r-pseudocompactness is not finitely productive (Novák’s exam-
ple).

Theorem 4.10. (Hernández, Sanchis, Tkachenko, [14]) Every C-compact
subset of a topological group G is r-pseudocompact in G. Therefore, the
notions of C-compactness and r-pseudocompactness coincide for sub-
sets of topological groups.

Proof. We know that every r-pseudocompact subset of a space is C-
compact in the space. So, let B be a C-compact subset of the group G
and H be the subgroup of G generated by B. By Exercise 3.11, B is C-
compact in H. Therefore, it suffices to show that B is r-pseudocompact
in H.

Let %H be the Răıkov completion of the group H. Then K = cl%HB

is a compact subset of %H, so the subgroup H̃ of %H generated by

K is σ-compact and contains H as a dense subgroup. Hence H̃ is an

Oz-space, i.e., every regular closed subset of H̃ is a zero-set (see [29,
Theorem 1]).

Let {Un : n ∈ ω} be a sequence of open sets in H such that each

Un meets B. For every n ∈ ω, take an open set Vn in H̃ such that
Vn ∩H = Un and consider the open sets On =

⋃
k≥n Vn, where k ∈ ω.

It is clear that On ⊇ On+1 and On ∩K ⊇ Un ∩ B 6= ∅ for each n ∈ ω.

We know that each Fn = clH̃On is a zero-set in H̃, and so is the set
F =

⋂
n∈ω Fn. Since K is compact, the intersection F∩K is non-empty.

It also follows from the C-compactness of B in H that B is Gδ-dense
in K = cl%HB (see Proposition 3.9). Therefore, F ∩B 6= ∅ and we can
take a point x ∈ F ∩ B. Since each Un is dense in Vn, it follows from
the definition of the sets Fn’s and our choice of the point x that the
sequence {Un : n ∈ ω} accumulates at x. Hence B is r-pseudocompact
in H and in G. �
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Therefore, Theorems 4.10 and 3.10 together imply that the Carte-
sian product of r-pseudocompact subsets of topological groups is r-
pseudocompact in the product of groups.

The following result almost solves Problem 3:

Theorem 4.11. (Hernández–Sanchis–Tkachenko, [HST]) An r-pseudo-
compact subset of a topological group G is strongly r-pseudocompact in
G. In other words, if A is r-pseudocompact in a topological group G
and B is r-pseudocompact in a space Y , then A×B is r-pseudocompact
in G× Y .

The proof of Theorem 4.11 is based on the following result character-
izing strongly r-pseudocompact sets in a way similar to the one used in
Definition 4.2 for strongly bounded subsets. Its proof which goes like
in [4, Proposition 1] and hence is omitted.

Theorem 4.12. Let A be a subset of a space X. The following condi-
tions are equivalent:

(1) A is strongly r-pseudocompact in X;
(2) every infinite family of pairwise disjoint open subsets of X meet-

ing A contains an infinite subfamily {Un}n∈ω such that

A ∩
⋂
F∈F

clX

(⋃
n∈F

Un

)
6= ∅,

for each filter F of infinite subsets of ω;
(3) for every pseudocompact space Y , A×Y is r-pseudocompact in

X × Y .

One can change condition (2) of Theorem 4.12 by applying it to
a family of pairwise distinct open subsets of X, thus adding another
equivalent condition to the above list of (1)–(3).

We also need a simple lemma:

Lemma 4.13. Let A be a C-compact subset of a space X and p : X →
Y be a continuous mapping of X onto a submetrizable space Y . Then
p(A) is a compact subset of Y .

Proof. Since A is functionally bounded in X, the set B = p(A) is
functionally bounded in Y . Every submetrizable space is Dieudonné-
complete, so the closure of B in Y , say K is a compact subset of Y . It
remains to verify that B = K, i.e., B is closed in Y .

Suppose for a contradiction that B is not closed in Y and pick a point
y0 ∈ K\B. Since Y is submetrizable, it has countable pseudocharacter.
Hence there exists a continuous real-valued function f on Y such that
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f ≥ 0 and f(y) = 0 if and only if y = y0. Let g = f ◦ p. Then g
is a continuous real-valued function on X, g(x) > 0 for each y ∈ A,

but 0 ∈ g(A). Hence g(A) is not compact, thus contradicting our
assumption about A. Thus p(A) = K is compact. �

In view of Theorem 4.12, Theorem 4.11 will follow if we prove the
next lemma (which is close to Lemma 4.6):

Lemma 4.14. Let A be an r-pseudocompact subset of a topological
group G and {Uk : k ∈ ω} a sequence of pairwise disjoint open subsets
of G each of which meets A. Then the set

A ∩
⋂
F∈F

clG

(⋃
k∈F

Uk

)
is not empty, for each filter F of infinite subsets of ω.

Proof. It is clear thatA is C-compact inG. As in the proof of Lemma 4.6,
denote by A the family of admissible subgroups of G. For every N ∈ A,
let πN be the canonical quotient mapping of G onto the (left) coset
space G/N .

For every k ∈ ω, pick a point xk ∈ Uk∩A. As the family A generates
the topology of G, we can find, for every k ∈ ω, an element Nk ∈ A

and an open subset Vk ⊂ G/Nk such that xk ∈ π−1
Nk

(Vk) ⊂ Uk. We
choose N ∈ A with N ⊆ Nk for every k ∈ ω. There exist open subsets
Wk of the space G/N such that xk ∈ π−1

N (Wk) ⊂ Uk for k ∈ ω. It is
clear that πN(xk) ∈ Wk ∩ πN(A) 6= ∅, for each k ∈ ω.

The space Y = G/N is submetrizable by Lemma 3.6, so the set
B = πN(A) is compact in view of Lemma 4.13. Hence for each filter F

of infinite subsets of ω, the set

B ∩
⋂
P∈F

clY (
⋃
k∈P

Wk)

is not empty. Since the mapping πN is open, we see that π−1
N (clYW ) =

clGπ
−1
N (W ) for each open set W ⊆ Y . In particular, we have:⋂

P∈F

clG

(⋃
k∈P

Uk

)
⊇
⋂
P∈F

clG

(⋃
k∈P

π−1
N (Wk)

)
= π−1

N

(⋂
P∈F

clY

(⋃
k∈P

Wk)

))
.

Therefore,

A ∩
⋂
P∈F

clG

(⋃
k∈P

Uk

)
6= ∅.

This proves the lemma. �
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The above lemma shows that an r-pseudocompact subset of a topo-
logical group satisfies condition (2) of Theorem 4.12, so r-pseudocompact
subsets of topological groups are strongly r-pseudocompact, i.e., we
have proved Theorem 4.11.

Theorem 4.11 does not solve the problem on the productivity of
C-compactness since C-compactness of subsets of a space is strictly
weaker than r-pseudocompactness. The following result does solve
Problem 3 and, hence, complements Theorem 4.11.

Theorem 4.15. (Hernández–Sanchis–Tkachenko, [14]) C-compact sub-
sets of a topological group G are strongly C-compact in G.

Again, we can reformulate Theorem 4.15 as follows:

A is C-compact in a topological group G and B is C-compact in Y
=⇒ A×B is C-compact in G× Y .

BASIC IDEAS AND FACTS FOR THE PROOF OF THEOREM 4.15.

All results that follow were proved in [14]. In what follows υX stands
for the Hewitt realcompactification of a given space X (see [8, Sec-
tion 3.11]).

Proposition 4.16. Let A be a functionally bounded subset of a topolog-
ical group G and B a functionally bounded subset of a space Y . Then
every bounded continuous real-valued function f on G × Y admits a
continuous extension over clυGA× clυYB.

The crucial step towards the proof of Theorem 4.15 is the following
non-trivial fact which is based on Proposition 4.16:

Proposition 4.17. Let A be a functionally bounded subset of a topolog-
ical group H and B a functionally bounded subset of a space Y . Then
the following relative distribution law is valid:

clυ(H×Y )(A×B) ∼= clυHA× clυYB.

SKETCH OF THE PROOF OF THEOREM 4.15. Suppose that A is a C-
compact subset of a topological group H and B is a C-compact subset
of a space Y . Let f : H × Y → R be a continuous function. Denote by
fυ a continuous extension of f over υ(H × Y ). By Proposition 4.17,
(A×B)∗ = clυ(H×Y )(A×B) is naturally homeomorphic to the product
A∗ ×B∗ = clυHA× clυYB. Since A is C-compact in H, it follows that
A is Gδ-dense in A∗. Similarly, B is Gδ-dense in B∗. Therefore, A×B
is Gδ-dense in (A×B)∗ = A∗×B∗. Since the latter set is compact and
the real line R is first countable, we conclude that

f(A×B) = fυ(A×B) = fυ((A×B)∗)
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is a compact subset of R. Thus, A×B is C-compact in H × Y .

It is worth mentioning that Proposition 4.17 is valid for the Dieudonné
completion µX instead of the Hewitt completion υX:

Proposition 4.18. Let A be a functionally bounded subset of a topo-
logical group G and B a functionally bounded subset of a Tychonoff
space Y . Then

clµ(G×Y )(A×B) ∼= clµGA× clµYB.

Indeed, the above proposition follows from Proposition 4.17 and the
fact given below.

Fact. Let ϕ : µX → υX be a continuous extension of the identity
embedding X ↪→ υX. Then ϕ is injective. In particular, for every
functionally bounded subset K of X, the compact sets Kµ = clµXK
and Kυ = clυXK are naturally homeomorphic.

The relative distributive law also holds for infinite products of func-
tionally bounded subsets of topological groups.

Theorem 4.19. (Hernández–Sanchis–Tkachenko, [HST]) Suppose that
G =

∏
i∈I Gi is a Cartesian product of topological groups. If Bα is a

functionally bounded subset of Gi and B∗i = clυGi
Bi for each i ∈ A,

then
clυG(

∏
i∈I

Bi) ∼=
∏
i∈I

B∗i .

5. Paratopological groups and semitopological groups

A semitopological group is a group G with topology such that the
left and right translations in G are continuous. In other words, a semi-
topological group is a group with separately continuous multiplication.

A paratopological group is a group G with topology such that mul-
tiplication in G is jointly continuous, i.e., continuous as a mapping of
G×G to G.

Clearly, we have the following implications:

‘topological’ =⇒ ‘paratopological’ =⇒ ‘semitopological’

The standard example of a paratopological group is the Sorgenfrey
line S with its usual topology and the sum operation. Notice that the
space S is first countable, regular, and hereditarily Lindelöf, but it is
not metrizable. Hence the Birkhoff–Kakutani metrization theorem is
not valid for paratopological groups.

It is an interesting open problem to find out which of the results
established for topological groups remain valid for paratopological or
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even semitopological groups. This is a (part of) very vast area of Topo-
logical Algebra which attracts attention of many researches. It would
be really great to answer this general question in the framework of our
course, i.e., to extend (some of) the aforementioned results to paratopo-
logical/semitopological groups or to show that such an extension is
impossible.

The work in this direction was started several years ago and nowa-
days we have some information on the subject. No doubt, one of
the most attracting problems is to extend the Comfort–Ross theorem
(Theorem 2.7) to paratopological groups. However, such an extension
does not present any difficulty after the following fact established by
Reznichenko [23]:

Theorem 5.1. Every pseudocompact paratopological group is a topo-
logical group.

We recall that pseudocompactness is defined for Tychonoff spaces
only. However, one can slightly modify the definition of pseudocom-
pactness in order to obtain a wider class of spaces, without any separa-
tion restriction. Let us recall that a space X is feebly compact if every
locally finite family of open sets in X is finite. It is clear that in the
class of Tychonoff spaces, feeble compactness and pseudocompactness
coincide. Therefore, feeble compactness is a correct extension of the
notion of pseudocompactness to the class of all topological spaces.

One of most interesting results on feeble compactness in paratopo-
logical groups was recently obtained by Ravsky in [22]. He proved that
the Comfort–Ross theorem remains valid in the class of paratopological
groups:

Theorem 5.2. The Cartesian product of an arbitrary family of feebly
compact paratopological groups is feebly compact.

It should be mentioned that feebly compact Hausdorff paratopolog-
ical groups need not be topological groups [22], so Theorem 5.2 is a
‘proper’ extension of the Comfort–Ross theorem.

The next natural step would be an extension of Ravsky’s theorem
to pseudocompact semitopological groups. However, this is impossible
in view of the following result proved by Hernández and Tkachenko in
[12]:

Theorem 5.3. There exist two pseudocompact Boolean semitopological
groups G and H such that the product G×H is not pseudocompact.

As usual, a group is called Boolean if every element of the group
distinct from the identity has order 2. Notice that in a Boolean group,
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inversion is the identity mapping. Hence inversion in a Boolean semi-
topological group is a homeomorphism. Semitopological groups with
the latter property are called quasitopological groups. Therefore, The-
orem 5.3 states that there exist two pseudocompact quasitopological
groups whose product fails to be pseudocompact.

Surprisingly, we know almost nothing about functionally bounded
subsets of paratopological groups. Here is the main problem:

Problem 4. Suppose that Bi is a functionally bounded subset of a
(Tychonoff, regular, or Hausdorff) paratopological group, where i =
1, 2. Is the product B1 ×B2 functionally bounded in G1 ×G2?

Also, the above problem is open in the case of infinite products of
functionally bounded subsets of paratopological groups. We do not
know either what happens if one replaces functional boundedness by
C-compactness or r-pseudocompactness in Problem 4.

The recent survey articles [24] by M. Sanchis and [33] by the author
contain a wealth of information on this and close subjects, as well as
many open problems, new and old.
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Math. Univ. Carol. 21 (1980) no. 4, 749–753.

[28] M. G. Tkachenko, The Souslin property in free topological groups over compact
spaces, Mat. Zametki 34 (1983), no. 4, 601–607 (in Russian). English translat.:
Math. Notes 34 (1983), 790–793.

[29] M. G. Tkachenko, On boundedness and pseudocompactness in topological
groups, Math. Notes 41 (1987), 229–231. Russian original in: Mat. Zametki
41 (1987), 400–405.

[30] M. G. Tkachenko, Compactness type properties in topological groups, Czech.
Math. J. 38 (1988), 324–341.

[31] M. G. Tkachenko, Generalization of a theorem of Comfort and Ross, Ukrainian
Math. J. 41 (1989), 334–338. Russian original in: Ukrain. Mat. Zh. 41 (1989),
377–382.

[32] M. G. Tkachenko, Generalization of a theorem of Comfort and Ross. II,
Ukrainian Math. J. 41 (1990), 802–806. Russian original in: Ukrain. Mat.
Zh. 41 (1989), 939–944.

[33] M. Tkachenko, Paratopological and semitopological groups vs topological
groups, Recent Progress in General Topology III, Elsevier, North Holland,
to appear.



26 M. TKACHENKO

[34] F. J. Trigos-Arrieta, Products of locally pseudocompact topological groups,
Papers on general topology and applications (Brookville, NY, 1990), 182–187,
Ann. New York Acad. Sci. 659, New York Acad. Sci., New York 1992.

[35] V. V. Uspenskij, Topological groups and Dugundji compacta, Math. USSR
Sbornik 67 (1990), 555–580. Russian original in: Matem. Sbornik 180 (1989),
1092–1118.

[36] A. Weil, Sur les Espaces à Structure Uniforme et sur la Topologie Générale,
Hermann & Cie, Paris. Publ. Math. Univ. Strasbourg 1937.

(M. Tkachenko)
Departamento de Matemáticas
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