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Abstract. Many fundamental phenomena in nature are described
by usually nonlinear partial differential equations derived in a rather
phenomenological way. Perhaps the most known ones are the Bolz-
mann equation, the Navier-Stokes equation, the reaction-diffusion
equation, Fisher’s equation, Vlasov’s equation, etc. These equa-
tions describe a substance, e.g. gas or liquid, as a whole, without
explicit considering its microscopic structure. They are fairly de-
terministic and operate with such macroscopic notions as pressure,
fluid velocity, viscosity, and so on. On the other hand, the systems
of large number of inter- acting microscopic agents (particles) are
described by infinite chains of linear differential equations. For
example, the systems of interacting gas molecules are described
by the Bogoliubov hierarchy of linear differential equations, also
called BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) hierar-
chy. In this case, the motion of the particles and the inter-particle
interactions are described explicitly and – due to the huge number
of particle – in a probabilistic way. This means that the solutions
give the time evolution of the probability distributions on the sys-
tem’s phase space. Since the very appearance of these methods,
the problem of deriving the macroscopic description of interacting
particle systems from their microscopic statistical mechanical de-
scription was considered as a challenging mathematical task. The
proposed cycle of lectures presents a number of examples where
such derivation can be performed, including also the description
on the intermediate (mesoscopic) level. Along with the statisti-
cal mechanical models, there will be considered models used in
plant ecology, genetics, oceanology, economic and social sciences.
In these models, the particles can die, be born, diffuse, perform
jumps, etc. The microscopic description is performed in terms of
the Markov evolution of states of infinite systems of interacting
particles located in the space Rd. Then the mesocopic description,
which leads to nonlocal nonlinear differential equations, is obtained
by means of a procedure called scaling. In this way, a number of
known phenomenological equations are obtained and studied.
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1. Gaussian White Noise Analysis

The main object to study is a Gaussian measure on a real Hilbert
space H.

1.1. Finite dimensional case. We first consider the simplest case
where the underlying space H is one-dimensional, i.e. we deal with
(R,B(R)), B(R) being the Borel σ-field of subsets of R. In this case,
the measure is

(1.1) dµ1(x) =
1√
2π

exp(−x2/2)dx, µ1 ∈ N (0, 1).

Its characteristic function is

(1.2) µ̃1(ϕ) :=

∫

R
exp(iϕx)dµ1(x) = exp(−ϕ2/2).

Let M1(R) be the set of all probability measures on R. Then we have
a map M1(R)µ 7→ µ̃ = k : R → C, the latter functions have the
following properties:
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(1) k is continuous on R;

(2) k(0) = 1;

(3) k is positive definite.

According to the latter property, each k is such that

∀ϕ1, . . . , ϕn ∈ R ∀ξ1, . . . , ξn ∈ C
n∑

j,k=1

k(ϕj − ϕk)ξj ξ̄k ≥ 0.(1.3)

Let us prove (3). Given n, ϕ1, . . . , ϕn ∈ R, and ξ1, . . . , ξn ∈ C, we set

f(x) =
n∑

j=1

ξje
iϕjx, x ∈ R.

Then

|f(x)|2 = f(x) · f(x) =
n∑

j,k=1

ξj ξ̄k exp [i(ϕj − ϕk)] ,

and hence
n∑

j,k=1

k(ϕj − ϕk)ξj ξ̄k =

∫

R
|f(x)|2 dµ(x) ≥ 0,

which is (3). It turns out that the converse is also true.

Theorem 1.1 (Bochner theorem). A function k : R =→ C is the char-
acteristic function of a measure µ ∈ M1(R) if and only if it possesses
the properties (1), (2), and (3).

Now let H be such that dimH = N ∈ N. Then H ' RN . For
µ ∈M(H), we write

(1.4) µ̃(ϕ) =

∫

H
exp (i〈ϕ, x〉) dµ(x), ϕ ∈ RN ,

where 〈·, ·〉 is the scalar product in H. The Bochner theorem holds true
also in this case. The standard Gaussian measure on H ' RN now is

(1.5) dµH(x) =
N⊗

j=1

1√
2π

exp(−x2
j/2)dxj,

and hence

(1.6) µ̃H(ϕ) = exp (−〈ϕ, ϕ〉/2) = exp
(−‖ϕ‖2

H/2
)
.

In the infinite dimensional case, the situation gets more complicated
and, in general, neither (1.6) nor Theorem 1.1 holds.
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1.2. Infinite dimensional case. Let {ek}k∈N be an orthonormal base
of H. Then the map

H 3 x =
∑

k≥1

xkek 7→ ξ = (xk)k∈N

establishes the isomorphism

H ' `2 = {ξ = (xk)k∈N, xk ∈ R |
∑

k≥1

x2
k < ∞}.

We also consider

R∞ = R× R× · · · × R× · · · 3 ω = (ω1, . . . , ωn, . . . )

and

R∞0 ⊂ R∞, R∞0 = {ϕ = (ϕk)
∞
0 | ϕn = 0, n ≥ n0(ϕ)}.

Then

R∞ ⊃ `2 ⊃ R∞0 .

The scalar product in `2 is

(1.7) 〈h, g〉 =
∑

k≥1

hkgk.

For ϕ ∈ R∞) , the map ω 7→ 〈ω, ϕ〉 can be extended to the whole R∞
yielding

〈ω, ϕ〉 =
∑

k≥1

ωkϕk.

The space R∞ can be equipped with the cylinder σ-field Σ(R∞), being
the smallest σ-field containing the set of cylinder sets

C = B × R× · · · × R · · ·
where B is a Borel subset of Rn. For such cylinder sets, one can set
(1.8)

µH(C) =
(
1/
√

2π
)n

∫

Rn

1B(x1, . . . , xn) exp

(
−

n∑
j=1

x2
j/2

)
dx1 · · · dxn,

where 1B is the indicator function of the set B, i.e.

(1.9) 1B(x1, . . . , xn) =

{
1 if (x1, . . . , xn) ∈ B;
0 otherwise.

It turns out that such a measure can be defined on (R∞, Σ(R∞)). For
this measure, we, however, would have

µH(R∞) = 1, µH(`2) = 0.



ANALYSIS AND GEOMETRY ON CONFIGURATION SPACES 5

Definition 1.2. For p = (pk)
∞
1 , pk > 0, the weighted Hilbert space

`2(p) is set to be

`2(p) = {ω ∈ R∞ |
∑

k≥1

pkω
2
k < ∞}.

The scalar product herein is

〈ω, ω̃〉 =
∑

k≥1

pkωkω̃k.

The situation with the introduced above measure µH is described by
the following

Theorem 1.3 (Komogorov-Khinchine criterion). Suppose that all pk,
k ≥ 1 are such that pk ≤ 1. Then

R∞ ⊃ `2(p) ⊃ `2 ⊃ R∞0 ,

and

(1.10) µH
(
`2(p)

)
=

{
0, if

∑
k≥1 pk = +∞;

1, if
∑

k≥1 pk < +∞.

Proof. For ε > 0 and N ∈ N, we set

(1.11) fN,ε(ω) = exp

(
−ε

N∑

k=1

pkω
2
k

)
.

Then by (1.8) we get∫

R∞
fN,ε(ω)dµH(ω) =(1.12)

=
1

(√
2π

)N

∫

RN

exp

(
−ε

N∑

k=1

pkω
2
k −

1

2

N∑

k=1

ω2
k

)
dω1 · · · dωN

=
N∏

k=1

1√
2π

∫

R
exp

(
−1

2
(1 + 2εpk)ω

2
k

)
dωk

=
N∏

k=1

1√
1 + 2εpk

.

For every ε > 0, the sequence {fN,ε}N∈N is clearly bounded, which by
the dominated convergence theorem yields

(1.13) lim
N→∞

∫

R∞
fN,ε(ω)dµH(ω) =

∫

R∞
fε(ω)dµH(ω),
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where

fε(ω) =

{
exp (−ε

∑∞
k=1 pkω

2
k) , ω ∈ `2(p)

0 ω ∈ R∞ \ `2(p).

Now we consider the following possibilities:

(a)
∑∞

k=1 pk = +∞, hence
∏∞

k=1

√
1 + 2εpk = +∞;

(b)
∑∞

k=1 pk < +∞, hence
∏∞

k=1

√
1 + 2εpk < +∞.

In case (a), from (1.12) and (1.13) we have

(1.14)

∫

`2(p)

fε(ω)dµH(ω) = 0,

which holds for all ε > 0 and hence yields in the limit ε ↓ 0

µH(`2(p)) = 0

Similarly, in case (b) by the dominated convergence theorem we get

µH(`2(p)) = lim
ε↓0

∫

`2(p)

fε(ω)dµH(ω)

= lim
ε↓0

∞∏

k=1

1√
1 + 2εpk

= 1,

which completes the proof, see (1.10). ¤

Every separable Hilbert space H is isomorphic to `2, which we shall
always have in mind. Thus, we can write

(1.15) R∞ ⊃ `2(p) ⊃ `2 ⊃ R∞0 ,

where p is such that
∑∞

k=1 pk < +∞. One observes that by Theorem
1.3 µH(`2(p)) = 1, however, µH(`2) = 0. Now let us consider ϕ ∈ R∞0 .
Then for any ω ∈ R∞, we can define exp (i〈ϕ, ω〉) = exp

(
i
∑

k≥1 ϕkωk

)
which leads to the following

(1.16) µ̃H(ϕ) =

∫

R∞
exp (i〈ϕ, ω〉) dµH(ω).

Since ϕ ∈ R∞0 , one finds n ∈ N such that ϕk = 0 for all k > n; hence,
we have in (1.15)

(1.17) µ̃H(ϕ) = exp (−〈ϕ, ϕ〉/2) = exp
(−‖ϕ‖2

H/2
)
.

Let us prove that, for a given h ∈ `2, the map

(1.18) `2(p) 3 ω 7→ 〈ω, h〉
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is a measurable linear functional. For this h = (h1, h2, . . . , hn, . . . ), we
set ϕn = (h1, . . . , hn, 0, . . . , ). Clearly, the sequence {ϕn}n∈N converges
in `2 to h. Set lϕn(ω) = 〈ω, ϕn〉, ω ∈ `2(p). For λ ∈ C and ϕ ∈ R∞0 , we
consider

(1.19) fϕ(λ) =

∫

`2(p)

exp (λ〈ω, ϕ〉) dµH(ω) = exp

(
λ

2
‖ϕ‖2

H

)
.

Then we have

f ′ϕ(0) =

∫

`2(p)

〈ω, ϕ〉dµH(ω) = 0,(1.20)

f ′′ϕ(0) =

∫

`2(p)

〈ω, ϕ〉2dµH(ω) = ‖ϕ‖2
H.

In the same way, for ψ ∈ R∞0 , we obtain

(1.21)

∫

`2(p)

〈ω, ϕ〉〈ω, ψ〉dµH(ω) = 〈ϕ, ψ〉.

Then by (1.20), for any n,m ∈ N, we have∫

`2(p)

|lϕn(ω)− lϕm(ω)|2 dµH(ω) =

∫

`2(p)

|〈ω, ϕn − ϕm〉|2 dµH(ω)

= ‖ϕn − ϕm‖2
H,

which yields that {lϕn}n∈N is a Cauchy sequence in L2(`2(p), µH). There-
fore, there exists a unique l ∈ L2(`2(p), µH) such that lϕn → l. This,
and the convergence ϕn → h, imply that

〈ϕn, ω〉 → 〈h, ω〉 µH − a.s.

In a more general setting, we have that, for a separable Hilbert space
H, there exists another Hilbert space H− such that H− ⊃ H, and a
Gaussian measure µH on H−, with the property

µ̃H(ϕ) = exp

(
−1

2
‖ϕ‖2

H

)
, µH(H−) = 1.

Furthermore, for every h ∈ H, the map H− 3 ω 7→ 〈ω, h〉H defines a
measurable map on H−. Then this µH is called the canonical Gaussian
measure corresponding to H.

1.3. Gaussian White Noise measure. Let us consider the case where
the Hilbert space is H = L2(R). By C∞

0 (R) we denote the space of all
functions ϕ : R → R which are infinitely differentiable and have com-
pact support. The latter means that each ϕ vanishes outside an inter-
val [a, b] ⊂ R, specific for this function. Note that C∞

0 (R) corresponds
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to R∞0 in the previous subsection. For such ϕ and for the canonical
Gaussian measure corresponding to H, we thus have

(1.22) µ̃H(ϕ) = exp

(
−1

2

∫

R
|ϕ(t)|2dt

)
.

Let {ψn}n∈N0 be a basis of L2(R). One can take Hermite functions

(1.23) ψn(t) = (2nn!)−1/2(−1)nπ−1/4et2/2Dne−t2 , D =
d

dt
.

For ϕ, φ ∈ C∞
0 (R) and a sequence {pn}n∈N0 , we set

(1.24) 〈ϕ, φ〉H− =
∞∑

n=0

pn〈ϕ, ψn〉H〈ψn, φ〉H.

It is clear that the left-hand side of (1.24) is independent of the par-
ticular choice of the basis of H. Suppose now that

∑∞
n=0 pn < +∞.

Then the completion of C∞
0 (R) in the norm ‖ · ‖H− , defined by (1.24),

is a separable Hilbert space, which we denote by H−. The canonical
Gaussian measure on H−, that is the one for which we have (1.22) is
called the Gaussian White Noise measure, WNM for short. For this
measure, and for ω ∈ H−, we have

(1.25)

∫

H−
ω(t)ω(s)dµH(ω) = δ(t− s),

where δ is the Dirac δ-function. It is a distribution, which is defined as

(1.26)

∫

R
ϕ(t)δ(t− s)dt = ϕ(s), ϕ ∈ C∞

0 (R).

Indeed, by (1.21), for ϕ, φ ∈ C∞
0 (R), we have∫

H−
〈ω, ϕ〉H〈ω, φ〉HdµH(ω) =

∫

R
ϕ(t)φ(t)dt.

By (1.26), the latter can be rewritten

(1.27)

∫

H−
〈ω, ϕ〉H〈ω, φ〉HdµH(ω) =

∫

R

∫

R
δ(t− s)ϕ(t)φ(s)dtds.

On the other hand,∫

H−
〈ω, ϕ〉H〈ω, φ〉HdµH(ω)

=

∫

R
ϕ(t)φ(s)

(∫

H−
ω(t)ω(s)dµH(ω),

)
dtds

which together with (1.27) yields (1.25).
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As above, for any h ∈ H, the map H− 3 ω 7→ 〈ω, h〉H defines a
measurable linear functional (which of course in not continuous). For
t ∈ [0, +∞), let us consider ht = I[0,t), where I[0,t)(s) = 1 if s ∈ [0, t)
and I[0,t)(s) = 0 otherwise. Then the map

(1.28) H− 3 ω 7→ Bt(ω) = 〈ω, ht〉H =

∫ t

0

ω(s)ds

can be employed to define the map [0, +∞) 3 t 7→ Bt(ω), ω is fixed in
H−. It has the following properties:

(i) Bt : H− → R is a Gaussian random variable;

(ii) EBt =
∫
H− Bt(ω)dµH(ω) = 0;

(iii) for every t, s ∈ [0, +∞), we have that

EBtBs =

∫

H−
Bt(ω)Bs(ω)dµH(ω)(1.29)

=

∫

R
I[0,t)(τ)I[0,s)(τ)dτ

= min{t; s} = (t ∧ s).

Bt is called the Wiener process or the Brownian motion.

1.4. Chaos decomposition for the White Noise measure. Let us
return to the one dimensional case, i.e. now we set again H = R. In
this case,

(1.30) dµH(ω) =
1√
2π

exp

(
−1

2
ω2

)
dω

is a measure on the Borel σ-algebra B(R). For a fixed ϕ ∈ R, the
Gaussian exponential is defined to be

R 3 ω 7→ eG(ϕ, ω) =
exp(ϕω)

EµH exp(ϕω)
(1.31)

=
exp(ϕω)

exp(−ϕ2/2)
= exp

(
ϕω − ϕ2

2

)
.

How we fix ω ∈ R and expand

(1.32) exp

(
ϕω − ϕ2

2

)
=

∞∑
n=0

1

n!
Hn(ω)ϕn.
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It is clear that each Hn is a polynomial such that deg Hn = n. For
example,

H1(ω) = ω, H2(ω) = ω2 − 1, H3(ω) = ω3 − 3ω.

One can show that, for all n ∈ N0,

(1.33) Hn(ω) =
(
n!
√

π
)1/2

ψn(ω/
√

2)e−ω2/4,

where ψn is the same as in (1.23). The latter yields

(1.34)

∫

R
Hn(ω)Hm(ω)dµH(ω) = n!δnm,

which means that {Hn}n∈N0 is an orthogonal basis of L2(R, µH). Thus,

(1.35) F =
∞∑

n=0

f (n)Hn, F ∈ L2(R, µH),

and

(1.36) ‖F‖L2(R,µH) =
∞∑

n=0

n!|f (n)|2

The orthogonality (1.34) can also be proven directly from the definition
(1.31). Indeed,

∫

R
eG(φ, ω)eG(ψ, ω)dµH(ω)(1.37)

=

∫

R
exp

(
(φ + ψ)ω − φ2

2
− ψ2

2

)
dµH(ω)

= exp

(
1

2
(φ + ψ)2 − φ2

2
− ψ2

2

)
=

∞∑
n=0

(φψ)n

n!

∞∑
n,m=0

φn

n!
· ψm

m!

∫

R
Hn(ω)Hm(ω)dµH(ω),

which holds for any φ, ψ ∈ R and hence implies (1.34).
Now let us pass to the infinite dimensional case. Set H = L2(R).

For ϕ ∈ C∞
0 (R), we define

eG(ϕ, ω) =
exp (〈ϕ, ω〉)
Eµ exp (〈ϕ, ·〉)(1.38)

= exp

(
〈ϕ, ω〉 − 1

2
‖ϕ‖2

H

)
,
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which can clearly be extended to all ϕ, ω ∈ H. Consider

(1.39) exp (〈ϕ, ω〉) =
∞∑

n=0

1

n!
Bn(ω, ϕ).

Here, for a fixed ω ∈ H, Bn(·, ϕ) is a n-homogeneous continuous poly-
nomial in ϕ ∈ H. Indeed,

Bn(ω, ϕ) = 〈ϕ, ω〉n =

(∫

R
ϕ(t)ω(t)dt

)n

=

∫

Rn

ω(t1) · · ·ω(tn)ϕ(t1) · · ·ϕ(tn)dt1 · · · dtn,

and by the Schwarz inequality

(1.40) |Bn(ω, ϕ)| ≤ ‖ϕ‖n
H · ‖ω‖n

H.

Now, for ω ∈ C∞
0 (R), we set, c.f. (1.32),

eG(ϕ, ω)(1.41)

=
∞∑

n=0

1

n!

∫

Rn

Hn(ω)(t1, . . . , tn)ϕ(t1) · · ·ϕ(tn)dt1 · · · dtn

=
∞∑

n=0

1

n!

〈
Hn(ω), ϕ⊗n

〉
,

where as in (1.39) we have that

(1.42) H 3 ϕ 7→ 〈
Hn(ω), ϕ⊗n

〉

is a n-homogeneous continuous polynomial in ϕ ∈ H. As in the one-
dimensional case, Hn are the Hermite polynomials. The map (1.42)
can be extended in ω to ω ∈ H−, where the latter space is the same as
in (1.24). Clearly, now this map is only measurable, for which we have

∫

H−

〈
Hn(ω), φ⊗n

〉 · 〈Hn(ω), ψ⊗n
〉
dµH(ω)(1.43)

= n!δnm

〈
φ⊗n, ψ⊗m

〉
= n!δnm〈φ, ψ〉n.

Recall that (
L2(R)

)⊗n
= L2(Rn).

Let

(1.44) L2
sym(Rn) ⊂ L2(Rn),
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be the subspace consisting of the symmetric vectors, i.e. ϕ(n) ∈ L2
sym(Rn)

means that

(1.45) ϕ(n)(tσ(1), . . . , tσ(n)) = ϕ(n)(t1, . . . , tn)

for all permutations σ ∈ Σn. Thus, for all ω ∈ H− we can define a
measurable map

(1.46) L2
sym(Rn) 3 ϕ(n) 7→ 〈

Hn(ω), ϕ(n)
〉
,

such that ∫

H−

〈
Hn(ω), φ(n)

〉 · 〈Hn(ω), ψ(n)
〉
dµH(ω)(1.47)

= n!δnm

〈
φ(n), ψ(n)

〉
L2(Rn)

.

For a given n ∈ N, we call

Fn = L2
sym(Rn)

the n-particle space. We also set F0 = R and consider the space

(1.48) F =
∞⊕

n=0

Fn.

This is the Fock space over the Hilbert space H = L2(R). It consists of
the vectors

~f = (f (0), f (1), . . . , f (n), . . . ), f (n) ∈ Fn.

By construction, the space (1.48) is also called symmetric or Bose Fock
space. One also writes

F(L2(R)) = Exp(L2(R)).

This construction leads us to the following

Theorem 1.4 (Chaos decomposition). For every F ∈ L2(H−, µH),

H = L2(R), there exists a unique ~f ∈ F(L2(R)) such that

(1.49) F =
∞∑

n=0

〈
Hn(·), f (n)

〉
,

and

(1.50) ‖F‖L2(H−,µH) = ‖~f‖F(L2(R)).

Therefore, the representation (1.49) establishes an isomorphism

(1.51) L2(H−, µH) ' F(L2(R)).
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One observes that (1.50) means

∫

H−
|F (ω)|2dµH(ω) =

∞∑
n=0

n!

∫

Rn

|f (n)(t1, . . . , tn)|dt1 · · · dtn.

1.5. Differential operators. For a function F : H− → R, we are
going to define the derivative ∇F , and also hight-order derivatives.
For h ∈ H, we set

(1.52) (∇hF ) (ω) = lim
t→0

[F (ω + th)− F (ω)] /t.

This is the so called the derivative of F in direction h, or just the
directional derivative. If is is linear in h and continuous, i.e.

|(∇hF ) (ω)| ≤ C(ω)‖h‖,
for some C(ω) > 0, then, by the Riesz lemma, we can define ∇F (ω) ∈
H, which is called the gradient of F .

Let us now recall the notion of the Laplace operator on the Euclidean
space Rd. For f ∈ C∞

0 (Rd) ⊂ L2(Rd), we have

(1.53) 4f(x) =
d∑

k=1

∂2f

∂x2
k

(x).

Note that L2(Rd) means the space of square-integrable functions with
respect to the Lebesgue measure m defined on the Borel σ-field B(Rd).
For any f ∈ C∞

0 (Rd), one can define the energy form

E(f, f) = −
∫

Rd

f(x)4f(x)dm(x)(1.54)

=

∫

Rd

|∇f(x)|2 dm(x) ≥ 0.

The name energy comes from the fact that the operator H = −(~2/2m)4
is the energy operator of a free quantum particle. Likewise we define

(1.55) E(F, F ) =

∫

H−
‖∇F (ω)‖2

HdµH(ω),

which is also called the Dirichlet form.
Recall that the directional derivative was defined in (1.52). For h ∈

H, the adjoint directional derivative ∇∗
h is defined as follows. For f, g ∈
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L2(H−, µH), we set
∫

H−
(∇hf)(ω)g(ω)dµH(ω)(1.56)

=

∫

H−
f(ω)(∇∗

hg)(ω)dµH(ω).

Lemma 1.5. For every h ∈ H, we have that

(1.57) ∇∗
h = −∇h + 〈h, ·〉.

Remark 1.6. Note that the map

H− 3 ω 7→ 〈h, ω〉,
which appears in (1.57), is measurable. By (1.56), to prove (1.57) we
have to show that ∫

H−
(∇hf)(ω)g(ω)dµH(ω)(1.58)

= −
∫

H−
f(ω)(∇hg)(ω)dµH(ω)

+

∫

H−
f(ω)g(ω)〈h, ω〉dµH(ω).

Proof of Lemma 1.5: Let us show that the shifted measure dµH(·+h),
where h is the same as in (1.57), is absolutely continuous with respect
to dµH. In the one-dimensional case, we have

dµH(ω + h) =
1√
2π

exp

(
−1

2
(ω + h)2

)
dω,

and hence
dµH(ω + h)

dµH(ω)
= exp

(
−hω − 1

2
h2

)

Let us show that a similar formula holds also in the considered case.
Namely, we show that

(1.59)
dµH(ω + h)

dµH(ω)
= exp

(
−〈h, ω〉 − 1

2
‖h‖2

H

)
:= R(h, ω).

By (1.16) and (1.17), we immediately see that, for any h ∈ H,
∫

H−
R(h, ω)dµ(ω) = 1,
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that is

(1.60) dνh(ω) := R(h, ω)dµH(ω)

is a probability measure on H−. Thus, to prove (1.59) we have to show
that, for all h ∈ H,

(1.61) dνh(ω) = dµH(·+ h).

Definition 1.7. For a measurable space (S,S), a family F of S/B(R)-
measurable functions F : S → R is called a uniqueness class if for any
two probability measures on (S,S), the equality

∫

S

Fdµ =

∫

S

Fdν,

which holds for all F ∈ F, implies that µ = ν.

Suppose that a set F of functions F : H− → R has the properties:

(a) for F, G ∈ F, their point-wise product F ·G is also in F;

(b) for any distinct ω, ω′ ∈ H−, there exists F ∈ F such that

F (ω) 6= F (ω′);

(c) F contains a constant function.

Then

F is a uniqueness class. Let us take

(1.62) F = {F (ω) = exp (〈φ, ω〉) : φ ∈ C∞
0 (R)}.

Clearly, it has all the properties just mentioned. At the same time,
direct calculations yield

∫

H−
F (ω)R(h, ω)dµH(ω) = exp

(
−〈φ, h〉+

1

2
‖h‖2

H

)

∫

H−
F (ω)dµH(ω + h) =

∫

H−
F (ω − h)dµH(ω)

= exp

(
−〈φ, h〉+

1

2
‖h‖2

H

)
,
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which yields (1.61). Now we can prove (1.58). In view of (1.52), we
have∫

H−
(∇hf)(ω)g(ω)dµH(ω) =

=
d

dt

[∫

H−
f(ω + th)g(ω)dµH(ω)

]

t=0

=
d

dt

[∫

H−
f(ω)g(ω − th)dµH(ω − th)

]

t=0

=
d

dt

[∫

H−
f(ω)g(ω − th)R(−th, ω)dµH(ω)

]

t=0

=
d

dt

[
exp

(
−t2

2
‖h‖2

H

) ∫

H−
f(ω)g(ω − th) exp (t〈h, ω〉) dµH(ω)

]

t=0

=

∫

H−
f(ω) [−(∇hg)(ω) + g(ω)〈h, ω〉] dµH(ω),

which readily yields (1.58). ¤
One observes that the map f(ω) 7→ (∇f)(ω) yields an element of H '
L(H → R). Thus, the second derivative

(∇∇f)(ω) := f ′′(ω)

yields an element of L(H → H). Here, for two Hilbert spaces H and
H′, by L(H → H′) we denote the set of all continuous linear mappings.
Then we set

(1.63) (4f)(ω) := tracef ′′(ω).

Theorem 1.8. The Dirichlet form introduced in (1.55) can be written
in the form

E(F, F ) =

∫

H−
F (ω) (LHF ) (ω)dµH(ω),(1.64)

(LHF ) (ω) := −(4F )(ω) + 〈(∇F )(ω), ω〉.(1.65)

Note that the operator LH defined in (1.65) is called the Ornstein-
Uhlenbeck operator. Having in mind the isomorphism (1.51) and the
decomposition (1.48) we can define the action of LH on the functions
f : F → R. Simple calculations show that

(1.66) LH|Fn
= nI,



ANALYSIS AND GEOMETRY ON CONFIGURATION SPACES 17

which is the multiplication operator by n.

2. Poisson Measures and Configuration Spaces

Now we develop a version of the theory presented above but based
on the Poisson measure rather than on the Gaussian one.

2.1. The Poisson measure. First we consider the one-dimensional
case. Let σ > 0 be fixed. It will serve as the intensity parameter of the
Poisson measure which we introduce now. Set

(2.1) mk =
σk

k!
e−σ, k ∈ Z+ := {0, 1, 2, . . . }.

Let M1(R) stand for the set of all probability measures on the mea-
surable space (R,B(R)). Then the Poisson measure πσ ∈M1(R) is an
atomic measure with atoms {k}, k ∈ Z+, such that

(2.2) πσ({k}) = mk, k ∈ Z+.

Equivalently

(2.3) πσ =
∞∑

k=0

mkδk,

where δx is the atomic measure which has a single atom at x ∈ R with
mass one. That is, for B ∈ B(R),

(2.4) δx(B) = 1B(x) =

{
1, x ∈ B,

0 otherwise.

The measure (2.3) can be used to describe a population of random size
living in a zero-dimensional space. Its Fourier transform is

π̃σ(ϕ) =

∫

R
exp (iϕx) πσ(dx) =

∞∑

k=0

exp (iϕk − σ)
σk

k!
(2.5)

= e−σ

∞∑

k=0

1

k!

(
σe−ϕ

)k
= exp

(
σ

(
eiϕ − 1

))
.

Suppose now that the population which we describe lives in a locally
compact space X, which, for simplicity, we shall always assume to be
Rd with some d ≥ 2. It can also be any Riemannian manifold.

Thus, we consider a measurable space (Rd,B(Rd)), and let M(Rd)
stand for the set of all measures thereon. The space X is equipped with
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the intensity measure σ ∈M(Rd), which is supposed to be non-atomic
(e.i. σ({x}) = 0 for all x ∈ X, and infinite but σ-finite, i.e.

σ(X) = +∞, X =
∞⋃

n=1

Xn, σ(Xn) < ∞ for all n ∈ N.

In particular, we assume that σ(K) < ∞ for any compact K ⊂ X.
It is also natural to assume that σ has a density, ρ, which is locally
integrable with respect to Lebesgue’s measure. The simplest case is
where ρ is constant. It this case, we write σ(dx) = zdx. Now we can
introduce the Poisson measure by its Fourier transform

(2.6) π̃σ(ϕ) = exp

(∫

X

(
eiϕ(x) − 1

)
σ(dx)

)
, ϕ ∈ C∞

0 (X).

The measure πσ itself lives on a space, which we introduce right below.

2.2. Configuration spaces. Let X be as above. The space of locally
finite configurations on X is

(2.7) Γ(X) = {γ ⊂ X : ∀ compact K ⊂ X |γ ∩K| < ∞}.
Here | · | stands for cardinality. From this definition it follows imme-
diately that γ cannot have coinciding points as well as accumulation
points. Thus,

Γ(Rd) 6= (Rd)∞.

For Λ ⊂ X, we denote

γΛ = γ ∩ Λ, Γ(Λ) = {γ ∈ Γ(X) : γ ⊂ Λ}.
Now we set a topology on the space Γ(X). To this end we associate it
with a subset of M(X) by means of the representation

(2.8) γ =
∑
x∈γ

δx,

where δx is the Dirac measure as in (2.4). Then for a compact K ⊂ X,

γ(K) =

(∑
x∈γ

δx

)
(K) =

∑
x∈γ

δx(K) = |γ ∩K| < ∞.

Since we shall use the notion of the induced topology in the sequel,
we discuss it now in more detail. Let Y be any nonempty set and
Ξ = {ξi}i∈I be a family of maps ξi : Y → R; the index set I is
arbitrary. The topology on Y induced by the family Ξ is the weakest
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topology in which all the maps ξi : Y → R are continuous. This is
exactly the family

⋃
i∈I

{
ξ−1
i (A) : A open subset of R

}
.

Let C0(X) be the set of all continuous functions f : X → R which have
compact support (i.e. vanish outside compact sets). For f ∈ C0(X),
we set

(2.9) 〈f, γ〉 =

∫

X

f(x)γ(dx) =
∑
x∈γ

f(x).

Note that the latter sum is finite since it runs over γ ∩ suppf . Hence,
each f ∈ C0(X) defines the map

Γ(X) 3 γ 7→ 〈f, γ〉 ∈ R.

Definition 2.1. The vague topology on Γ(X) is the topology induced
thereon by the family

Ξ = {〈f, ·〉 : f ∈ C0(X)}.
A net {γα}α∈I converges in this topology to a certain γ if

∀ f ∈ C0(X)

∫

X

fdγα →
∫

X

fdγ.

A very important fact about the vague topology is that it can be
metrized, and the corresponding metric space will be complete and
separable. Such spaces are called Polish spaces. The vague topology
naturally induces the measurability on on Γ(X). Recall that by B(X)
we denote the σ-algebra of Borel subsets of X = Rd. Let Bc(X) ⊂ B(X)
be the set of Borel subsets with compact closure. Each such a set is
bounded in X. For n ∈ N and Λ ∈ Bc(X), we set

(2.10) Γ(n)(Λ) = {γ ∈ Γ(Λ) : |γ| = n}, Γ(0)(Λ) = {∅}.
Further, for Λ ∈ Bc(X), by Λn we denote the corresponding cartesian

product consisting of tuples (x1, . . . , xn), xi ∈ Λ. Let also Λ̃n be the
off-diagonal part, i.e,

Λ̃n = {(x1, . . . , xn) ∈ Λn : xi 6= xj for i 6= j}.
We say that two elements of Λ̃n are equivalent if they coincide up to
a permutation of their numbers, that is, (x′1, . . . , x

′
n) ∼ (x1, . . . , xn) if

(x′1, . . . , x
′
n) = (xσ(1), . . . , xσ(n)) for some permutation σ ∈ Σn. Then

the factor set Λ̃n/Σn can be identified with Γ(n)(Λ)

(2.11) Λ̃n/Σn ' Γ(n)(Λ)
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by the relation

Γ(n)(Λ) 3 γ = {x1, . . . , xn} ' {(xσ(1), . . . , xσ(n)) : σ ∈ Σn} ∈ Λ̃n/Σn,

which naturally induces a metric on Γ(n)(Λ) by means of the metric
of X restricted to Λ. Thereafter, we can present Γ(Λ) as the disjoint
union of Γ(n)(Λ), n ∈ Z+, i.e.,

(2.12) Γ(Λ) =
∞∐

n=0

Γ(n)(Λ),

and equip Γ(Λ) with the topology of the disjoint union. This means
that the open subsets of Γ(Λ) are exactly the disjoint unions of open
subsets of Γ(n)(Λ). The latter topology naturally defines the Borel σ-
algebra of subsets of Γ(Λ), which we denote by B(Γ(Λ)). Now we take
Λ1 ⊂ Λ2 ∈ Bc(X). Then the map

Γ(Λ2) 3 γ 7→ pΛ2Λ1(γ) = γΛ1 ∈ Γ(Λ1)

is the projection of Γ(Λ2) onto Γ(Λ1). One can also define

(2.13) Γ(X) 3 γ 7→ pΛ(γ) = γΛ ∈ Γ(Λ), Λ ∈ Bc(X).

By B(Γ(X)) we denote the σ-field of subsets of Γ(X) induced by the
family

(2.14) Ξ = {pΛ : Λ ∈ Bc(X)}.
This defines Γ(X) as the projective limit of Γ(Λ), i.e.,

(2.15) Γ(X) = prlimΛΓ(Λ).

Our next aim is to define probability measures on Γ(X) as projective
limits of measures on Γ(Λ), Λ ∈ Bc(X). We are going to do this by
means of the celebrated Kolmogorov extension theorem. Note that the
latter is usually employed to define a stochastic process by means of
its finite-dimensional distributions.

In the sequel, by M(Γ(X)) (respectively, M1(Γ(X))) we denote the
set of all (respectively, all probability) measures on the measurable
space (Γ(X),B(Γ(X))). For µ ∈M1(Γ(X)) and Λ ∈ Bc(X), we set

(2.16) µΛ = µ ◦ p−1
Λ := p∗Λµ ∈M1(Γ(Λ)),

where pΛ is the same as in (2.13). Then µΛ is called the projection of
µ onto Λ. Let now Λ1 ⊂ Λ2 ∈ Bc(X). Then we readily have that

(2.17) µΛ1 = µΛ2 ◦ p−1
Λ2Λ1

.
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The property (2.17) is called the consistency of the family {µΛ : Λ ∈
Bc(X)}. It comes from the consistency of the projections pΛ and pΛ2Λ1 ,
which can be illustrated

Γ(X)
pΛ2−→ Γ(Λ2)

pΛ2Λ1−→ Γ(Λ1)

Γ(X)
pΛ1−→ Γ(Λ1)

The consistency (2.17) can also be expressed in terms of integrals. Let
F : Γ(Λ) → R be bounded and measurable. For such F and µ ∈
M1(Γ(X)), we have

∫

Γ(Λ)

F (η)dµΛ(η) =

∫

Γ(X)

F (pΛγ)dµ(γ)(2.18)

=

∫

Γ(Λ)

F (η)d (p∗Λµ) (η)

=

∫

Γ(Λ)

F (η)dµ(p−1
Λ η).

Theorem 2.2 (Kolmogorov extension theorem). Suppose that there
exists a consistent family of probability measures {µΛ : Λ ∈ Bc(X)}.
Then there exists a unique probability measure µ ∈ M1(Γ(X)) such
that, for every Λ ∈ Bc(X), µΛ = p∗Λµ.

2.3. Lebesgue-Poisson and Poisson measures on configuration
spaces. An element σ ∈ M(X) is called a Radon measure if it is
finite on compact subsets of X. As an element of our theory is the
Radon measure σ prescribed to the manifold X, such that σ(X) = +∞.
Throughout these lectures we assume that X is the Euclidean space
Rd, d ≥ 2, equipped with the measure

(2.19) σ(dx) = ρ(x)m(dx),

where m is Lebesgue’s measure on X. The density ρ ≥ 0 is supposed
to be locally integrable

∫

K

ρ(x)m(dx) < ∞ for any compact K ⊂ X.

The simplest choice is

(2.20) ρ(x) ≡ z > 0.

In the latter case, z is called it activity.
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Now we introduce the space of finite configurations in X. Namely,
for n ∈ N, we set

(2.21) Γ(n)(X) = {γ ∈ Γ(X) : |γ| = n}, Γ(0)(X) := {∅}.
Then the space of finite configurations in X is

(2.22) Γ0(X) =
∞∐

n=0

Γ(n)(X).

Note that Γ0(X) is a proper subset of Γ(X). For n ∈ N, let

σ⊗n = σ × · · · × σ

be the product measure on the cartesian product Xn = X × · · · ×X.
As above, we set

X̃n = {(x1, . . . , xn) ∈ Xn : xi 6= xj for i 6= j}.
It can readily be show that

σ⊗n
(
Xn \ X̃n

)
= 0.

As in (2.11) we identify the factor X̃n/Σn with Γ(n)(X). Let

(2.23) symn
X(x1, . . . , xn) = {x1, . . . , xn} ∈ Γ(n)(X).

Then this map acts

symn
X : X̃n −→ Γ(n)(X).

Now we set

(2.24) σ(n) = σ⊗n ◦ (symn
X)−1,

and also

(2.25) Γ(0)(X) = {∅}, σ(0)(∅) = 1.

For a function G : Γ(n)(X) → R, one finds a symmetric function G(n) :
Xn → R such that

(2.26) G({x1, . . . , xn}) = G(n)(x1, . . . , xn).

For appropriate such functions, we then have
∫

Γ(n)(X)

G({x1, . . . , xn})dσ(n)(2.27)

=

∫

Xn

G(n)(x1, . . . , xn)dσ(x1) · · · dσ(xn).
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The Lebesgue-Poisson measure λσ on Γ0(X) is set to be

(2.28) λσ =
∞∑

n=0

1

n!
σ(n).

We now fix Λ ∈ Bc(X) and consider the restriction of σ to (Λ,B(Λ)),

which we denote by σΛ. By means of the latter measure we define σ
(n)
Λ

and thereby

(2.29) λΛ
σ =

∞∑
n=0

1

n!
σ

(n)
Λ .

The latter is a measure on

(2.30) Γ(Λ) = Γ0(Λ) :=
∞∐

n=0

Γ(n)(Λ).

In particular, we have that

λΛ
σ (Γ(Λ)) =

∞∑
n=0

1

n!
σ

(n)
Λ (Γ(Λ))(2.31)

=
∞∑

n=0

1

n!
[σΛ (Λ)]n = exp (σ(Λ)) .

Thereafter, we can introduce, c.f. (2.1), (2.2),

(2.32) πΛ
σ = e−σ(Λ)λΛ

σ ,

which is a probability measure on Γ(Λ). Since we have such measures
for every Λ ∈ Bc(X), we can check whether the family {πΛ

σ : Λ ∈
Bc(X)} is consistent. For Λ ∈ Bc(X), consider

Λ = Λ1 ∪ Λ2, Λ1 ∩ Λ2 = ∅.
Then each γΛ can be decomposed γΛ = γΛ1 ∪ γΛ2 , which also defines
the decomposition Γ(Λ) = Γ(Λ1)× Γ(Λ2). It can be checked that

λΛ
σ = λΛ1

σ × λΛ2
σ .

The latter decomposition yields

πΛ
σ = exp [−σ(Λ1 ∪ Λ2)] λ

Λ1
σ × λΛ2

σ(2.33)

=
(
e−σ(Λ1)λΛ1

σ

)× (
e−σ(Λ2)λΛ2

σ

)
= πΛ1

σ × πΛ2
σ .

The consistency in question comes from the latter decomposition in the
following way. For Λ1 ⊂ Λ and an appropriate function F : Γ(Λ1), we
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have∫

Γ(Λ)

F (γΛ1)dπΛ
σ (γΛ) =

∫

Γ(Λ1)×Γ(Λ2)

F (γΛ1)dπΛ1
σ (γΛ1) · dπΛ2

σ (γΛ2)

=

∫

Γ(Λ1)

F (γΛ1)dπΛ1
σ (γΛ1).

Hence, we have the consistency

(2.34) p∗ΛΛ1
πΛ

σ = πΛ1
σ ,

which holds for any Λ1 ⊂ Λ ∈ Bc(X). Here p∗ΛΛ1
is the same as in

(2.17). In view of (2.34), we can apply to the family {πΛ
σ : Λ ∈ Bc(X)}

Theorem 2.2 and obtain that there exists a unique probability measure
on (Γ(X),B(Γ(X))) consistent with this family, which we denote by πσ

and call the Poisson measure with intensity measure σ.
Now we introduce the Laplace transform of the Poisson measure πσ.

For f ∈ C0(X), we set

(2.35) π̂σ(f) =

∫

Γ(X)

exp (〈f, γ〉) dπσ(γ),

where the pairing 〈f, γ〉 was defined in (2.9). Since f has compact
support, one finds Λ ∈ Bc(X) such that f vanishes outside Λ. Having
this in mind we obtain in (2.35)

π̂σ(f) =

∫

Γ(X)

exp (〈f, γΛ〉) dπσ(γ) =

∫

Γ(Λ)

exp (〈f, η〉) dπΛ
σ (η)

= e−σ(Λ)

∞∑
n=0

1

n!

∫

Λn

exp

(
n∑

k=1

f(xk)

)
dσ(x1) · dσ(xn)

= e−σ(Λ)

∞∑
n=0

1

n!

(∫

Λ

ef(x)dσ(x)

)n

= exp

(
−σ(Λ) +

∫

Λ

ef(x)dσ(x)

)

= exp

(∫

Λ

[
ef(x) − 1

]
dσ(x)

)
.

This representation can be extended to all measurable f : X → R such
that ef − 1 ∈ L1(X, σ). For such functions we thus have

(2.36) π̂σ(f) = exp

(∫

X

[
ef(x) − 1

]
dσ(x)

)
.
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Suppose now that the manifold X has been decomposed into disjoint
union

(2.37) X = X1 tX2.

This implies the decomposition of any γ ∈ Γ(X) into the pair (γX1 , γX2)
and hence the decomposition

(2.38) Γ(X) = Γ(X1)× Γ(X2).

Proposition 2.3. The decompositions (2.37), (2.38) yield the follow-
ing one

(2.39) πX
σ = πX1

σ × πX2
σ ,

where πX
σ is the Poisson measure for the manifold X - the same as in

(2.35).

Proof. By (2.36), the decomposition (2.37) leads to

π̂X
σ (f) = exp

(∫

X1

[
ef(x) − 1

]
dσ(x)

)
· exp

(∫

X1

[
ef(x) − 1

]
dσ(x)

)

= π̂X1
σ (f) · π̂X2

σ (f),

which readily yields (2.39). ¤

The result just obtained can be generalized to any finite decomposition

X = X1 tX2 tX3 · · · tXn,

which yields the decomposition

(2.40) πX
σ = πX1

σ × πX2
σ × · · · × πXn

σ ,

that is, the measure πX
σ is infinitely divisible.

There exists one more fact about the Poisson measure πσ. For
B ∈ Bc(X), we define the random variable NB on (Γ(X),B(Γ(X)))
by setting

(2.41) Γ(X) 3 γ 7→ NB(γ) = |γB|,
that is, NB is a counting measure.

Proposition 2.4. For any B1, . . . , Bn ∈ Bc(X) such that Bi ∩Bj = ∅
for i 6= j, the corresponding random variables are jointly independent
Poisson variables with intensities σ(Bi), i = 1, . . . , n.
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Proof. First one observes that NB(γ) = 〈1B, γ〉. Thus, by (2.36) we
have

E

[
exp

(
n∑

i=1

λiNBi

)]
=

∫

Γ(X)

exp

(
n∑

i=1

λi〈1Bi
, γ〉

)
dπσ(γ)

=

∫

Γ(X)

exp

(〈 n∑
i=1

λi1Bi
, γ

〉)
dπσ(γ)

= exp

{∫

X

(
exp

(
n∑

i=1

λi1Bi
(x)

)
− 1

)
dσ(x)

}

= exp

(
n∑

i=1

(
eλi − 1

)
σ(Bi)

)

=
n∏

i=1

exp
[(

eλ
i − 1

)
σ(Bi)

]
,

which readily yields the proof. ¤

The result just proven can be summarized in the following

Definition 2.5. A measure µ ∈M1(Γ(X)) is called a Poisson random
field on X with intensity σ ∈M(Γ(X)) if for every family B1, . . . , Bn ∈
Bc(X) such that Bi ∩ Bj = ∅ for i 6= j, the family NB1 , . . . , NBn is an
independent family of Poisson random variables with intensities σ(Bi),
i = 1, . . . , n.

Remark 2.6. Probability measures on configuration spaces appear in
various fields of science. In probability theory, elements of M1(Γ(X))
are called point processes or point random fields, e.g. the Poisson
random field introduced above. In mathematical physics, people study
giant systems of particles, such as classical gases or fluids in Rd, d =
2, 3. Then γ is interpreted as a microscopic state of the gas, whereas
µ ∈M1(Γ(X)) is its macroscopic state. In particular, πσ with σ(dx) =
zm(dx), z > 0, is the macroscopic state of a homogeneous free gas
with density z. Recently, elements of M1(Γ(X)) found applications
in biology, ecology, sociology, to describe behavior of large complex
systems (population, society, etc).

Let us now discuss the possibility to take into account possible mul-
tiplicity of the points in configurations. For such configurations, the
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representation (2.8) gets the form

(2.42) η =
∑
x∈γ

nxδx, nx ∈ N.

Herein the configuration itself is η, whereas γ ∈ Γ(X) is its support.
The set of all configurations (2.42) is denoted by Γ̈(X). Clearly, Γ(X) ⊂
Γ̈(X) and for all B ∈ Bc(X), we have that

η(B) =
∑
x∈γ

nx.

The set Γ̈(X) can also be considered as a subset of M(X) consisting
of all integer-valued Radon measures.

Another possible extension of the description presented above is to
consider the so called marked configurations. Now the configuration
is the set of pairs (x,mx), where the mark mx takes values in the
space of marks M . As above, the set of positions x form the support
of the configuration. Elements of Γ̈(X) can be an example of such
configurations. Another example is the space of configurations of a gas
particles, each of which is characterized by position x ∈ R3 and velocity
vx ∈ R3.

Finally, let us turn to the so called Mecke characterization of the
Poisson measure.

Proposition 2.7. The Poisson measure πσ obeys the Mecke formula

∫

Γ(X)

∑
x∈γ

F (x, γ)dπσ(γ)(2.43)

=

∫

X

∫

Γ(X)

F (x, γ ∪ x)dσ(x)dπσ(γ),

which holds for any integrable function F : X × Γ(X) → R. And
vice versa, any probability measure on Γ(X) which satisfies the Mecke
formula is the Poisson measure with intensity measure σ.

Proof. It is enough to prove (2.43) for the function

F (x, γ) = ϕ(x) exp(〈ψ, γ〉), ϕ, ψ ∈ C0(X),
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for which we have
∫

Γ(X)

∑
x∈γ

F (x, γ)dπσ(γ)(2.44)

=

∫

Γ(X)

∑
x∈γ

ϕ(x) exp(〈ψ, γ〉)dπσ(γ)

=

∫

Γ(X)

〈ϕ, γ〉 exp(〈ψ, γ〉)dπσ(γ)

=
d

dt

[∫

Γ(X)

exp (〈ψ + tϕ, γ〉) dπσ(γ)

]

t=0

=
d

dt

[
exp

(∫

X

[
eψ(x)+tϕ(x) − 1

]
dσ(x)

)]

t=0

= exp

(∫

X

[
eψ(x) − 1

]
dσ(x)

)
·
∫

X

ϕ(x)eψ(x)dσ(x).

At the same time, the right-hand side of (2.43) is
∫

X

∫

Γ(X)

ϕ(x) exp (〈ψ, γ ∪ x〉) dσ(x)dπσ(γ)

=

(∫

X

ϕ(x)eψ(x)dσ(x)

)
· exp

(∫

X

[
eψ(x) − 1

]
dσ(x)

)
,

which coincides with the last line in (2.44) and hence yields its proof.
¤

2.4. The diffeomorphism group and the Poisson measure. In
the sequel, for a measurable space, say, (S,S), by L0(S,S) we denote
the set of all S/B(R)-measurable functions F : S → R. Let F be in
L0(Γ(X),B(Γ(X))) and be a measurable map T : Γ(X) → Γ(X). Then
F ◦ T is also in L0(Γ(X),B(Γ(X))). For such T we define the adjoint
map T ∗ : M1(Γ(X) →M1(Γ(X) in the following way.

(2.45)

∫

Γ(X)

F (γ)d(T ∗µ)(γ) =

∫

Γ(X)

(F ◦ T )(γ)dµ(γ),

holding for all F ∈ L0(Γ(X),B(Γ(X))). Since L0(Γ(X),B(Γ(X))) is a
uniqueness class, see Definition 1.7, the measure T ∗µ, and hence T ∗,
are well-defined.



ANALYSIS AND GEOMETRY ON CONFIGURATION SPACES 29

Definition 2.8. A map T : Γ(X) → Γ(X) is said to be admissible for
a given µ ∈ M1(Γ(X) if T ∗µ is absolutely continuous with respect to
µ. That is, there exists a Radon-Nikodym derivative

(2.46) R(T, γ) =
d(T ∗µ)

dµ
(γ).

Recall that, in the case of Gaussian measures, we considered the
shift transformation H− 3 ω 7→ Thω := ω + h, h ∈ H. This map has
its adjoint, which is admissible for µH, see (1.59). The infinitesimal
transformation corresponding to the shift is the gradient. Our next
aim is to develop the corresponding objects also for Poisson measures
on configuration spaces.

A bijection Φ : X → X is called a diffeomorphism if both Φ and
Φ−1 are continuously differentiable. That is both ∇Φ and ∇Φ−1 are
continuous maps from X to the space of all linear operators A : X → X.
It is clear that all diffeomorphisms Φ : X → X constitute a group under
convolution, which we denote by Diff(X). A subgroup of this group
constitute the (local) diffeomorphisms which have compact support.
By definition, each such Φ acts as the identity map on X \K for some
compact K, specific for this Φ. By Diff0(X) we denote the group of all
local diffeomorphisms.

Consider γ ∈ Γ(X) and Φ ∈ Diff0(X). Then we set

(2.47) Φ(γ) = {Φ(x) : x ∈ γ}.

Since Φ is a monomorphism, Φ(x1) 6= Φ(x2) for two distinct x1, x2 ∈ γ.
Therefore Φ(γ) ∈ Γ(X) and hence Φ can be defined as a map Φ :
Γ(X) → Γ(X). Then by (1.11) we define also Φ∗. Of course, we can
define the adjoint map to Φ as to a map Φ : X → X. In both cases we
use the same notation as it is always clear from the context which one
is meant.

Theorem 2.9. For every Φ ∈ Diff0(X), it follows that

(2.48) Φ∗πσ = πΦ∗σ.

Proof. Since the family of functions {〈f, ·〉 : f ∈ C0(X)} is a unique-
ness class, see Definition 1.7, it is enough to prove that the Laplace
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transforms of both measures in (2.48) coincide. Thus, we have
∫

Γ(X)

exp (〈f, γ〉) d(Φ∗πσ)(γ) =

∫

Γ(X)

exp (〈f, Φ(γ)〉) dπσ(γ)

=

∫

Γ(X)

exp

(∑
x∈γ

f (Φ(x))

)
dπσ(γ)

=

∫

Γ(X)

exp

(〈
f ◦ Φ, γ

〉)
dπσ(γ)

= exp

(∫

X

[exp(f ◦ Φ(x))− 1] dσ(x)

)

= exp

(∫

X

[exp(f(x))− 1] d(Φ∗σ)(x)

)

=

∫

Γ(X)

exp (〈f, γ〉) dπΦ∗σ(γ),

which completes the proof. ¤

Let us now consider the action of Φ∗ on the measure σ, see Definition
2.8. By definition,

d (Φ∗σ) (x)

dσ(x)
=

ρ(Φ−1(x))

ρ(x)
· dm(Φ−1(x)

dm(x)
(2.49)

=
ρ(Φ−1(x))

ρ(x)
· Jm(Φ)(x)

:= pσ
Φ(x).

Here

Jm(Φ)(x) := det
[∇Φ−1(x)

]

is the Jacobian of the diffeomorphism Φ.

Theorem 2.10 (Skorohod theorem). For the Poisson measure πσ, ev-
ery Φ ∈ Diff0(X) is admissible and

d (Φ∗πσ)

dπσ

(γ) =
∏
x∈γ

pσ
Φ(x) exp

(∫

X

[1− pσ
Φ(x)] dσ(x)

)
(2.50)

:= R(Φ, γ).
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Proof. For any f ∈ C0(X), we have

∫

Γ(X)

exp (〈f, γ〉) R(Φ, γ)dπσ(γ)

= exp

(∫

X

[1− pσ
Φ(x)] dσ(x)

)

×
∫

Γ(X)

∏
x∈γ

pσ
Φ(x) exp (〈f, γ〉) dπσ(γ)

= exp

(∫

X

[1− pσ
Φ(x)] dσ(x)

)

×
∫

Γ(X)

exp

(〈
f + ln pσ

Φ, γ

〉)
dπσ(γ)

= exp

(∫

X

[1− pσ
Φ(x)] dσ(x)

)

× exp

(∫

X

[
ef(x)pσ

Φ(x)− 1
]
dσ(x)

)

= exp

(∫

X

[
ef(x) − 1

]
pσ

Φ(x)dσ(x)

)

= exp

(∫

X

[
ef(x) − 1

]
d(Φ∗σ)(x)

)

=

∫

Γ(X)

exp (〈f, γ〉) dπΦ∗σ(γ),

which completes the proof as the family of functions {〈f, ·〉 : f ∈
C0(X)} is a uniqueness class. ¤

2.5. Differential geometry of configuration spaces. Usually, dif-
ferentiation is defined in linear spaces. For nonlinear metric spaces,
e.g. Riemannian manifolds, the notion of the derivative is introduced
by means of certain auxiliary objects. We are going to follow this way
in the case of configuration spaces.

To get started let us consider first the linear case where the space is
X = Rd. Take v : X → X, such that ‖v‖ = 1. We call is a vector field.
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For an appropriate f : X → R, the derivative at x in direction v(x) is

(∇vf) (x) =
d

dt
[f(x + tv(x))]t=0 .

If this derivative is linear in v, it can be written in the form

(2.51) (∇vf) (x) = 〈∇f(x), v(x)〉TxX

where the scalar product 〈·, ·〉TxX is taken in the space tangent to X at
point x. In the linear case, the latter is just the copy of the space X
itself, that is, TxX ' X = R for all x ∈ X. Then

(2.52) TX =
⋃
x∈X

TxX

is said to be the tangent bundle. Note that the gradient ∇f(x), if
exists, is in TxX. Suppose now that the vector field v is itself infinitely
differentiable in X. The set of all such vector fields will be denoted by
Vec(X); it is called the C∞-section of the tangent bundle. Since both
vectors in (2.51) are in the same space, we can write

(2.53) (∇vf) (x) =
d∑

i=1

vi(x)
∂f

∂xi
(x), Rd 3 x = (x1, . . . , xd).

We let Vec0(X) ⊂ Vec(X) consist of v with compact support, i.e.
v(x) = 0 for x ∈ X \K for some compact K. For v ∈ Vec0(X), let us
consider the Cauchy problem

(2.54)

{
dut

dt
= v(ut), u : R→ Rd

u0 = x, x is fixed in Rd.

The solution of (2.54) is called a flow. It defines the map

Rd 3 x 7→ ut := Φv
t (x).

It is clear that Φv
t ◦ Φv

s = Φv
t+s and Φv

0(x) = x. Hence, {Φv
t : t ∈ R}

is a one-parameter group. Since v ∈ Vec0(X), each Φv
t is in Diff0(X).

Thus, we can define

(2.55) (∇vf) (x) =
d

dt
[f (Φv

t (x))]t=0 ,

which is called the Lie derivative of f along v.
Having done this job on X we can transport the notions just de-

veloped to the space of configurations, as it was done in the previous
subsection. This procedure is called lifting. For v ∈ Vec0(X), by means
of Φv

t ∈ Diff0(X) we define

(2.56) Φv
t (γ) = {Φv

t (x) : x ∈ γ}, γ ∈ Γ(X).
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As in (2.48), we have that Φv
t (γ) is in Γ(X) and hence the latter Φv

t

maps Γ(X) into itself.

Definition 2.11. For a function F : Γ(X) → R, the Γ-derivative at
γ ∈ Γ(X) along v ∈ Vec0(X) is the Lie derivative

(2.57)
(∇Γ

v F
)
(γ) =

d

dt
[F (Φv

t (γ))]t=0 .

Note that in (2.57) the vector field v is ”constant”, i.e. is independent
of γ. An important example of such a derivative is provided by the
choice

F (γ) = 〈f, γ〉, f ∈ C∞
0 (X).

In this case, we have

(∇Γ
vF

)
(γ) =

d

dt
[〈f, Φv

t (γ)〉]t=0 =
d

dt

[∑
x∈γ

f (Φv
t (x))

]

t=0

(2.58)

=
∑
x∈γ

(∇vf) (x) = 〈∇vf, γ〉.

Given N ∈ N, by D we denote the set of all infinitely differentiable
functions g : RN → R with compact support, i.e., D = C∞

0 (RN).
Smooth cylinder functions on Γ(X) are those F : Γ(X) → R which
have the representation

F (γ) = g(〈φ1, γ〉, . . . , 〈φN , γ〉),(2.59)

g ∈ D, φ1, . . . , φN ∈ C∞
0 (X).

The set of such F will be denoted by FC∞
0 (D, Γ(X)). A generalization

of (2.58) is given in the following

Proposition 2.12. For every F ∈ FC∞
0 (D, Γ(X)), we have that

(2.60)
(∇Γ

vF
)
(γ) =

N∑
j=1

∂g

∂sj

(〈∇vφ1, γ〉, . . . , 〈∇vφN , γ〉) .

Proof. First we observe that, for any φ ∈ C∞
0 (X),

(2.61) 〈φ, Φv
t (γ)〉 =

∑
x∈γ

φ (Φv
t (x)) =

∑
x∈γ

φ ◦ Φv
t (x) .

Hence,

F (Φv
t (γ)) = g(〈φ1 ◦ Φv

t , γ〉, . . . , 〈φN ◦ Φv
t , γ〉),



34 YURI KONDRATIEV

which yields together with (2.58) that

d

dt
[F (Φv

t (γ))]t=0 =
N∑

j=1

∂g

∂sj

(〈∇vφ1, γ〉, . . . , 〈∇vφN , γ〉) ,

and thus completes the proof. ¤

Let us now address the question what could be the tangent space to
Γ(X) at a given γ. In other words, in which linear space TγΓ(X) we
can put the gradient ∇ΓF , c.f (2.51)?

Definition 2.13. The tangent space TγΓ(X) is defined as the Hilbert
space of vector fields Vγ : X → TX with the scalar product

〈Vγ,Wγ〉TγΓ(X) =

∫

X

〈Vγ(x),Wγ(x)〉TxXγ(dx)(2.62)

=
∑
x∈γ

〈Vγ(x),Wγ(x)〉TxX .

One observes that in the above definition TxX is a copy of X = Rd

for every x. Thus, we have that

(2.63) TγΓ(X) = L2(X → TX, γ),

and the corresponding tangent bundle is

(2.64) TΓ(X) =
⋃

γ∈Γ(X)

TγΓ(X).

Each v ∈ Vec0(X) defines the ‘constant’1 vector field V v
γ on Γ(X) by

the relation

(2.65) 〈V v
γ , V v

γ 〉TγΓ(X) =

∫

X

〈v(x), v(x)〉TxXγ(dx).

Definition 2.14. For F : Γ(X) → R, the Γ-gradient is defined as the
map

Γ(X) 3 γ 7→ (∇ΓF
)
(γ) ∈ TγΓ(X) = L2(X → TX, γ)

such that for v ∈ Vec + 0(X),

(2.66)
(∇Γ

v F
)
(γ) = 〈(∇ΓF

)
(γ), v〉TγΓ(X).

1which is independent of γ.
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2.5.1. Integration by parts and divergence. First we consider some mo-
tivating example. Take any φ, ψ ∈ C∞

0 (X). For such φ, we have

(2.67) (∇vφ)(x) =
d∑

i=1

vi(x)
∂φ

∂xi
(x).

The integration-by-parts formula (with respect to Lebesgue’s measure
m) is ∫

Rd

(∇vφ)(x)ψ(x)dm(x) = −
∫

Rd

φ(x)(∇vψ)(x)dm(x)(2.68)

−
∫

Rd

φ(x)ψ(x)divv(x)dm(x),

which is known as Stoke’s formula. For short, we call it (IbP)m. Here

(2.69) divv(x) =
d∑

i=1

∂vi

∂xi
(x)

is the divergence of the vector field v at point x. At the same time,
(2.68) can be considered as the definition of the adjoint gradient in
L2(Rd,m). That is, if we set

(2.70)

∫

Rd

(∇vφ)(x)ψ(x)dm(x) =

∫

Rd

φ(x)(∇∗
vψ)(x)dm(x),

then

(2.71) ∇∗
v = −∇v − divv(·),

where the latter is the multiplication operator. Clearly, for σ = ρm
with constant density ρ, the (IbP)σ has the form (2.68). What can be
said with this regard if ρ is nonconstant? Suppose that ρ(x) > 0 for
all x ∈ Rd and that ρ has continuous gradient. Then we can define

(2.72) βσ(x) =
∇ρ(x)

ρ(x)
∈ Rd ' TxX.

By analogy, βσ is called the logarithmic derivative of σ. For v ∈
Vec0(X), we define

(2.73) βσ
v (x) = 〈βσ(x), v(x)〉TxX + divv(x).

Theorem 2.15. Let σ(dx) = ρ(x)m(dx) be such that ρ is everywhere
positive and has continuous gradient. Then the integration-by-parts
formula (IbP)σ has the following form: for any φ, ψ ∈ C∞

0 (X),∫

X

∇vφ · ψdσ = −
∫

X

φ · ∇vψdσ −
∫

X

φ · ψ · βσ
v dσ.(2.74)
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Proof. In view of (2.67), by the usual integration-by-parts formula we
have

∫

X

∇vφ · ψdσ =
d∑

i=1

∫

X

∂φ(x))

∂xi

[
vi(x)ψ(x)ρ(x)

]
dm(x)

= −
∫

X

φ(x)

(
d∑

i=1

∂vi(x)

∂xi

)
ψ(x)ρ(x)dm(x)

−
∫

X

φ(x)

(
d∑

i=1

vi(x)
∂ψ(x)

∂xi

)
ρ(x)dm(x)

−
∫

X

φ(x)ψ(x)
1

ρ(x)

(
d∑

i=1

vi(x)
∂ρ(x)

∂xi

)
ρ(x)dm(x)

= RHS(2.74).

¤

Definition 2.16. Given v ∈ Vec0(X), the logarithmic derivative of the
Poisson measure πσ along this v is defined to be the map

Γ(X) 3 γ 7→ Bπσ
v (γ)(2.75)

Bπσ
v (γ) :=

∫

X

[〈βσ(x), v(x)〉TxX + divv(x)] dγ(x)

=
∑
x∈γ

[〈βσ(x), v(x)〉TxX + divv(x)]

Theorem 2.17 ((IbP)πσ
). For every F, G ∈ FC∞

0 (D, Γ(X)) and for
all v ∈ Vec0(X), it follows that

∫

Γ(X)

∇Γ
vF ·Gdπσ = −

∫

Γ(X)

F · ∇Γ
vGdπσ(2.76)

−
∫

Γ(X)

F ·G ·Bπσ
v dπσ,

thet is, in L2(Γ(X), πσ), the adjoint gradient takes the form, c.f. (2.71)

(2.77)
(∇Γ

v

)∗
= −∇Γ

v −Bπσ
v (·).
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Proof. In view of (2.57) and (2.56), we have
∫

Γ(X)

F (Φv
t (γ)) G(γ)dπσ(γ)(2.78)

=

∫

Γ(X)

F (γ)G
(
Φv
−t(γ)

)
dπ(Φv)∗t σ(γ)

=

∫

Γ(X)

F (γ)G
(
Φv
−t(γ)

)
R (Φv

t , γ) dπσ(γ),

see (2.48) and (2.50). Now we take the t-derivative of both sides of
(2.78) at t = 0. Then the left-hand side turns into the left-hand side
of (2.76). Furthermore,

(2.79)
d

dt

[
G

(
Φv
−t(γ)

)]
t=0

= −∇Γ
vG(γ),

which being plugged into (2.78) gives the first term on the right-hand
side of (2.76). The second term can be obtained analogously by means
of (2.48) - (2.50). ¤

2.6. Representations of the Lie algebra Vec0(X). .
There exists a one-to-one correspondence between Vec0(X) and Diff0(X)

established by the Cauchy problem
{ d

dt
Φv

t (x) = v (Φv
t (x)) ,

Φv
0(x) = x.

Suppose that we have a real Hilbert space H, and let U(H) be the
group of all unitary operators V : H → H. For a group G, let the map
G 3 g 7→ Vg ∈ U(H) be such that, for all g1, g2 ∈ G,

(2.80) g1 · g2 7→ Vg1 · Vg2 .

Then the image of G in U(H) is called the unitary representation of G.
Let H = L2(Γ(X), πσ). For Φ ∈ Diff0(X) and F ∈ L2(Γ(X), πσ), we

set

(2.81) (V (Φ)F ) (γ) = F (Φ(γ))

√
dπσ(Φ(γ))

dπσ(γ)
.

One can verify that

(2.82) V (Φ1) · V (Φ2)F = V (Φ1 · Φ1)F.
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On the other hand,

〈V (Φ)F, V (Φ)G〉H =

∫

Γ(X)

F (Φ(γ))G(Φ(γ))
dπσ(Φ(γ))

dπσ(γ)
dπσ(γ)

=

∫

Γ(X)

F (Φ(γ))G(Φ(γ))dπσ(Φ(γ))

=

∫

Γ(X)

F (γ)G(γ)dπσ(γ)

= 〈F,G〉H,

that is, each V (Φ), φ ∈ Diff0(X), is a unitary operator in H. In view of
(2.82), the image of Diff0(X) in U(H) is a unitary representation of the
former group. Following this way, we obtain the unitary representation
of Vec0(X) in U(H) defined by the map

(2.83) Vec0(X) 3 v 7→ Φv
t 7→ V (Φv

t ) ∈ U(H).

By the Stone theorem, each V (Φv
t ) has the form

(2.84) V (Φv
t ) = exp (itJv) ,

where Jv is a self-adjoint operator in H. It turn out that

(2.85) Jv =
1

i
∇Γ

v +
1

2i
Bπσ

v (·), i =
√−1,

c.f. (2.77).

2.7. Brownian motion on configuration spaces. Here we present
an analytic approach to the Markov dynamics.

Let X be a topological space (e.g. X = Rd). BY C∞
0 (X) we denote

the space of all infinitely differentiable functions f : X → R with
compact support. Let L be a linear operator f 7→ Lf with domain
D(L) ⊂ C∞

0 (X). For example,

(2.86) (Lf)(x) =
d∑

k=1

∂2f

∂x2
k

(x) ∈ C∞
0 (X).

Consider the Cauchy problem

(2.87)

{ ∂ut

∂t
(x) = (Lut)(x),

u0(x) = ϕ(x),

where t ≥ 0 and ϕ ∈ Cb(X) - the (Banach) space of all bounded
continuous functions f : X → R. Under certain conditions imposed on
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L the solution of (2.87) can be presented in the form

(2.88) ut = Ttϕ,

such that T0 = I, TtTs = Tt+s, I being the identity operator Iu = u
for all u. By the latter conditions, {Tt}t≥0 is a semigroup of linear
operators on the space Cb(X).

Definition 2.18. We say that {Tt}t≥0 is a Markov semigroup on Cb(X)
if the following conditions are satisfied:

(1) for every ϕ ∈ Cb(X) such that f ≥ 0, and all t ≥ 0, it follows
that ut = Ttϕ ≥ 0 (positivity preservation);

(2) for all t ≥ 0, it follows that T1 = 1, where 1 is the constant
function taking value 1 (conservativity).

Example (heat equation): L = ∆

(2.89)





∂ut

∂t
(x) = (∆u)(x) =

∑d
k=1

∂2ut

∂x2
k
(x),

u0(x) = ϕ(x),

For t > 0, its solution has the form, t > 0,

ut(x) = (Ttϕ)(x) =

∫

Rd

ϕ(y)Pt(xdy),(2.90)

Pt(xdy) =
(
2
√

πt
)−d

exp

(
−|x− y|2

4t

)
dy.

One can easily verify that Pt(x,Rd) = 1 for all x, and

|ut(x)| ≤ sup
x∈Rd

|ϕ(x)|Pt(x,Rd) = sup
x∈Rd

|ϕ(x)|,

that is the map ϕ 7→ ut has the property

(2.91) ‖ut‖Cb(X) = ‖Ttϕ‖Cb(X) ≤ ‖ϕ‖Cb(X),

i.e., is a contraction. Furthermore, for ϕ ≥ 0, by (2.90) we see that
ut ≥ 0 and Tt1 = 1. That is {Tt}t≥0 defined by (2.90) is a positivity
preserving conservative semigroup of contractions. Such semigroups
are called stochastic.

Let {Tt}t≥0 be as above and (Ω, Σ(Ω), P ) be the probability space.
For a given µ0 ∈ M1(X) and N ∈ N, we define random variables
ξ1, . . . , ξN . ξi : Ω → X = Rd such that, for A1, . . . , AN ∈ B(X) and
0 < t1 < · · · < tN ,

P (ξt1 ∈ A1, . . . , ξtN ∈ AN)(2.92)

=

∫

X

(
Tt11A1Tt2−t11A2 · · ·Ttn−tN−1

1AN

)
(x)dµ0(x).
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By Kolmogorov’s consistency theorem, the above probabilities deter-
mine a stochastic process on (Ω, Σ(Ω), P ), which is the Markov process
associated with the generator L = ∆. It is the Brownian motion on
X = Rd. In particular, (2.92) determine the “one-time” distributions
µt ∈M1(X), given by

(2.93) µt(A) =

∫

X

(Tt1A) (x)dµ0(x) := (T ∗
t µ0) (A).

This yields the adjoint semigroup {T ∗
t }t≥0, acting in M1(X). It has

the following interpretation: µt is the state of the underlying system
at time t; the map µ0 7→ µt = T ∗

t µ0 is the adjoint evolution os states.
Suppose now that an operator L is given. Then we have the following

problems.

(1) Does L determines a stochastic semigroup {Tt}t≥0?

(2) If yes, how to get the adjoint semigroup {T ∗
t }t≥0?

Let us now give a geometric interpretation of the Brownian motion.
For φ, ψ ∈ C∞

0 (X), let us consider the following bilinear form

(2.94) E(φ, ψ) =

∫

X

〈∇φ,∇ψ〉dm(x).

It determines the quadratic form

(2.95) E(φ, φ) =

∫

X

‖∇φ‖2
Rddm(x) =

∫

X

‖∇φ‖2
TxXdm(x),

which is called the energy form or Dirichlet form. Applying in (2.94)
the usual integration-by-parts formula, we get

E(φ, ψ) =

∫

X

〈∇φ,∇ψ〉dm(x)(2.96)

=
d∑

j=1

∫

X

(
∂φ

∂xj
(x) · ∂ψ

∂xj
(x)

)
dm(x)

= −
d∑

j=1

∫

X

φ(x)

(
∂ψ

∂xj
(x)

)
dm(x)

= −
∫

X

φ(x) (∆ψ) (x)dm(x).

Then we have the following sequence of implications

Geometry ⇒ Dirichlet form ⇒ Laplacian ⇒ Brownian motion
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Now let us consider the corresponding objects on the configuration
spaces. Here we have

Γ(X), TγΓ(X), ∇Γ, πσ.

We also have the (IbP)πσ
, see Theorem 2.17. The energy form in this

case is

(2.97) Eπσ(F, F ) =

∫

Γ(X)

‖∇ΓF (γ)‖2
TγΓ(X)dπσ(γ).

3. Combinatorial harmonic analysis on configuration
spaces

3.1. Space of finite configurations. Now we again consider the con-
figuration space Γ(X). By O(X) we denote the totality of open subsets
of X, whereas Oc(X) with stand for the totality of open subsets having
compact closures. Recall also that B(X) and Bc(X) denote the families
of Borel sets and Borel sets with compact closures, respectively. The
space of n-particle configurations is

(3.1) Γ(n)(X) = {η ∈ Γ(X) : |η| = n}, n ∈ N.

Let X̃n be the off-diagonal part of the Cartesian product

Xn = X × · · · ×X 3 (x1, . . . , xn).

That is
X̃n = {(x1, . . . , xn) ∈ Xn : xi 6= xj for i 6= j}.

We say that two elements of X̃n are equivalent if they coincide up to
a permutation of their numbers, that is, (x′1, . . . , x

′
n) ∼ (x1, . . . , xn) if

(x′1, . . . , x
′
n) = (xσ(1), . . . , xσ(n)) for some permutation σ ∈ Σn. Then

the factor set X̃n/Σn can be identified with Γ(n)(X)

(3.2) X̃n/Σn ' Γ(n)(X)

by the relation

Γ(n)(X) 3 γ = {x1, . . . , xn} ' {(xσ(1), . . . , xσ(n)) : σ ∈ Σn} ∈ X̃n/Σn,

which naturally induces a metric on Γ(n)(X) by means of the metric of
X. Thereafter, we can present Γ(X) as the disjoint union of Γ(n)(X),
n ∈ Z+, i.e.,

(3.3) Γ0(X) =
∞∐

n=0

Γ(n)(X),

which is called the space of finite configurations. This spaces is given
the topology which cames from the above representation, i.e. A ⊂
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Γ0(X) is open if its intersection with each Γ(n)(X) is open in this space.
Then K ⊂ Γ0(X) is compact if and only if there exists N ∈ N such
that: (a) K ∩ Γ(n)(X) = ∅ for all n > N ; (b) K ∩ Γ(n)(X) is compact
in Γ(n)(X) for all n ≤ N . Naturally, the mentioned above topology
of Γ0(X) determines also the corresponding Borel σ-algebra which we
denote by B(Γ0(X)).

Definition 3.1. A subset B ∈ B(Γ0(X)) is called bounded if there
exists N ∈ N and Λ ∈ Bc(X) such that

B ⊂
N∐

n=0

Γ(n)(Λ).

Recall the the space of all configurations Γ(X) is given the vague
topology defined by the pairing

Γ(X) 3 γ 7→ 〈f, γ〉 :=
∑
x∈γ

f(x), f ∈ C0(X).

In the vague topology, Γ(X) is a Polish space.

3.2. Functions on configuration spaces.

3.2.1. Functions on Γ0(X). By Bb(Γ0(X)) we define the set of all bounded
sets B ∈ B(Γ0(X)), see Definition 3.1. Note that Bb(Γ0(X)) is a ring: it
contains ∅ and is closed with respect to unions and intersections. Sup-
pose that we have a map % : Bb(Γ0(X)) → R+, which has the following
properties.

(1) %(B) < ∞ for all B ∈ Bb(Γ0(X)).

(2) For any sequence {Bk}k∈N such that Bj ∩Bk = ∅, j 6= k and
∞⋃

k=1

Bk ∈ Bb(Γ0(X)),

it follows that

%

( ∞⋃

k=1

Bk

)
=

∞∑

k=1

%(Bk).

Then such a map % is called a pre-measure on Bb(Γ0(X)). In this case,
there exists a unique extension of this pre-measure to a measure % on
the σ-algebra B(Γ0(X)).

In the sequel, by L0(Γ0(X),B(Γ0(X))) we denote the set of all mea-
surable functions F : Γ0(X) → R. For short, we also use the nota-
tion L0(Γ0). By B(Γ0) (respectively, L0

ls(Γ0)) we denote the set of all
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bounded (respectively, with compact support) functions F ∈ L0(Γ0).
Note that F ∈ L0

ls(Γ0) if and only if there exists Λ ∈ Bc(X) such that
F is identically zero on Γ0(X) \ Γ(Λ). Next, we introduce the set of
functions F : Γ0(X) → R which have bounded support. The latter
consist of those such functions for each of which there exist Λ ∈ Bc(X)
and N ∈ N such that F is identically zero on

Γ0(X) \
N∐

n=0

Γ(n)(Λ).

The set of the latter functions is denoted by L0
bs(Γ0). Finally, we in-

troduce

(3.4) Bls(Γ0) = B(Γ0) ∩ Lls(Γ0), Bbs(Γ0) = B(Γ0) ∩ Lbs(Γ0).

Remark 3.2. In view of the representation (3.3), we have that every
function G : Γ0(X) → R has the following structure: its restriction to
any Γ(n)(X), which we denote by G(n), can be written in the form

(3.5) G(n)({x1, . . . , xn}) = Ĝ(n)(x1, . . . , xn),

where Ĝ(n) : Xn → R is a symmetric function. Thus, each G :
Γ0(X) → R can be viewed as a sequence of symmetric functions

(Ĝ(0), Ĝ(1), Ĝ(2), . . . , Ĝ(n), . . . ).

3.2.2. Functions on Γ(X). First we define the so called cylinder sets.
For Λ ∈ Bc(X), we consider

(3.6) {γ ∈ Γ(X) : ∃Λ′ ⊂ Λ such that γΛ′ ∈ A ∈ B(Λ′)}.
The σ-algebra BΛ(Γ) generated by such cylinder sets with support in
B(Λ) is clearly isomorphic to the Borel σ-algebra B(Λ). Then we set

(3.7) Bcyl(Γ) =
⋃

Λ∈Bc(X)

BΛ(Γ).

This is the algebra (not σ-algebra) of all cylinder subsets of Γ(X).

Definition 3.3. The set of functions F : Γ(X) → R, denoted by
L0(Γ,Bcyl), consists of all those F : Γ(X) → R for each of which there
exists Λ ∈ Bc(X) and a function FΛ : Γ(Λ) → R, such that

F (γΛ = FΛ(γΛ), and FΛ ∈ L0(Γ(Λ),B(Γ(Λ))).

We consider the following functions F : Γ(X) → R:

(1) continuous functions C(Γ), and continuous cylinder
functions FC(Γ);
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(2) measurable cylinder functions FL0(Γ,B(Γ));

(3) polynomially bounded measurable cylinder functions
FL0

pb(Γ,B(Γ)).

The latter set consist of those F : Γ(X) → R for each of which there
exists Λ ∈ Bc(X) and a polynomial P in |γΛ| such that, for all γ ∈
Γ(X),

(3.8) |F (γ)| ≤ P (|γΛ|).

3.3. Combinatorial Fourier transform. The combinatorial Fourier
is also called the K-transform.

3.3.1. Definition and main statement.

Definition 3.4. For G ∈ L0
ls(Γ0), we define

(3.9) (KG)γ) =
∑

ξbγ

G(ξ) γ ∈ Γ(X),

where the summation is performed over all finite sub-configurations
ξ b γ.

In view of their applications in the theory of complex systems, the
functions F : Γ(X) → R are called observables, whereas the functions
G : Γ0(X) → R – quasi-observables.

Why does the K transform (3.9) is well-defined? Since G ∈ L0
ls(Γ0),

there exists Λ ∈ Bc(X) such that G is identically zero on Γ0(X)\Γ(Λ).
Then the sum in (3.9) is finite.

Theorem 3.5. The K-transform (3.9) has the following properties.

(i) Let G ∈ L0
ls(Γ0). Then its K-transform KG is in FL0(Γ).

Since G is identically zero on Γ0(X) \ Γ(Λ) for some
Λ ∈ Bc(X), for this Λ, KG ∈ L0(Γ,BΛ(Γ)).

(ii) K maps Bbs(Γ0) into FL0
pb(Γ).

(iii) K maps L0
ls(Γ0) into FL0(Γ) and is invertible. Furthermore,

(3.10)
(
K−1F

)
(η) =

∑

ξ⊂η

(−1)|η\ξ|F (ξ), η ∈ Γ0(X).

(iv) K is linear and positivity preserving.

(v) For every G ∈ Cls(Γ0), KG is in FC(Γ).
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Proof. (i) Since G is identically zero on Γ0(X) \ Γ(Λ), we have that

(KG)(γ) =
∑

ξ⊂γΛ

G(ξ) = (KG)(γΛ),

hence, KG is in FL0(Γ).
(ii) Since G is identically zero on

Γ0(X) \
N∐

n=0

Γ(n)(Λ),

for some N ∈ N, we have that

|(KG)(γ)| = |(KG)(γΛ)| ≤
∑

ξ⊂γΛ

|G(ξ)|

≤ sup
Γ0

|G|
N∑

k=0

(|γΛ

k

)
= (1 + |γΛ|)N sup

Γ0

|G|,

hence KG ∈ FL0
pb(Γ).

(iii) First we observe that K−1 in (3.10) is well-defined. Then

(
K−1 (KG)

)
(η) =

∑

ξ⊂η

(−1)|η\ξ|
(∑

ζ⊂ξ

G(ζ)

)

=
∑

ζ⊂η

G(ζ)
∑

ξ⊂(η\ζ)

(−1)|ξ| = G(η).

At the same time, for F ∈ FL0(Γ), we have that F (γ) = F (γΛ) for
some Λ, and hence,

K(K−1F ) = F.

(iv) Clearly, KG ≥ 0 whenever G ≥ 0. (v) is obvious. ¤

3.3.2. Examples.

(1) Let

G(η) =

{
f(x) if η = {x}, x ∈ X;

0 otherwise.

Then

(KG)(γ) =
∑
ηbγ

G(η) =
∑
x∈γ

f(x) = 〈f, g〉.

Hence, K : Functions(Γ0) → Functions(Γ), i.e. it is lifting.
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(2) Let

G(η) =

{
V (x, y) if η = {x, y}, x, y ∈ X;

0 otherwise.

Here V ∈ C0(X ×X). Then

(KG)(γ) =
∑

{x,y}⊂γ

V (x, y) := EV (γ),

which is called energy functional corresponding to V .

From these examples we see that K maps quasi-observables into ob-
servables.

Let us define the following map

K : Bb(Γ0)× Γ → R+,

which acts according to the rule: for A ∈ Bb(Γ0) and γ ∈ Γ,

(3.11) K(A, γ) = (K1A) (γ) =
∑

ξbγ

1A(ξ).

Clearly, K is additive in the sense that

(3.12) K(A1 ∪ A2, γ) = K(A1, γ) +K(A2, γ), if A1 ∩ A2 = ∅.
Furthermore, for every A ∈ Bb(Γ0), K(A, ·) is measurable and, for every
γ ∈ Γ, K(·, γ) is a pre-measure on the ring Bb(Γ0). If

A =
∞∐

k=1

Ak, all Ak ∈ Bb(Γ0) and A ∈ Bb(Γ0),

then

(3.13) K(A, γ) =
∞∑

k=1

K(Ak, γ).

Theorem 3.6. The above introduced K can be extended to a kernel
K : B(Γ0)× Γ → R+. For any G ∈ L0

ls(Γ0), it follows that

(3.14)

∫

Γ0

G(η)K(dη, γ) =
∑
ηbγ

G(η) = (KG)(γ).

Proof. Since K : B(Γ0)× Γ → R+ is a pre-measure, it can uniquely be
extended to a measure K(dη, γ) on B(Γ0). Take G = 1A, A ∈ Bb(Γ0).
Then ∫

Γ0

1A(η)K(dη, γ) = K(A, γ) =
∑
ηbγ

1A(η) = (K1A)(γ).
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Now for a given N ∈ N and real α1, . . . αN , we take a step function

(3.15) G(η) =
N∑

k=1

αk1Ak
(η), A1, . . . AN ∈ Bb(Γ0),

for which we obtain by repeating the above calculations

(3.16)

∫

Γ0

1A(η)K(dη, γ) =
N∑

k=1

αkK(Ak, γ) = (KG)(γ).

¤

Definition 3.7. For G1, G2 ∈ L0(Γ0), we define the combinatorial
convolution

(3.17) (G1 ? G2)(η) =
∑

(ξ1,ξ2,ξ3)∈P3(η)

G1(ξ1 ∪ ξ2)G2(ξ2 ∪ ξ3),

where P3(η) is the family of all partitions of η ∈ Γ0 into the sum of
ξ1, ξ2, ξ3, such that ξj ∩ ξk 6= ∅.

Clearly, G1?G2 ∈ L0(Γ0). Another representation of this convolution
is

(3.18) (G1 ? G2)(η) =
∑

ξ⊂η, ζ⊂η: ξ∪ζ=η

G1(ξ)G2(ζ).

Proposition 3.8. For any G1, G2 ∈ L0
ls(Γ0), it follows that

(3.19) K(G1 ? G2) = KG1 ·KG2.
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