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Chapter I

Concepts from insurance

Insurance mathematical theory can be divided into three parts:

1. life insurance,

2. non-life insurance,

3. risk theory.

In these series of lectures we will review some notions, concepts and results
from the third group.

1 Basic notions of risk theory

In the chapters dealing with insurance aspects, we will restrict our attention
to one specific portfolio. Such a portfolio is characterized by a number of
ingredients of both a deterministic and a stochastic nature.

Among the first we mention the starting position and a time period.
Usually, data referring to an insurance portfolio refer to a time span of
one year in accordance with the bookkeeping of the company. Far more
important is the initial reserve or initial capital. One interpretation of the
latter is the amount of capital set aside to cover costs occurring during the
initial period of the portfolio when the company has not yet received the
yearly premiums. In the sequel the initial reserve will be denoted by u.

Among the elements that usually have a stochastic nature are the fol-
lowing:

• The epochs of the claims; denote them by σ1, σ2, . . .. In some cases
we consider an additional claim arrival epoch at time zero denoted by

1



2 CHAPTER I. CONCEPTS FROM INSURANCE

σ0 = 0. Apart from the fact that the epochs form a nondecreasing
sequence we do not in general assume anything specific about their
interdependence. The random variables defined by Tn = σn − σn−1,
n ≥ 1, are called the inter-occurrence times in between successive
claims.

• The number of claims up to time t is denoted by N(t) where N(t) =
sup{n : σn ≤ t}. The intrinsic relation between the sequence of claim
arrivals {σ0, σ1, σ2, . . .} and the counting process {N(t), t ≥ 0} is given
by {N(t) = n} = {σn ≤ t < σn+1}. Process N(t) is sometimes called
a counting process

• The claim occurring at time σn has size Un. The sequence {Un, n =
1, 2, . . .} of consecutive claim sizes is often assumed to consist of inde-
pendent and identically distributed random variables. However, other
possibilities will show up in the text as well.

• The aggregate claim amount up to time t is given by X(t) =
∑N(t)

i=1 Ui
while X(t) = 0 if N(t) = 0. By its very definition, the aggregate claim
amount is in general a random sum of random variables.

• The premium income. In the course of time 0 to t we assume that a
total of Π(t) has been received through premiums.

• The risk reserve at time t is then R(t) = u+ Π(t) −X(t).

The above setup allows flexibility in that an individual claim may mean a
claim from an individual customer (e.g. third-liability insurance) or a claim
caused by a single event (e.g. windstorm insurance).

1.1 Examples of counting processes

Renewal process. In this case T1, T2, . . . are nonnegative i.i.d. random vari-
ables. If T1, T2 . . . are indepednent and T2, . . . then (N(t)) is a delayed
renewal process.

Poisson process is a special case of renewal process, when T ∼Exp(λ).
Then (N(t))t≥0 is a process with stationary and independent increments.
Furthermore

pk(t) = IP(N(t) = k) =
(λt)k

k!
e−λt.

We have
IEN(t) = λt, VarN(t) = λt
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and hence the index of dispertion I(t) = VarN(t)/IEN(t) = 1.

Mixed Poisson process. Two step random mechanizm: first: choose λ
according to distribution Fλ, second: generate the counting Poisson process
N(t) with rate λ. Then

pk(t) = IP(N(t) = k) =

∫ ∞

0

(λt)k

k!
e−λt Fλ(dt).

Process (N(t)) is with stationary increments, however it is not ergodic.
Notice that

N(t)/t → λ, a.s.

2 Ruin Problems

Ruin theory has always been a vital part of actuarial mathematics. At first
glance, some of the theoretically derived results seem to have limited scope
in practical situations. Nevertheless, calculation of and approximation to
ruin probabilities have been a constant source of inspiration and technique
development in actuarial mathematics.

Assume an insurance company is willing to risk a certain amount u in a
certain branch of insurance, i.e. if the claim surplus exceeds the level u some
drastic action will have to be taken for that branch. Because in some sense
this part of the business starts with the capital u we can safely call u the
initial capital. The actuary now has to make some decisions, for instance
which premium should be charged and which type of reinsurance to take.
Often, the premium is determined by company policies and by tariffs of
rivals. A possible criterion for optimizing the reinsurance treaty would be
to minimize the probability that the claim surplus ever exceeds the level u.
To be more specific, consider the risk reserve R(t) = u + Π(t) − X(t) and
define the random variable τ = inf{t ≥ 0 : R(t) < 0}. The instant τ gives us
the ruin time of the portfolio, where we interpret ruin in a technical sense. Of
course, we should allow the possibility that no ruin ever occurs, which means
that τ = ∞. We should realize that τ is dependent on all the stochastic
elements in the risk reserve process {R(t)} as well as on the deterministic
value u. For this reason one often singles out the latter quantity in the
notation for the ruin time by writing τ(u) for τ.More specifically, the survival
or nonruin probability in finite time will be defined and denoted by

ψ(u;x) = IP
(

inf
0≤t≤x

R(t) ≥ 0
)

= IP(τ(u) > x)
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when we consider a finite horizon x > 0. The survival probability over an
infinite time horizon is defined by the quantity

ψ(u) = IP
(
inf
t≥0

R(t) ≥ 0
)

= IP(τ(u) = ∞) .

Alternative notations that are in constant use refer to the ruin probabilities
which are defined by the equalities

ψ(u;x) = 1 − ψ(u;x) , ψ(u) = 1 − ψ(u) .

The risk reserve process {R(t), t ≥ 0} is then given by

R(t) = u+ βt−
N(t)
∑

i=1

Ui , (2.1)

while the claim surplus process {S(t), t ≥ 0} is

S(t) =

N(t)
∑

i=1

Ui − βt . (2.2)

The time of ruin τ(u) = min{t : R(t) < 0} = min{t : S(t) > u} is the first
epoch when the risk reserve process becomes negative or, equivalently, when
the claim surplus process crosses the level u. We will mainly be interested in
the ruin probabilities ψ(u;x) = IP(τ(u) ≤ x) and ψ(u) = limx→∞ ψ(u;x) =
IP(τ(u) < ∞). Here ψ(u;x) is called the finite-horizon ruin probability and
ψ(u) the infinite-horizon ruin probability. Alternatively, ψ(u) can be called
the probability of ultimate ruin. We will further need the notion of the
survival probability ψ(u) = 1 − ψ(u).

There is a relationship between infinite-horizon ruin probabilities of risk
models in discrete time and in continuous time. To get τ(u) it is sufficient
to check the claim surplus process {S(t)} at the embedded epochs σk (k =
1, 2, . . .); see Figure 2.1. Indeed, the largest value M = maxt≥0 S(t) of the
claim surplus process can be given by M = maxn≥0

∑n
k=1(Uk − βTk) and

consequently

ψ(u) = IP(M > u) . (2.3)

The representation formula (2.3) gives us the possibility to interpret the
ruin function ψ(u) as the tail function of the stationary waiting time in a
single-server system of queueing theory.
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Figure 2.1: Claim surplus process

Note, however, that one has to be careful when comparing finite-horizon
ruin probabilities in discrete time with those in continuous time because in
general

IP
(

max
0≤t≤x

S(t) > u
)

6= IP
(

max
0<n≤x

n∑

k=1

(Uk − βTk) > u
)

.

Anyhow, in order to keep the notation simple we will use the same symbol
for the finite-horizon ruin function in the continuous-time risk model as in
the discrete-time risk model, i.e.

ψ(u;x) = IP(τ(u) ≤ x) = IP
(

max
0≤t≤x

S(t) > u
)

.

Apart from the time of ruin τ(u), there are other characteristics related to
the concept of technical ruin. The overshoot above the level u of the random
walk {Sn} crossing this level for the first time is defined by

Y +(u) =

{
S(τ(u)) − u ifτ(u) <∞,

∞ ifτ(u) = ∞.

Note that it is possible to express Y +(u) in terms of the risk reserve process:

Y +(u) =

{
−R(τ(u)) ifτ(u) <∞,

∞ ifτ(u) = ∞.

In other words, Y +(u) can be interpreted as the severity of ruin at time
τ(u); see Figure 2.2.
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Figure 2.2: Severity of ruin and surplus prior to ruin

Another quantity of interest is the surplus prior to ruin given by

X+(u) =

{
u− S(τ(u)−) ifτ(u) <∞,

∞ ifτ(u) = ∞.

Clearly, X+(u)+Y +(u) is the size of the claim causing ruin at time τ(u). In
order to determine the joint distribution of X+(u), Y +(u), we will consider
the multivariate ruin function ψ(u, x, y) given by

ψ(u, x, y) = IP(τ(u) <∞,X+(u) ≤ x, Y +(u) > y) , (2.4)

where u, x, y ≥ 0 or its dual

ϕ(u, x, y) = IP(τ(u) <∞,X+(u) > x, Y +(u) > y) , (2.5)

when the latter is more convenient. Another characteristic related to the
severity of ruin is the time τ ′(u) = inf{t : t > τ(u), R(t) > 0} at which
the risk reserve process {R(t)} crosses the level zero from below for the first
time after the ruin epoch τ(u). Then

T ′(u) =

{
τ ′(u) − τ(u) ifτ(u) <∞,

0 ifτ(u) = ∞,

is the time in the red (see Figure 2.3), the amount of time the risk reserve
process {R(t)} stays below zero after the ruin time τ(u). It is clear that
T ′(u) does not fully describe the severity of ruin, because it does not carry
any information about the behaviour of the risk reserve between τ(u) and
τ ′(u). However, for the insurer it makes a difference whether {R(t)} remains
slightly below zero for a long time, or whether the total maximal deficit

Z+(u) = max{−R(t) : τ(u) ≤ t}
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Figure 2.3: Time in the red

after τ(u) is large. In the latter case, all successive times in the red are
taken into account. We can finally consider the maximal deficit

Z+
1 (u) = max{−R(t) : τ(u) ≤ t ≤ τ ′(u)}

during the first period in the red, that is between τ(u) and τ ′(u).

We can modify the notion of ruin, if it happens only when the risk process
stays in the red for a prescribed time a. It is said then that Parisian ruin
happened.

3 Recent developments

Recently various modifications of classical ruin problem attract attention of
researchers. An important contributions were done in the case when divi-

dends are allowed. Suppose that claim surpluss process S(t) =
∑N(t)

i=1 Ui−βt
is given and it generates filtration (Ft)t≥0. One introduces then a divident
process V (t) adapted to Ft and such that

• ruin does not occur due to divident payments, i.e. ∆V (t) ≤ RV (t),
where RV denotes the controlled risk process,

• V (0) = 0 and the path of V is non-decreasing,

• payments have to stop after the event of ruin,

• decision have to be fixed in a predictable way.
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The controlled processes is defined by

RV (t) = x+ βt−
N(t)
∑

i=1

Ui − V (t).

As before we define the ruin by

τV = inf
t≥0

{RV (t) < 0}.

In particular two strategies are of interest:

• Threshold strategies. The cumulated divident payment is given by

V (t) =

∫ t∧τV

0
a1(RV (s−) ds.

• Barrier strategies.

V (t) = (x− b)1(x > b) +

∫ t∧τV

0
c1(RV (s−) = b) dt.

Bibliographical comments. In these notes the basic fact from risk are
taken from Rolski et al (1999). The literature on dividend problems is
already quite big; see for example a recent survay by Albrecher and Thon-
hauser (2009). Parisian ruin was recently studied by Czarna and Palmowski
(2010).



Chapter II

Classes of distributions; light

versus heavy tailed.

1 Facts about distributions of random random vari-

ables

In this lecture we consider some specific properties of distributions of ran-
dom variables. Here X,Y are random variables defined on Ω,F , IP) with
distribtutions FX , FY respectively. The tail distribution of F (x) we denote
by F (x) = 1 − F (x). Unless it is said otherwise, we consider nonnegative
random variables. Let I = {s ∈ R : IE esX < ∞}. Note that I is an interval
which can be the whole real line R, a halfline or even the singleton {0}. The
moment generating function m̂ : I → R of X is defined by m̂(s) = IE esX .

For purposes, which will be obvious in the sequel of these lecture notes
we divide the class of distributions of nonnegative random variables into two
groups:

• the class of light-tailed distributions if for some 0 < s we have m̂(s) <
∞,

• the class of heavy-tailed distributions if we have m̂(s) = ∞, for all
s > 0. We call them heavy-tailed distributions.

Problems

1.1 Let F (x) be the distribution function of a nonnegative random variable
X. Show that m̂(s0) < ∞ for some s0 > 0 if and only if for some

9
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a, b > 0 the inequality F (x) ≤ a e−bx holds for all x ≥ 0. Conclude
from this that X has all moments finite if m̂(s0) <∞ for some s0 > 0.
Give an example of a distribution F of a nonnegative random variable
such that m̂(s) = ∞ for all s > 0.

1.2 Show by examples that the following cases are possible for the moment
generating function m̂(s):

(a) m̂(s) <∞ for all s ∈ R

(b) there exists s0 > 0 such that m̂(s) <∞ for s < s0 and m̂(s) = ∞
for s ≥ s0,

(c) there exists s0 > 0 such that m̂(s) <∞ for s ≤ s0 and m̂(s) = ∞
for s > s0.

[Hint. Use the inverse Gaussian distribution as an example for (c).]

1.3 Suppose that F is light tailed. Show that there exists s0 such that
m̂(s0) <∞.

2 Heavy-Tailed Distributions

Unless it is said, in this section we study classes of distributions of nonneg-
ative random variables such that m̂(s) = ∞ for all s > 0. We call them
heavy-tailed distributions. Prominent examples of heavy-tailed distributions
are the lognormal, Pareto and Weibull distributions with shape parameter
smaller than 1. Another important class of heavy-tailed distributions is
Pareto-type distribution: Before we recall this notion we need a definition.

Definition 2.1 We say that a positive function L : R+ → (0,∞) is a slowly
varying function of x at ∞ if for all y > 0, L(xy)/L(x) → 1 as x→ ∞.

Examples of such functions are | logp x|, and functions converging to a posi-
tive limit as x→ ∞. Note that (2.8) gives in particular that, if F ∈ S, then
F (log x) is a slowly varying function of x at ∞.

Definition 2.2 It is said the distribution F is Pareto-type with exponent
α > 0 if F (x) ∼ L(x)x−α as x→ ∞ for a slowly varying function L(x).

In the literature, Pareto-type distributions are also called distributions with
regular varying tails.

Problems
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2.1 Show that the following distribution functions are Pareto-type:

• Pareto Par(α) wtih density function f(x) = α(1 + x)−(α+1),

• loggamma with density function

f(x) =
λa

Γ(a)
(log x)a−1x−λ−1, x > 1,

• Burr distribution with

F (x) =

(
b

b+ x

)α

, x ≥ 0.

2.1 Definition and Basic Properties

Let αF = lim supx→∞M(x)/x, where M(x) = − logF (x) is the hazard
function of F . If F has a continuous density, then M(x) is differentiable
and dM(x)/dx = m(x), where m(x) is the hazard rate function.

Theorem 2.3 If αF = 0, then F is heavy-tailed.

Proof Suppose that αF = 0. Then limx→∞M(x)/x = 0. Thus, for each
ε > 0 there exists an x′ > 0 such that M(x) ≤ εx for all x ≥ x′. Therefore
for some c > 0 we have F (x) ≥ ce−εx for all x ≥ 0 and hence

∫ ∞

0
esxF (x) dx = ∞ (2.1)

for all s ≥ ε. Since ε > 0 is arbitrary, (2.1) holds for all s > 0, which means
that F is heavy-tailed. �

Remark For a heavy-tailed distribution F we have

lim sup
x→∞

esxF (x) = ∞ (2.2)

for all s > 0. We leave it to the reader to show this as an exercise.

2.2 Long-tailed distribution

Definition 2.4 A distribution F is long-tailed if F̄ (x) > 0 for all x, and
for any fixed y > 0

F (x+ y) ∼ F (x), x→ ∞.
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We denote the class of long-tailed distributions by L. Note that from the
definition of long-tailness we have that F (x + y) ∼ F (x) uniformly with
respect y in compact intervals.

Lemma 2.5 Long-tailed distributions are heavy-tailed ones: for any a > 0

lim
x→∞

F (x)eax = ∞.

Lemma 2.6 Suppose that F is long-tailed. The there exists a function h(x)
swuch that h(x) → ∞ as x→ ∞ and

sup
|y|≤h(x)

F (x+ y) − F (x)| = o(F (x)),

as x→ ∞.

In this case it is said that function h in Lemma 2.6 is h-sensitive.
For example if h(x) = ǫx, then

F ((1 + ǫ)x)

F (x)
→ 1

for x→ ∞, so F (x) is slowly varying (very heavy indeed!).
Suppose now F is Pareto-type; let F (x) = x−αL(x) where L is slowly

varying. Then immediately

lim
x→∞

F ((1 + ǫ)x)

F (x)
= (1 + ǫ)−α lim

x→∞

L((1 + ǫ)x)

L(x)
= 1

and hence it fulfills

lim
ǫ↓0

lim inf
x→∞

F ((1 + ǫ)x)

F (x)
= 1. (2.3)

A distribtuion F is called intermediate regularly varying if (2.3) holds. A
recent discovery of Foss et al is the following fact.

Theorem 2.7 A distribution F is intermediate regularly varying if and
only if, for any function h such that h(x) = o(x)

F (x+ h(x)) ∼ F (x).

Problems

2.1 Show that the following distributions are heavy-tailed: Pareto-type,
Weibull (when?), log-normal, log-gamma, Burr.



2. HEAVY-TAILED DISTRIBUTIONS 13

2.3 Subexponential Distributions

A distribution F on R+ is said to be subexponential if

lim
x→∞

1 − F ∗2(x)

1 − F (x)
= 2 . (2.4)

Let S denote the class of all subexponential distributions. We show later that
the following important (parametrized) families of distributions are in S: the
lognormal distributions, Pareto distributions and Weibull distributions with
shape parameter smaller than 1.

Sometimes we need the concept of subexponentiality for distributions
on the real line R. Before we exend this definition we state the following
lemma.

Lemma 2.8 [Foss et al] Let F be a distribution on R and X be a random
variable with distribution F . Then the following are equivalent:
(i) F is long-tailed and

lim
x→∞

1 − F ∗2(x)

1 − F (x)
= 2 .

(ii) the distribution F+ of X+ is subexponential,
(iii) the conditional distribution G of X|X > 0 is subexponential.

Thus it is said that a distribtion F on R with right-unbounded support is
subexponential on the whole line if F is long-tailed and

lim
x→∞

1 − F ∗2(x)

1 − F (x)
= 2 .

A direct consequence of (2.4) is that F (x) > 0 for all x ≥ 0. However, not
all distributions with this property are subexponential. Note, for example,
that trivially the exponential distribution is not subexponential because in
this case (1−F ∗2(x))/(1−F (x)) = e−λx(1+λx)/e−λx → ∞ as x→ ∞. On
the other hand, it is easy to see that if F is subexponential and X1,X2 are
independent and identically distributed random variables with distribution
F , then we have for x→ ∞ that

IP(X1 +X2 > x) ∼ IP(max{X1,X2} > x) , (2.5)

since IP(max{X1,X2} > x) = 1 − F 2(x) = (1 − F (x))(1 + F (x)) and hence

1 = lim
x→∞

1 − F ∗2(x)

2(1 − F (x))
= lim

x→∞

1 − F ∗2(x)

(1 + F (x))(1 − F (x))
= lim

x→∞

1 − F ∗2(x)

1 − F 2(x)
.
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Lemma 2.9
F ∗2(x)

F (x)
= 1 +

∫ x

0

F (x− y)

F (x)
dF (y) , (2.6)

from which we obtain that always

lim inf
x→∞

F ∗2(x)

F (x)
≥ 2 . (2.7)

Note that (2.7) implies that the limit value 2 in (2.4) is minimal. Further-
more, (2.6) yields two useful properties of subexponential distributions.

Lemma 2.10 If F ∈ S, then for all x′ > 0,

lim
x→∞

F (x− x′)

F (x)
= 1 (2.8)

and

lim
x→∞

∫ x

0

F (x− y)

F (x)
dF (y) = 1 . (2.9)

From the above lemma we see that a subexponential distribution is from
L and hence also is heavy-tailed.

Lemma 2.11 Let F ∈ S and F ′ be a distribution with F ′(0) = 0 such that
limx→∞ F ′(x)/F (x) = c for some c ∈ [0,∞). Then

lim
x→∞

F ∗ F ′(x)

F (x)
= 1 + c . (2.10)

Using Lemma 2.11 we get the following characterization of subexponen-
tial distributions.

Theorem 2.12 Let F be a distribution on R+. Then, F ∈ S if and only if
for each n = 2, 3, . . .

lim
x→∞

F ∗n(x)

F (x)
= n . (2.11)

We recommend the reader to show the following natural extension of
(2.5) to an arbitrary (finite) number of random variables with subexponen-
tial distribution: if X1, . . . ,Xn are independent and identically distributed
with distribution F ∈ S, then IP(

∑n
i=1Xi > x) ∼ IP(max1≤i≤nXi > x)



2. HEAVY-TAILED DISTRIBUTIONS 15

as x → ∞. Furthermore, Theorem 2.12 immediately yields that for dis-
tributions of the form F (x) =

∑n
k=0 pkG

∗k(x), where {p0, p1, . . . , pn} is a
probability function and G a subexponential distribution, we have

lim
x→∞

F (x)

G(x)
=

n∑

k=0

kpk . (2.12)

Such compound distributions F are important in insurance mathematics and
will be studied later. For example, ruin functions of some risk processes
can be expressed by compound distributions. To study the asymptotic be-
haviour of ruin functions in the case of subexponential claim size distribu-
tions we need an extended version of (2.12) for compound distributions of
type F (x) =

∑∞
k=0 pkG

∗k(x) where {p0, p1, . . .} is a probability function. In
connection with this the following lemma is useful.

Lemma 2.13 [Kesten lemma] If F ∈ S, then for each ε > 0 there exists a
constant c <∞ such that for all n ≥ 2

F ∗n(x)

F (x)
≤ c(1 + ε)n, x ≥ 0 . (2.13)

Theorem 2.14 Let F (x) =
∑∞

k=0 pkG
∗k(x), where {p0, p1, . . .} is a prob-

ability function and G ∈ S. If
∑∞

n=1 pn(1 + ε)n < ∞ for some ε > 0,
then

lim
x→∞

F (x)

G(x)
=

∞∑

k=0

kpk . (2.14)

We close this section showing subexponentiality for an important class of
distributions, containing Pareto distributions and other parametrized fami-
lies of distributions like loggamma distributions.

Theorem 2.15 If F is Pareto-type, then F ∈ S.

Proof Let X,X1 and X2 be independent and identically distributed risks
with Pareto-type distribution F . Note that {X1 +X2 > x} implies that for
ε ∈ (0, 1)

{X1 > (1 − ε)x} or {X2 > (1 − ε)x} or {X1 > εx and X2 > εx},
which yields IP(X1 +X2 > x) ≤ 2IP(X > (1 − ε)x) + (IP(X > εx))2. Hence

lim sup
x→∞

IP(X1 +X2 > x)

L(x)x−α
≤ 2(1 − ε)−α.

Since ε > 0 is arbitrary, lim supx→∞ F ∗2(x)/F (x) ≤ 2. However, in view of
(2.7) this gives limx→∞ F ∗2(x)/F (x) = 2 and the proof is completed. �
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2.4 Criteria for Subexponentiality and the Class S∗

In most cases it is not an easy task to prove directly that a given distribution
is subexponential. In Theorem 2.15 we were able to verify subexponentiality
for Pareto-type distributions. However, for future applications in risk theory,
we need the integrated tail of the distribution F to be subexponential rather
than the distribution itself. Recall that for a distribution F of a nonnegative
random variable with finite expectation µ > 0, the integrated tail distribution
F s is given by

F s(x) =







0 if x ≤ 0,

µ−1

∫ x

0
F (y) dy if x > 0.

(2.15)

It seems to be not yet known whether F ∈ S and 0 < µ <∞ imply F s ∈ S
in general. Thus, it is useful to have conditions for a distribution with finite
expectation to be subexponential jointly with its integrated tail distribution.
On the other hand, there exist examples of distributions F on R+ such that
F s ∈ S, but F /∈ S.

We now show that, for a certain subset S∗ of S which is defined be-
low, F ∈ S∗ implies F s ∈ S. Throughout this section we only consider
distributions F on R+ such that F (0) = 0, F (x) < 1 for all x ∈ R+.

Definition 2.16 (a) We say that F belongs to the class S∗ if F has finite
expectation µ and

lim
x→∞

∫ x

0

F (x− y)

F (x)
F (y) dy = 2µ . (2.16)

(b) We say that F belongs to L if for all y ∈ R

lim
x→∞

F (x− y)

F (x)
= 1 . (2.17)

Note that Lemma 2.10 implies S ⊂ L. Class L will serve to show that class
S∗ of distributions on R+ has some desired properties. We leave it to the
reader to show as an exercise that all distribution functions with hazard rate
functions tending to 0 are in L. We also have the identity

∫ x

0

F (x− y)

F (x)
F (y) dy =

∫ x/2

0
. . . +

∫ x

x/2
. . . = 2

∫ x/2

0

F (x− y)

F (x)
F (y) dy ,

(2.18)
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from which we get that (2.16) is equivalent to

lim
x→∞

∫ x/2

0

F (x− y)

F (x)
F (y) dy = µ . (2.19)

We now study the relationship between S∗ and {F : F ∈ S and F s ∈ S}.
For this we need three lemmas. In the first we give an equivalence relation
for subexponential distributions.

Lemma 2.17 Let F,G be two distributions on R+ and assume that there
exists a constant c ∈ (0,∞) such that

lim
x→∞

G(x)

F (x)
= c . (2.20)

Then, F ∈ S if and only if G ∈ S.

The above lemma justifies the following definition. Two distributions F
and G on R+ are said to be tail-equivalent if limx→∞G(x)/F (x) = c for
some 0 < c < ∞. This will be denoted by G ∼t F . It turns out that for
distributions from S∗, condition (2.20) can be weakened.

Lemma 2.18 Let F,G ∈ L. Suppose there exist c−, c+ ∈ (0,∞) such that

c− ≤ G(x)

F (x)
≤ c+ (2.21)

for all x ≥ 0. Then, F ∈ S∗ if and only if G ∈ S∗.

It can be proved that for a distribution function F with hazard rate
function mF (x), we have F ∈ L if limx→∞mF (x) = 0. A certain conversion
of this statement is given in the following lemma.

Lemma 2.19 For each F ∈ L there exists a distribution G ∈ L with F ∼t G
such that its hazard function MG(x) = − logG(x) and its hazard rate func-
tion mG(x) = dMG(x)/dx have the following properties: MG(x) is continu-
ous and almost everywhere differentiable with the exception of points in IN,
and limx→∞mG(x) = 0.

Remark A consequence of Lemmas 2.17, 2.18 and 2.19 is that to check
subexponentiality for F ∈ L it suffices to verify this for G, which is tail-
equivalent to F and for which limx→∞mG(x) = 0. Moreover, if Gs belongs
to S, then F s belongs to S, too. The proof is left to the reader.

We use the idea from the above remark in the proof of the following
theorem.
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Theorem 2.20 If F ∈ S∗, then F ∈ S and F s ∈ S.

Corollary 2.21 Assume that the hazard rate function mF (x) of F exists
and µ <∞. If lim supx→∞ xmF (x) <∞, then F ∈ S and F s ∈ S.

In the case that lim supx→∞ xmF (x) = ∞, one can use the following
criterion for F ∈ S∗.

Theorem 2.22 Assume that the hazard rate function mF (x) of F exists and
is ultimately decreasing to 0. If

∫ ∞
0 exp(xmF (x))F (x) dx <∞ then F ∈ S∗.

Examples 1. For the Weibull distribution F = W(r, c) with 0 < r < 1, c >
0 we have F (x) = exp(−cxr) andmF (x) = crxr−1. Hence limx→∞ xmF (x) =
∞ and Corollary 2.21 cannot be applied. But, the function exp(xmF (x))F (x) =
exp(c(r − 1)xr) is integrable and so F = W(r, c) ∈ S∗ by Theorem 2.22.

2. Consider the standard lognormal distribution F = LN(0, 1). Let Φ(x)
be the standard normal distribution function with density denoted by φ(x).
Then, F has the tail and hazard rate functions

F (x) = 1 − Φ(log x) , mF (x) =
φ(log x)

x(1 − Φ(log x))
.

Furthermore, φ(x) ∼ x(1−Φ(x)) as x→ ∞. This follows from the fact that

e−x
2/2

(2π)1/2
1

x
=

1

(2π)1/2

∫ ∞

x
e−y

2/2
(

1 +
1

y2

)

dy

> 1 − Φ(x) >
1

(2π)1/2

∫ ∞

x
e−y

2/2
(

1 − 3

y4

)

dy

=
e−x

2/2

(2π)1/2

( 1

x
− 1

x3

)

.

Thus, we have exmF (x)F (x) ∼ x(1 − Φ(log x)) as x → ∞. For x → ∞, the
function

x(1 − Φ(log x)) ∼ xφ(log x)

log x

is integrable, because φ(log x) = (2π)−1/2x−(log x)/2 and
∫ ∞
1 x1−(log x)/2 dx <

∞. Hence the standard lognormal distribution LN(0, 1) belongs to S∗ and
therefore F and F s are subexponential. The case of a general lognormal
distribution can be proved analogously.

To show that the integrated tail distribution of Pareto-type distributions
is subexponential, we need the following result, known as Karamata’s theo-
rem. We state this theorem without proof, for which we refer to Feller (1971).
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Theorem 2.23 If L1(x) is a slowly varying function and locally bounded in
[x0,∞) for some x0 > 0, then for α > 1

∫ ∞

x
y−αL1(y) dy = x−α+1L2(x) , (2.22)

where L2(x) is also a slowly varying function of x at ∞ and moreover
limx→∞L1(x)/L2(x) = α − 1. If L1(y)/y is integrable, then the result also
holds for α = 1.

As proved in Section 2.3, every Pareto-type distribution F with exponent
α > 1 is subexponential. We now get that the corresponding integrated tail
distribution F s is also subexponential, because Theorem 2.23 implies that
F

s
(x) = x−α+1L2(x) is Pareto-type too. This yields that many distribu-

tions, like Pareto and loggamma distributions as well as Pareto mixtures
of exponentials studied in the next section, have the desired property that
F ∈ S and F s ∈ S.

2.5 Maximum of random walk

In this section we study a random walk, whose increments have heavy-tailed
distribution with a negative mean. To be more specific, let Y1, Y2, . . . be a
sequence of independent and identically distributed random variables with
distribution F on R. The sequence {Sn, n ∈ IN} with S0 = 0 and Sn =
Y1+. . .+Yn for n = 1, 2, . . . is called a random walk. We assume that the first
moment IEY exists and that Y is not concentrated at 0, i.e. IP(Y = 0) < 1.
Define the maximum of the random walk M =

∑

n≥0 Sn. Define for a
distribution F on R such that

∫ ∞

0
F (y) dy <∞

the integrated tail function

F I(x) = min

(

1,

∫ ∞

x
F (y) dy

)

.

If F is a distribtution F on R+, then we have the following relationship
between the so called integrated tail distribution F s of a distribtution F on
R+:

F
s
(x) =

F I(x)

µ

where µ =
∫ ∞
0 F (x) dx.
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Theorem 2.24 [Foss et al] Suppose that IEY = −a < 0. Then for any
x > 0

IP(M > x) ≥
∫ ∞
x F (y) dy

a+
∫ ∞
x F (y) dy

.

Hence

lim inf
x→∞

IP(M > x)

F I(x)
≥ 1

a
.

The following result is the most general form of what is called Embrecht-
Verabeveke theorem.

Theorem 2.25 Suppose that IEX = −a < 0. Then IP(M > x) ∼ F (x)/a
if and only if FI is subexponential.

Bibliographical comments.
Most of the properties about heavy-tailed distributions can be found

in the monography of Rolski el al (1999). A small monography devoted
especially to heavy-tailed distributions was recently written by Foss et al
(2010), where from are given the recent discoveries in the area of heavy-
tailed distributions. For regularly varying functions we also refer to Bingam
et al (1987).



Chapter III

Classical Risk Model

1 Poisson Arrival Processes

1.1 Homogeneous Poisson Processes

Let {Tn} be a sequence of independent random variables with exponential
distribution Exp(λ); λ > 0. Then, the counting process {N(t)} is called a
homogeneous Poisson process with intensity λ.

Definition 1.1 A real-valued stochastic process {X(t), t ≥ 0} is said to
have
(a) independent increments if for all n = 1, 2, . . . and 0 ≤ t0 < t1 < . . . <
tn, the random variables X(t0),X(t1) −X(t0),X(t2) − X(t1), . . . ,X(tn) −
X(tn−1) are independent,
(b) stationary increments if for all n = 1, 2, . . ., 0 ≤ t0 < t1 < . . . < tn and
h ≥ 0, the distribution of (X(t1+h)−X(t0+h), . . . ,X(tn+h)−X(tn−1+h))
does not depend on h.

We now give some equivalent definitions of a Poisson process.

Theorem 1.2 Let {N(t), t ≥ 0} be a counting process. Then the following
statements are equivalent:
(a) {N(t)} is a Poisson process with intensity λ.
(b) For all t ≥ 0, n = 1, 2, . . . the random variable N(t) has distribution
Poi(λt) and, given {N(t) = n}, the random vector (σ1, . . . , σn) has the same
distribution as the order statistics of n independent points uniformly dis-
tributed on [0, t].
(c) {N(t)} has independent increments such that IEN(1) = λ and for all
t ≥ 0, n = 1, 2, . . ., given {N(t) = n}, the random vector (σ1, . . . , σn) has

21
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the same distribution as the order statistics of n independent points uni-
formly distributed on [0, t].
(d) {N(t)} has stationary and independent increments and satisfies as h ↓ 0,

IP(N(h) = 0) = 1 − λh+ o(h) , IP(N(h) = 1) = λh+ o(h) . (1.1)

(e) {N(t)} has stationary and independent increments and, for each fixed
t ≥ 0, the random variable N(t) is Poi(λt) distributed.

1.2 Compound Poisson Processes

We continue to assume that the inter-occurrence times {Tn} are exponen-
tially distributed with parameter λ > 0 or that the counting process {N(t)}
is a Poisson process with intensity λ. Let the claim sizes {Un} be inde-
pendent and identically distributed with distribution FU and let {Un} be
independent of

{N(t)}N(t)
j=1 Uj .

Then the cumulative arrival process {X(t), t ≥ 0}, where X(t) =
∑N(t)

j=1 Uj
is called a compound Poisson process with characteristics (λ, FU ), i.e. with
intensity λ and jump size distribution FU . This terminology is motivated
by the property that X(t) has a compound Poisson distribution with char-

acteristics (λt, FU ). Since X(t) =
∑N(t)

i=1 Ui, it suffices to observe that, by
the result of Theorem 1.2, N(t) is Poisson distributed with parameter λt.

The next result follows from Theorem 1.2.

Corollary 1.3 Let {X(t)} be a compound Poisson process with character-
istics (λ, FU ). Then,
(a) the process {X(t)} has stationary and independent increments,
(b) the moment generating function of X(t) is given by

m̂X(t)(s) = eλt(m̂U (s)−1), (1.2)

and the mean and variance by

IEX(t) = λtµU , VarX(t) = λtµ
(2)
U . (1.3)

Problems

1.1 Assume that {X(t), t ≥ 0} is a process with independent increments
and for each t ≥ 0 the distribution of X(t + h) − X(h) does not
depend on h ≥ 0. Show that then the process {X(t)} has stationary
increments.
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1.2 Let {N(t), t ≥ 0} be a stochastic process which has stationary and
independent increments and satisfies as h ↓ 0,

IP(N(h) = 0) = 1 − λh+ o(h) , IP(N(h) = 1) = λh+ o(h)

for some λ > 0. Show that then the probability pn(t) = IP(N(t) = n)
is given by

pn(t) =
(λt)n

n!
e−λt

for all t ≥ 0 and n ∈ IN.

1.3 Let {N(t), t ≥ 0} be a Poisson process with intensity λ and let c > 0
be some constant. Show that {N(ct), t ≥ 0} is a Poisson process and
determine its intensity.

1.4 Let {X(t)} be a compound Poisson process with characteristics (λ, FU ).
Show that for all t ≥ 0

m̂X(t)(s) = eλt(m̂U (s)−1)

and consequently IEX(t) = λtµU ,

VarX(t) = λtµ
(2)
U , IE

(
(X(t) − IEX(t))3

)
= −λtµ(3)

U .

[Hint. Notice that the random variable X(t) has a compound Poisson
distribution.]

1.5 Let {X1(t)} and {X2(t)} be two independent compound Poisson pro-
cesses with characteristics (λ1, F1), (λ2, F2). Show that {X(t)} =
{X1(t) + X2(t)} is a compound Poisson process and determine its
characteristics.

1.6 Consider a compound Poisson process with claim occurrence times σn
and claim sizes Un. Define, for some fixed u ≥ 0,

X1(t) =

∞∑

k=1

Uk1(Uk ≤ u)1(σk ≤ t)

and

X2(t) =

∞∑

k=1

Uk1(Uk > u)1(σk ≤ t) .

Show that {X1(t), t ≥ 0} and {X2(t), t ≥ 0} are two independent
compound Poisson processes. Determine their characteristics.
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1.7 Assume that there is a delay in claim settlement modelled by the
sequence D1,D2, . . . of nonnegative independent and identically dis-
tributed random variables which are independent of {(σn, Un)}. Show
that the process {X(t), t ≥ 0} defined by X(t) =

∑∞
k=1 Uk1(σk +

Dk < t) has independent increments. Determine the distribution of
X(t+ h) −X(h) for t, h ≥ 0.

1.8 Let {(σn, Un)} and {Dn} be the same as in Exercise 1.7 and consider
the following model of gradual claim settlement. Let g : R×R

2
+ → R+

be a measurable function. Then {X(t)} with X(t) =
∑∞

k=1 g(σk −
t,Dk, Uk) is called a shot-noise process with response function g. De-
termine the Laplace–Stieltjes transform of X(t).

Bibliographical comments. The material covered in Section 1 can be
found in a large number of textbooks, such as Billingsley (1995). For a
discussion of Poisson processes in the context of risk theory, see also King-
man (1996).

2 Ruin Probabilities: The Compound Poisson Model

In the sequel of this chapter we consider the compound Poisson model.
The risk reserve process {R(t), t ≥ 0} is defined in (I.2.1) and claims occur
according to a compound Poisson process with characteristics (λ, FU ). The
most frequently used property of the process {R(t)} is the independence and
stationarity of its increments. Considering {R(t)} from time t onwards is like
restarting a risk reserve process with an identically distributed claim arrival
process but with initial reserve R(t). In particular, if R(t) = y and ruin has
not yet occurred by time t, then the (conditional) ruin probability is ψ(y).
Furthermore, considering {R(t)} from the first claim occurrence epoch σ1 on
is like starting a risk reserve process with initial reserve R(σ1) = u+βσ1−U1.

Let {Sn, n ≥ 0} be the random walk given by

Sn =

n∑

i=1

Yi , Yi = Ui − βTi . (2.4)

In Theorem IV.1.1 we will show that lim supn→∞ Sn = ∞ if IEY ≥ 0. Thus,
(I.2.3) implies that ψ(u) ≡ 1 in this case. Let us therefore assume that
IEY < 0, i.e. β > λµ, where µ = µU denotes the expected claim size.
Recall that β is the premium income in the unit time interval and that λµ



2. RUIN PROBABILITIES: THE COMPOUND POISSON MODEL 25

is the expected aggregate claim over the unit time interval (see (1.3)). The
condition

β > λµ (2.5)

is therefore called the net profit condition. Throughout the rest of this
chapter we will assume (2.5). Note that in this case limn→∞ Sn = −∞,
since from the strong law of large numbers we have Sn/n → IEY < 0. Thus,
the maximum of {Sn} is finite. Using (I.2.3) we get limu→∞ ψ(u) = 0.
Moreover, we will see later in Theorem 2.4 that this implies ψ(u) < 1 for all
u ≥ 0.

2.1 An Integro-Differential Equation

In this section we study the survival probability ψ(u) = 1 − ψ(u). We
show that ψ(u) is differentiable everywhere on R+ with the exception of an
at most countably infinite set of points. Furthermore, we prove that ψ(u)
fulfils an integro-differential equation.

Theorem 2.1 The survival function ψ(u) is continuous on R+ with right

and left derivatives ψ
(1)
+ (u) and ψ

(1)
− (u), respectively. Moreover

βψ
(1)
+ (u) = λ

(

ψ(u) −
∫ u

0
ψ(u− y) dFU (y)

)

(2.6)

and

βψ
(1)
− (u) = λ

(

ψ(u) −
∫ u−

0
ψ(u− y) dFU (y)

)

. (2.7)

An immediate consequence of Theorem 2.1 is that the continuous func-
tion ψ(u) is differentiable everywhere except for the countable set, where
FU (y) is not continuous. The importance of this fact is that it implies

∫ ∞

u
ψ

(1)
(v) dv = ψ(u) , u ≥ 0 .

In the terminology of measure theory, this means that ψ(u) is absolutely
continuous with respect to the Lebesgue measure.

Note that in general (2.6) cannot be solved analytically. However, one
can compute the survival probability ψ(u) in (2.6) numerically.

Example Assume that the claim sizes are exponentially distributed with
parameter δ. Then the net profit condition (2.5) takes the form δβ > λ.
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Furthermore, (2.6) can be solved analytically. The survival function ψ(u) is
differentiable everywhere and satisfies the integral equation

βψ
(1)

(u) = λ
(

ψ(u) − e−δu
∫ u

0
ψ(y)δeδy dy

)

. (2.8)

This equation implies that ψ
(1)

(u) is differentiable and that

βψ
(2)

(u) = λ
(

ψ
(1)

(u) + δe−δu
∫ u

0
ψ(y)δeδy dy − δψ(u)

)

= (λ− δβ)ψ
(1)

(u) .

The general solution to this differential equation is

ψ(u) = c1 − c2e
−(δ−λ/β)u, (2.9)

where c1, c2 ∈ R. Since limu→∞ ψ(u) = 1 it follows that c1 = 1. Plugging
(2.9) into (2.8) yields

c2(δβ − λ)e−(δ−λ/β)u

= λ
(

1 − c2e
−(δ−λ/β)u − (1 − e−δu) + c2e

−δuβδ

λ
(eλu/β − 1)

)

from which c2 = λ(βδ)−1 is obtained. Thus,

ψ(u) =
λ

βδ
e−(δ−λ/β)u. (2.10)

2.2 An Integral Equation

Equation (2.6) is not easily solved because it involves both the derivative
and an integral of ψ(u). It would be more convenient to get rid of the
derivative. Indeed, integrating (2.6) we arrive at the following result.

Theorem 2.2 The ruin function ψ(u) satisfies the integral equation

βψ(u) = λ
(∫ ∞

u
FU (x) dx+

∫ u

0
ψ(u− x)FU (x) dx

)

. (2.11)

2.3 Laplace Transforms, Pollaczek–Khinchin Formula

In this section we compute the Laplace transforms

L̂ψ(s) =

∫ ∞

0
ψ(u)e−su du , L̂ψ(s) =

∫ ∞

0
ψ(u)e−su du .

Note that both integrals make sense for all s > 0. Furthermore, we have

L̂ψ(s) =

∫ ∞

0
(1 − ψ(u)) e−su du =

1

s
− L̂ψ(s) . (2.12)
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Theorem 2.3 The Laplace transforms L̂ψ(s) and L̂ψ(s) are given by

L̂ψ(s) =
β − λµ

βs− λ(1 − l̂U (s))
, s > 0 (2.13)

and

L̂ψ(s) =
1

s
− β − λµ

βs− λ(1 − l̂U (s))
, s > 0 . (2.14)

Example In the case of exponentially distributed claims (with µ = δ−1),
(2.13) gives

L̂ψ(s) =
β − λ/δ

βs− λ(1 − δ/(δ + s))
=

β − λ/δ

s(β − λ/(δ + s))
=

(β − λ/δ)(δ + s)

s(β(δ + s) − λ)

and, by (2.12),

L̂ψ(s) =
1

s
− (β − λ/δ)(δ + s)

s(β(δ + s) − λ)
=
β(δ + s) − λ− (β − λ/δ)(δ + s)

s(β(δ + s) − λ)

=
λ

δ

1

β(δ + s) − λ
=

λ

δβ

1

δ − λ/β + s
.

Hence, by comparison with the Laplace–Stieltjes transform of the exponen-
tial distribution we realize that ψ(u) = λ(δβ)−1e−(δ−λ/β)u, in accordance
with (2.10).

Although equation (2.11) is simpler than (2.6), it is generally difficult to
solve it in closed form. However, (2.11) leads to a formula for ψ(u) in the
form of an infinite series of convolutions. In this connection, we need the
integrated tail distribution F s

U of FU . Remember that F s
U is given by

F s
U (x) =

1

µ

∫ x

0
FU (y) dy , x ≥ 0 . (2.15)

The representation formula for ψ(u) derived in the next theorem is called
the Pollaczek–Khinchin formula.

Theorem 2.4 For each u ≥ 0,

ψ(u) =
(

1 − λµ

β

) ∞∑

n=1

(λµ

β

)n(
F s
U

)∗n
(u) . (2.16)
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Besides the case of exponentially distributed claim sizes, where (2.16)
has been written in closed form (see (2.10)), there are other claim size dis-
tributions for which (2.16) simplifies. One important class of such claim size
distributions is provided by the phase-type distributions.

Problems

2.1 Let the claim sizes Un be Erl(2, δ)-distributed. Show, that

ψ(u) = a e−r1u − b e−r2u , (2.17)

where r1 < r2 are the solutions to the equation

βr2 − (2δβ − λ)r + δ(δβ − 2λ) = 0

and

a =
λ(2λ− βδ + 2βr2)

β2δ(r2 − r1)
, b =

λ(βδ − 2λ− 2βr1)

β2δ(r2 − r1)
.

[Hint. Differentiate (2.6) twice.]

2.2 Let the claim sizes Un be Erl(2, δ)-distributed. Determine the Laplace
transforms of ψ(u) and ψ(u). Invert the Laplace transforms in order
to verify (2.17).

2.3 Let β = λ = 1 and FU (x) = 1 − 1
3 (e−x + e−2x + e−3x). Show that

ψ(u) = 0.550790e−0.485131u+0.0436979e−1.72235u+0.0166231e−2.79252u .

[Hint. Calculate the Laplace transform L̂ψ(s) and invert it.]

2.4 Put ρ = λµβ−1. Let ρ = 0.75, β = 1 and let the claim sizes have the
distribution FU = pExp(a1) + (1 − p)Exp(a2), where p = 2/3, a1 = 2
and a2 = 1/2. Show that the ruin function ψ(u) is given by

ψ(u) = 0.75
(
0.935194e−0.15693u + 0.0648059e−1.59307u

)
.

2.5 Let the distribution FU of claims sizes Un be the exponential distri-
bution Exp(δ) with parameter δ > 0. Determine the integrated tail
distribution F s

U . Use this result to recover formula (2.10) for ψ(u)
using the Pollaczek-Khinchin formula (2.16).

2.6 Let the claims sizes Un be exponentially distributed with parameter
δ > 0. Find the multivariate ruin function ϕ(u, 0, y).
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2.4 Severity of Ruin

We now want to analyse further what happens if ruin occurs. Consider the
ruin probabilities ϕ(u, x, y) = IP(τ(u) < ∞,X+(u) > x, Y+(u) > y) where
X+(u) = R(τ(u)−) and Y+(u) = −R(τ(u)) is the surplus just before and at
the ruin time τ(u) respectively. Remember that the random variable Y+(u)
is also called severity of ruin.

Since in general we were not able to find an explicit formula for ψ(u)
there is no hope of achieving this goal for ϕ(u, x, y). But it is possible to
derive integro-differential and integral equations for ϕ(u, x, y). Moreover,
we will be able to find ϕ(x, y) = ϕ(0, x, y) explicitly.

We will proceed as in Section 2.1. Condition on the first claim occurrence
epoch and on the size of that claim to find that ϕ(u, x, y) satisfies

ϕ(u, x, y) = e−λhϕ(u+ βh, x, y)

+

∫ h

0

(∫ u+βt

0
ϕ(u+ βt− v, x, y) dFU (v)

+ 1(u+ βt > x)(1 − FU (u+ βt+ y))
)

λe−λt dt ,

for all h, u, x, y > 0. Thus ϕ(u, x, y) is right-continuous and differentiable
from the right with respect to u. Furthermore,

β
∂+

∂u
ϕ(u, x, y)

= λ
(

ϕ(u, x, y) −
∫ u

0
ϕ(u− v, x, y) dFU (v) − 1(u ≥ x)FU (u+ y)

)

.

Analogously, ϕ(u, x, y) is left-continuous and differentiable from the left with
respect to u, and satisfies

β
∂−

∂u
ϕ(u, x, y) = λ

(

ϕ(u, x, y) −
∫ u−

0
ϕ(u− v, x, y) dFU (v)

− 1(u > x)FU ((u+ y)−)
)

.

Thus the set of points u where the partial derivative (∂/∂u)ϕ(u, x, y) does
not exist is countable and therefore ϕ(u, x, y) is absolutely continuous in u.

Proceeding as in Section 2.2 we obtain the integral equation

β(ϕ(u, x, y) − ϕ(0, x, y))

= λ
(∫ u

0
ϕ(u− v, x, y)FU (v) dv − 1(u ≥ x)

∫ u+y

x+y
FU (v) dv

)

. (2.18)
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We now let u→ ∞. Note that
∫ ∞
0 (1−FU (v)) dv = µ allows us to interchange

integration and limit on the right-hand side of (2.18). Since 0 ≤ ϕ(u, x, y) ≤
ψ(u) we find that limu→∞ ϕ(u, x, y) = 0 and therefore

ϕ(0, x, y) =
λ

β

∫ ∞

x+y
FU (v) dv . (2.19)

In Section IV.1, we will show how (2.19) provides another interpretation
to the integrated tail distribution F s

U as the ladder height distribution of the
random walk {Sn} given in (2.4).

Bibliographical comments. The classical compound Poisson risk model
was introduced by Filip Lundberg (1903) and extensively studied by Harald
Cramér (1930,1955). It is therefore often called the Cramér–Lundberg model.
In particular, Theorems 2.1, 2.2 and 2.3 go back to these two authors. From
the mathematical point of view, the ruin function ψ(u) of the compound
Poisson model is equivalent to the tail function of the stationary distribu-
tion of virtual waiting time in an M/GI/1 queue. Thus, formula (2.16) is
equivalent to the celebrated Pollaczek–Khinchin formula of queueing theory;
see, for example, Asmussen (2003) and Prabhu (1965). It also is a special
case of a more general result on the distribution of the maximum of a random
walk with negative drift, see Theorem IV.1.3. Further details on the equiv-
alence between characteristics of queueing and risk processes can be found,
for example, in the books by Asmussen (2003) and Prabhu (1965). In risk
theory, (2.16) is often called Beekman’s formula. The notion of severity of
ruin was introduced in Gerber, Goovaerts and Kaas (1987). The compound
Poisson risk model has been extended in several directions. Some of them
will be discussed later in these notes. . For some other extensions we will
refer to the literature. Notice that a compound Poisson process has finitely
many jumps in bounded time intervals. Examples of claim arrival processes
with stationary and independent increments and with infinitely many jumps
in bounded intervals have been studied, for instance, in Dufresne, Gerber
and Shiu (1991). These processes are called gamma processes and belong to
the larger class of Lévy processes. We return to this later on.

3 Bounds, and Asymptotics

We have seen that it is generally difficult to determine the function ψ(u)
explicitly from formula (2.16). Therefore, bounds and approximations to
the ruin probability ψ(u) are requested. Besides this, knowledge of the
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asymptotic behaviour of ψ(u) as u → ∞ can also be useful in order to get
information about the nature of the underlying risks.

3.1 Lundberg Bounds

Since the claim surplus S(t) at time t ≥ 0 has a shifted compound Poisson
distribution with characteristics (λt, FU ) and the shift is on −βt, the moment
generating function of S(t) is

m̂S(t)(s) = IE esS(t) = exp (t(λ(m̂U (s) − 1) − βs)) .

If m̂U (s0) <∞ for some s0 > 0, then the function θ(s) = λ(m̂U (s)− 1)−βs
is infinitely often differentiable in the interval (−∞, s0). In particular

θ(2)(s) = λm̂
(2)
U (s) = λIE

(
U2esU

)
> 0 , (3.20)

which shows that θ(s) is a convex function. For the first derivative θ(1)(s)
at s = 0 we have

θ(1)(0) = λm̂
(1)
U (0) − β = λµ− β < 0 . (3.21)

It is easily seen that θ(0) = 0. Moreover, there may exist a second root of

θ(s) = 0 . (3.22)

If such a root s 6= 0 exists, then it is unique and strictly positive. We call
this solution, if it exists, the adjustment coefficient or the Lundberg exponent
and denote it by γ.

Note that the adjustment coefficient exists in the following situation.

Lemma 3.1 Assume that there exists s∞ ∈ R∪ {∞} such that m̂U(s) <∞
if s < s∞ and lims↑s∞ m̂U (s) = ∞. Then there exists a unique positive
solution γ to the equation (3.22).

The existence of the adjustment coefficient is important because it allows
uniform upper and lower exponential bounds for the ruin function ψ(u). Let
x0 = sup{x : FU (x) < 1}.
Theorem 3.2 Assume that the adjustment coefficient γ > 0 exists. Then,

a−e−γu ≤ ψ(u) ≤ a+e−γu (3.23)

for all u ≥ 0, where

a− = inf
x∈[0,x0)

eγx
∫ ∞
x FU(y) dy

∫ ∞
x eγyFU (y) dy

, a+ = sup
x∈[0,x0)

eγx
∫ ∞
x FU (y) dy

∫ ∞
x eγyFU (y) dy

.
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Results as in Theorem 3.2 are known in risk theory as two-sided Lundberg
bounds for the ruin function ψ(u). Alternatively, an easy application of
integral equation (2.11) leads to (3.23). Moreover, for all u ≥ 0,

ψ(u)

{
< a+e−γu if a+ > ψ(0),
> a−e−γu if a− < ψ(0).

(3.24)

This can be shown in the following way. Note that

a+ ≥
∫ ∞
0 FU (y) dy

∫ ∞
0 eγyFU (y) dy

=
µ

γ−1(m̂U (γ) − 1)
=
λµ

β
= ψ(0) ,

and analogously a− ≤ ψ(0). Let b ≥ a+ such that b > ψ(0).

3.2 The Cramér–Lundberg Approximation

In Section 3.1 we have found exponential upper and lower bounds for the
ruin function ψ(u). We are now interested in the asymptotic behaviour of
ψ(u)eγu. The question is whether ψ(u)eγu converges to a limit or fluctuates
between two bounds as u→ ∞. We will see that the limit limu→∞ ψ(u)eγu

exists. However, to show this we need the following auxiliary result.

Lemma 3.3 Assume that the function z1 : R+ → (0,∞) is increasing and
let z2 : R+ → R+ be decreasing, such that

∫ ∞

0
z1(x)z2(x) dx <∞ (3.25)

and
lim
h→0

sup {z1(x+ y)/z1(x) : x ≥ 0, 0 ≤ y ≤ h} = 1 . (3.26)

Then, for z(x) = z1(x)z2(x) and for each nonlattice distribution F on R+,

g(u) = z(u) +

∫ u

0
g(u− v) dF (v) , u ≥ 0 , (3.27)

admits a unique locally bounded solution g(u) such that

lim
u→∞

g(u) =







µ−1
F

∫ ∞

0
z(u) du if µF <∞,

0 if µF = ∞.
(3.28)

Note that Lemma 3.3 is a version of the so-called key renewal theorem.
Furthermore, (3.27) is called a renewal equation.
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Theorem 3.4 Assume that the adjustment coefficient γ > 0 exists. Then

lim
u→∞

ψ(u)eγu =







β − λµ

λm̂
(1)
U (γ) − β

if m̂
(1)
U (γ) <∞,

0 if m̂
(1)
U (γ) = ∞.

(3.29)

The asymptotic result obtained in Theorem 3.4 for the ruin probability
ψ(u) gives rise to the so-called Cramér–Lundberg approximation

ψapp(u) =
β − λµ

λm̂
(1)
U (γ) − β

e−γu. (3.30)

The following numerical investigation shows that the above approximation
works quite well even for small values of u.

Example Let β = λ = 1 and FU (x) = 1 − 1
3(e−x + e−2x + e−3x). In this

example we use the expected inter-occurrence time as the time unit and the
premium per unit time as the monetary unit. The mean value of claim sizes
is µ = 0.611111, i.e. the net profit condition (2.5) is fulfilled. Furthermore,
computing the Laplace transform L̂ψ(s) and inverting it, we get

ψ(u) = 0.550790e−0.485131u + 0.0436979e−1.72235u + 0.0166231e−2.79252u .
(3.31)

On the other hand, (3.30) implies that in this case the Cramér–Lundberg
approximation to ψ(u) is ψapp(u) = 0.550790e−0.485131u . By comparison to
the exact formula given in (3.31), the accuracy of this approximation can be
analysed. Table 3.1 shows the ruin function ψ(u), its Cramér–Lundberg ap-
proximation ψapp(u) and the relative error (ψapp(u)−ψ(u))/ψ(u) multiplied
by 100. Note that the relative error is below 1% for u ≥ 1.71358 = 2.8µ.

u 0 0.25 0.5 0.75 1

ψ(u) 0.6111 0.5246 0.4547 0.3969 0.3479
ψapp(u) 0.5508 0.4879 0.4322 0.3828 0.3391
Er -9.87 -6.99 -4.97 -3.54 -2.54

u 1.25 1.5 1.75 2 2.25

ψ(u) 0.3059 0.2696 0.2379 0.2102 0.1858
ψapp(u) 0.3003 0.2660 0.2357 0.2087 0.1849
Er -1.82 -1.32 -0.95 -0.69 -0.50

Table 3.1: Cramér–Lundberg approximation to ruin probabilities

Remark In the case of exponentially distributed claim sizes, the constant
on the right-hand side of (3.29) is (βδ)−1λ. Thus the Cramér–Lundberg
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approximation (3.29) becomes exact in this case. Vice versa, assume that
the Cramér–Lundberg approximation is exact, i.e. there exists a constant
c ≥ 0 such that ψ(u) = ce−γu for all u ≥ 0. Then from (2.13) we have

β − λµ

βs− λ(1 − l̂U (s))
=

1

s
− c

γ + s
.

A rearrangement of the terms in this equation yields

l̂U (s) = 1 − βs(γ + s− cs) − s(γ + s)(β − λµ)

λ(γ + s− cs)

= 1 +
(βc− λµ)s2 − λµγs

λγ + (λ− λc)s
.

Since lims→∞ l̂U (s) = 0, we find that c = λµ(β)−1 and γ = µ−1 − λβ−1.
Thus the claim sizes must be exponentially distributed.

3.3 Subexponential Claim Sizes

In Section 3.2 we found the asymptotic behaviour of the ruin function ψ(u)
when the initial risk reserve u tends to infinity. However our result was
limited to claim sizes for which the tail of the distribution function decreases
exponentially fast. For many applications such an assumption is unrealistic.
For instance, data from motor third liability insurance, fire insurance or
catastrophe insurance (earthquakes, flooding etc.) clearly show heavy tail
behaviour. In particular, Pareto, lognormal and loggamma distributions are
popular in actuarial mathematics.

In Section II.2, we have shown that several families of heavy-tailed claim
size distributions belong to the class of subexponential distributions. It
turns out (see Section II.2.4) that also their integrated tail distributions are
subexponential. Note that in such a case the Pollaczek–Khinchin formula
(2.16) implies that the ruin function ψ(u) decreases more slowly than any
exponential function. Indeed, by (II.2.2) and (2.16), we have for u→ ∞

ψ(u)esu ≥ (1 − λµβ−1)λµβ−1F s
U (u)esu −→ ∞

for all s > 0. This simple result indicates that, in the case of heavy-tailed
claim sizes, the asymptotic behaviour of ψ(u) is very different from that in
Theorem 3.4. If the integrated tail distribution F s

U is subexponential, then
we have the following result.
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Theorem 3.5 Let ρ = λµβ−1 and assume that F s
U ∈ S. Then

lim
u→∞

ψ(u)

1 − F sU (u)
=

ρ

1 − ρ
. (3.32)

The above theorem suggests the approximation

ψapp(u) =
ρ

1 − ρ
(1 − F sU (u)) . (3.33)

Note that the quantity ρ captures all the information on the claim number
process one needs to know.

Examples 1. Assume that the claim sizes are Par(α, c) distributed. In
order to have a finite mean (which is necessary by the net profit condition
(2.5)) we must have α > 1. The integrated tail distribution F s

U is readily
obtained as

F s
U (x) =

{
(α− 1)x/αc if x ≤ c,

1 − α−1 (x/c)−(α−1) if x > c.

By Theorem II.2.15, F s
U is subexponential. Thus, Theorem 3.5 leads to the

following approximation to the ruin probability ψ(u):

ψapp(u) =
ρ

α(1 − ρ)

(u

c

)−(α−1)

for u > c. Details are left to the reader.

2. Let β = 1, λ = 9 and FU (x) = 1 − (1 + x)−11, where we use the
premium as the monetary unit. The integrated tail distribution F s

U is readily
obtained: F s

U (x) = 1 − (1 + x)−10. From Theorem II.2.15 we conclude that
both FU ∈ S and F s

U ∈ S. Approximation (3.33) then reads ψapp(u) =
9(1 + u)−10. Table 3.2 gives some values of ψ(u) and of the approximation
ψapp(u) = 9(1 + u)−10 as well as 100 times the relative error. The “exact
values” of ψ(u) were calculated using a Panjer’s algorithm. In order to
get a discrete approximation to the claim size distribution, this distribution
was discretized with bandwidth h = 10−3, i.e. qk = IP(k/1000 ≤ U <
(k+1)/1000). Consider for instance the initial risk reserve u = 20. Then the
ruin probability ψ(u) is 1.75×10−8, which is so small that it is not interesting
for practical purposes. However, the approximation error is still almost
100%. Thus, in the case of heavy-tailed claim sizes, the approximation
(3.33) can be poor, even for large values of u.

Note that (2.19) and (3.33) imply that for u (very) large the ruin proba-
bility ψ(u) is (β−λµ)−1λµ times the probability that the first ladder height
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u ψ(u) ψapp(u) Er

1 0.364 8.79 × 10−3 -97.588
2 0.150 1.52 × 10−4 -99.898
3 6.18 × 10−2 8.58 × 10−6 -99.986
4 2.55 × 10−2 9.22 × 10−7 -99.996
5 1.05 × 10−2 1.49 × 10−7 -99.999
10 1.24 × 10−4 3.47 × 10−10 -100
20 1.75 × 10−8 5.40 × 10−13 -99.997
30 2.50 × 10−12 1.10 × 10−14 -99.56
40 1.60 × 10−15 6.71 × 10−16 -58.17
50 1.21 × 10−16 7.56 × 10−17 -37.69

Table 3.2: Approximation to ruin probabilities for subexponential claims

of the random walk {Sn} considered in (2.4) exceeds u. But (β−λµ)−1λµ is
the expected number of ladder epochs of {Sn}. Intuitively this means that,
for u large, the ruin will occur if one of the ladder heights is larger than u.

3.4 Ordering of Ruin Functions

We compare the ruin functions ψ(u) and ψ′(u) of two compound Poisson
models with arrival rates λ and λ′, premium rates β and β′, and claim size
distributions FU and FU ′ , respectively. If we suppose that

λ ≤ λ′, µU ≤ µU ′ , β ≥ β′ (3.34)

and

F s
U ≤st F

s
U ′ , (3.35)

then we immediately get ψ(u) ≤ ψ′(u) for all u ≥ 0. It turns out that (3.35)
can be replaced by a slightly weaker condition.

Theorem 3.6 If λ ≤ λ′ and β ≥ β′ and if U ≤sl U
′, then ψ(u) ≤ ψ′(u) for

all u ≥ 0.

Corollary 3.7 If FU is NBUE, then for all u ≥ 0

ψ(u) ≤ λµU
β

e−(µ−1

U
−λβ−1)u . (3.36)

Similarly, the reversed inequality in (3.36) is true if FU is NWUE.
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Bibliographical comments. One-sided bounds of the type ψ(u) ≤ e−γu

as well as asymptotic relations ψ(u) ∼ ce−γu for large u-values have been
studied by Filip Lundberg (1926,1932,1934). The modern approach to these
estimations is due to Cramér (1955). By means of martingale techniques one-
sided inequalities were also derived in Gerber (1973) and Kingman (1964)
in the settings of risk and queueing theories, respectively. In Taylor (1976),
two-sided bounds of the form (3.23) were obtained for the ruin function
ψ(u). The renewal approach to Theorem 3.4 is due to Feller (1971).
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Chapter IV

Sparre Andersen Model

1 Random Walks

We turn to the discussion of some basic properties of random walks on the
real line R. These processes are useful when computing ruin probabilities
in the case where premiums are random or when extending bounds and
asymptotic results as in Section III.3 to the case of general inter-occurrence
times.

Let Y1, Y2, . . . be a sequence of independent and identically distributed
(not necessarily integer-valued) random variables with distribution F which
can take both positive and negative values. The sequence {Sn, n ∈ IN} with
S0 = 0 and Sn = Y1 + . . . + Yn for n = 1, 2, . . . is called a random walk. We
assume that the first moment IEY exists and that Y is not concentrated
at 0, i.e. IP(Y = 0) < 1.

1.1 Ladder Epochs

Look at the first entrance time of the random walk {Sn} into the positive
half-line (0,∞)

ν+ = min{n > 0 : Sn > 0} , (1.1)

setting ν+ = ∞ if Sn ≤ 0 for all n ∈ IN, and call ν+ the (first strong)
ascending ladder epoch of {Sn}. Similarly we introduce the first entrance
time to the nonpositive half-line (−∞, 0] by

ν− = min{n > 0 : Sn ≤ 0} , (1.2)

setting ν− = ∞ if Sn > 0 for all n = 1, 2, . . . , and call ν− the (first)
descending ladder epoch of {Sn}. As we will see later, we need to know

39
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whether IEY is strictly positive, zero or strictly negative, as otherwise we
cannot say whether ν+ or ν− are proper. In Figures 1.1 and 1.2 we depict
the first ladder epochs ν+ and ν−. For each k = 1, 2, . . ., the events

{ν+ = k} = {S1 ≤ 0, S2 ≤ 0, . . . , Sk−1 ≤ 0, Sk > 0} (1.3)

and

{ν− = k} = {S1 > 0, S2 > 0, . . . , Sk−1 > 0, Sk ≤ 0} (1.4)

are determined by the first k values of {Sn}. Note that this is a special case
of the following, somewhat more general, property. Consider the σ-algebras
F0 = {∅,Ω} and Fk = {{ω : (S1(ω), . . . , Sk(ω)) ∈ B}, B ∈ B(Rk)}. Then,
in view of (1.3) and (1.4), we have {ν+ = k} ∈ Fk and {ν− = k} ∈ Fk for
k ∈ IN. This means that the ladder epochs ν+ and ν− are so-called stopping
times with respect to the filtration {Fn} generated by {Sn}. From Wald
identity for we have that, for each stopping time τ with respect to {Fn},

IESτ = IE τ IEY (1.5)

provided that IE τ <∞ and IE |Y | <∞.

Actually, we can recursively define further ladder epochs. Define the
sequence {ν+

n , n ∈ IN} by

ν+
n+1 = min{j > ν+

n : Sj > Sν+
n
}, (1.6)

where ν+
0 = 0 and ν+

1 = ν+and call ν+
n the n-th (strong ascending) ladder

epoch. A priori, we cannot exclude the case that, from some random index
on, all the ladder epochs are equal to ∞.

In a similar way, we recursively define the sequence {ν−n , n ∈ IN} of
consecutive descending ladder epochs by ν−0 = 0, ν−1 = ν− and

ν−n+1 = min{j > ν−n , Sj ≤ Sν−n } , n = 1, 2, . . .. (1.7)

Another interesting characteristic is the step ν at which the random walk
{Sn} has a local minimum for the last time before ν−, i.e.

ν = max
{

n : 0 < n < ν−, Sn = min
0<j<ν−

Sj

}

,

as depicted on Figure 1.1.
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Figure 1.1: Last minimum before “ruin”

1.2 Random Walks with and without Drift

Depending on whether IEY is positive, zero or negative, we have three dif-
ferent kinds of evolution for the random walk {Sn}.

Theorem 1.1 (a) If IEY > 0, then limn→∞ Sn = ∞.
(b) If IEY < 0, then limn→∞ Sn = −∞.
(c) If IEY = 0, then lim supn→∞ Sn = ∞ and lim infn→∞ Sn = −∞.

Theorem 1.1 motivates the use of the following terminology. We say that
the random walk {Sn}

• has a positive drift provided that IEY > 0,

• has a negative drift provided that IEY < 0,

• is without drift or oscillating provided that IEY = 0.

1.3 Ladder Heights; Negative Drift

In this subsection we assume that the random walk {Sn} has a negative
drift, i.e. IEY < 0. A basic characteristic of {Sn} is then the first ascending
ladder epoch ν+. As one can expect, and we confirm this in Theorem 1.2,
the distribution of the random variable ν+ is defective under the assumption
of a negative drift. The overshoot Y + above the zero level is defined by

Y + =

{
Sν+ if ν+ <∞,
∞ otherwise
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Figure 1.2: Ascending ladder height

and is called the (first strong) ascending ladder height. A typical trajec-
tory of the random walk {Sn} which reflects this situation is presented in
Figure 1.2.

More precisely, we have a result for G+(x) = IP(Y + ≤ x), the distribu-
tion function of Y + and G+(∞) = limx→∞G+(x).

Theorem 1.2 The following statements are equivalent:
(a) IEY < 0,
(b) M is finite with probability 1,
(c) G+(∞) < 1.

The proof of this theorem is easy and is left to the reader.

Suppose that ν+ < ∞. We can then repeat the same argument as
above, but now from the point (ν+, Y +), because of our assumption that
the increments Y1, Y2, . . . of the random walk {Sn} are independent and
identically distributed. This means in particular, as illustrated in Figure 1.2,
that we can define a new random walk Sν++1 − Sν+ , Sν++2 −Sν+ , . . . which
can be proved to be an identically distributed copy of the original random
walk {Sn} and independent of S1, S2, . . . , Sν+ . We leave it to the reader to
show this. Iterating this procedure, we can recursively define the sequence
{ν+
n } of consecutive ladder epochs in the same way as this was done in (1.6).

The random variable

Y +
n =

{

Sν+
n
− Sν+

n−1

if ν+
n <∞,

∞ otherwise

is called the n-th ascending ladder height of {Sn}. It is not difficult to show
that the sequence {Y +

1 + . . .+Y +
n , n = 0, 1, . . .} forms a terminating renewal

process. Moreover, for the maximum M = max{0, S1, S2, . . .} of {Sn} we
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have (see also Figure 1.2)

M =

N∑

i=1

Y +
i , (1.8)

where N = max{n : ν+
n < ∞} is the number of finite ladder epochs. Thus,

with the notation G0(x) = G+(x)/G+(∞), where G0(x) is a proper (i.e. non-
defective) distribution function, we arrive at the following result, saying that
M has a compound geometric distribution.

Theorem 1.3 If IEY < 0, then for all x ≥ 0 and for p = G+(∞)

IP(M ≤ x) = (1 − p)
∞∑

k=0

(G+)∗k(x) =
∞∑

k=0

(1 − p)pkG∗k
0 (x) . (1.9)

Theorem 1.3 implies the following result for the ruin function ψ(u) =
IP(M > u) considered in Section [??sim.tim.dep??].

Corollary 1.4 For any u ≥ 0, ψ(u) =
∑∞

k=1(1 − p)pkG∗k
0 (u).

We now introduce the dual notions of descending ladder heights. Consider
the descending ladder epoch ν−. The undershoot Y − below the zero level
is defined by Y − = Sν− and called the (first) descending ladder height.
The n-th descending ladder height is defined by Y −

n = Sν−n − Sν−
n−1

. Since

Y −
1 , . . . , Y

−
n are independent and identically distributed copies of Y −, it is

clear that the sequence {−∑n
i=1 Y

−
i , n ∈ IN} is a nonterminating renewal

process (in the case of the negative drift). Indeed, under our assumption
on the negative drift it follows from Theorem 1.1 that all descending ladder
epochs and heights are proper random variables.

Bibliographical comments. The basic references for Section 1 are Feller (1971)
and Chung (1974).

2 The Wiener–Hopf Factorization

2.1 General Representation Formulae

Define the ladder height distribution G−, concentrated on R−, by

G−(x) = IP(Y − ≤ x) , x ∈ R . (2.10)
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Thus G− dualizes the ladder height distribution G+ which is concentrated
on (0,∞) and is given by

G+(x) = IP(Y + ≤ x) , x ∈ R . (2.11)

Let H−
0 be the measure on R− given by

H−
0 (B) =

∞∑

k=0

(G−)∗k(B) , B ∈ B(R−) . (2.12)

We also introduce as a dual measure H+
0 on R+

H+
0 (B) =

∞∑

k=0

(G+)∗k(B) , B ∈ B(R+) . (2.13)

From (2.12) it follows that

H−
0 ∗G− = H−

0 − δ0 . (2.14)

It turns out that H−
0 is equal to the so-called pre-occupation measure γ−

given by γ−(B) = IE
(∑ν+−1

i=0 1(Si ∈ B)
)

for B ∈ B(R), where obviously
γ−(B) = 0 for B ⊂ (0,∞).

Lemma 2.1 For each B ∈ B(R) and H−
0 (B) = H−

0 (B ∩ R−) we have
H−

0 (B) = γ−(B).

Next we show that the distribution F of the increments Y1, Y2, . . . of the
random walk {Sn} can be expressed in terms of the ladder height distri-
butions G+ and G−. This is the so-called Wiener–Hopf factorization of F ,
which is sometimes useful when computing the distribution of the maximum
M of the random walk {Sn}.
Theorem 2.2 The following relationship holds:

F = G+ +G− −G− ∗G+. (2.15)

If we want to compute ruin probabilities, we need to determine the ladder
height distribution G+ that appears in Theorem 1.3. The Wiener–Hopf
factorization (2.15) yields the following representation formula for G+.

Corollary 2.3 For B ∈ B((0,∞)),

G+(B) = F ∗H−
0 (B) =

∫ 0

−∞
F (B − y) dH−

0 (y) , (2.16)

while for B ∈ B(R−)

G−(B) = F ∗H+
0 (B) =

∫ ∞

0
F (B − y) dH+

0 (y) . (2.17)
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2.2 Ladder Height Distributions

In Theorem 1.3 we showed that the probability of ruin ψ(u) = IP(τ(u) <∞)
is closely related to the ladder height distribution G+ of the random walk
{Sn} with Sn =

∑n
i=1(Ui − βTi). We now compute G+, p = G+(∞) and

G0(x) = G+(x)/G+(∞) for two further cases, i.e. the compound Poisson
model with general claim size distribution, and the Sparre Andersen model
with exponentially distributed claim sizes. We again assume that the drift
of the random walk {Sn} is negative, or equivalently that IEU − βIET < 0.

We start with the compound Poisson model. We first prove a lemma of
independent interest, which gives a simple expression for the pre-occupation
measure γ− = H−

0 introduced in Section 2.1.

Lemma 2.4 For the compound Poisson model,

H−
0 ((−x, 0]) = 1 + λβ−1x , x > 0 , (2.18)

or, alternatively, dH−
0 (x) = dδ0(x) + λβ−1 dx.

Next, we derive an expression for the tail function G+(x) = G+(∞) −
G+(x). It turns out that, in the compound Poisson model, the conditional
ladder height distribution G0 coincides with the integrated tail distribution
F s
U of claim sizes.

Theorem 2.5 For the compound Poisson model,

G+(x) = λβ−1

∫ ∞

x
FU (v) dv , x ≥ 0 . (2.19)

Hence
p = λµUβ

−1 (2.20)

and

G0(x) = µ−1
U

∫ ∞

x
FU (v) dv , x ≥ 0 . (2.21)

We turn to the Sparre Andersen model with general inter-occurrence
time distribution but with exponentially distributed claim sizes. In partic-
ular, we derive the ladder height distribution G+ and the probability p that
the first ascending ladder epoch ν+ is finite.

Theorem 2.6 If the claim size distribution FU is exponential with parameter
δ > 0, then G0 is exponential with the same parameter δ and δ(1− p) is the
unique positive root of

m̂Y (s) =
δ

δ − s
l̂T (βs) = 1 . (2.22)
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The following result is an obvious consequence of Theorems 2.5 and 2.6.

Corollary 2.7 Consider the compound Poisson model with intensity λ and
exponential claim size distribution FU = Exp(δ). Then G0 = Exp(δ) and
p = λ(δβ)−1.

Bibliographical comments. Factorization theorems for random walks ap-
pear in many books and articles and in different forms. We refer, for exam-
ple, to Chung (1974), Feller (1971), Prabhu (1980).

3 Ruin Probabilities: Sparre Andersen Model

3.1 Formulae of Pollaczek–Khinchin Type

Sometimes it is more convenient to consider the claim surplus process {S(t)}
with S(t) =

∑N(t)
i=1 Ui − βt for t ≥ 0 instead of the risk reserve process

{R(t)}. The ruin function ψ(u) is then given by ψ(u) = IP(τ(u) < ∞),
where τ(u) = min{t : S(t) > u} is the time of ruin for the initial risk reserve
u. As already stated, a fundamental question of risk theory is how to derive
pleasing formulae for ψ(u). However, most often this is impossible, as for-
mulae turn out to be too complicated. As a result, various approximations
are considered. From random walk theory, applied to the independent in-
crements Yn = Un − βTn, we already know that there is only one case that
is interesting, namely when the coefficient ρ = (λIEU)/β is less than 1, as
otherwise ψ(u) ≡ 1 (see Theorem 1.1). If ρ < 1, then the drift IEU−βIET of
the random walk {Sn} with Sn = Y1 + . . .+ Yn is negative. In risk theory it
is customary to express this condition in terms of the relative safety loading
η, which is defined as

η =
βIET − IEU

IEU
=

1

ρ
− 1 . (3.23)

Obviously, η > 0 if and only if ρ < 1. The concept of relative safety loading
comes from the following considerations. Consider a risk reserve process in
the compound Poisson model,

R(t) = u+ λIEU t−
N(t)
∑

n=1

Un , t ≥ 0 ,

where the premium rate β = λIEU is computed by the net premium princi-
ple. From random walk theory, we already know that the risk reserve process
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without drift will have unbounded large fluctuations as time goes on, and so
ruin happens with probability 1. If we add a safety loading ελIEU for some
ε > 0, then ruin in the risk reserve process {R(t)} with

R(t) = u+ (1 + ε)λIEU t−
N(t)
∑

n=1

Un , t ≥ 0 ,

will no longer occur with probability 1. Solving equation (3.23) for β =
(1 + ε)λIEU , we have the relative safety loading η = ε.

In the sequel to this chapter, we always assume that 0 < IET < ∞,
0 < IEU < ∞ and that the relative safety loading η is positive so that
IEU − βIET < 0. We know from Section 1.3 that the survival probability
1 − ψ(u) is given by the following formula of Pollaczek–Khinchin type.

Theorem 3.1 For all u ≥ 0,

1 − ψ(u) = (1 − p)

∞∑

k=0

(G+)∗k(u) =

∞∑

k=0

(1 − p)pkG∗k
0 (u) , (3.24)

where G+ is the (defective) distribution of the ladder height of the random
walk {Sn}; Sn =

∑n
i=1(Ui−βTi), p = G+(∞) and G0(u) = G+(u)/G+(∞).

Note that (3.24) implies

ψ(u) = (1 − p)

∞∑

k=1

pkG∗k
0 (u) , u ≥ 0 . (3.25)

After some simple algebraic manipulations, this reads

ψ(u) =

∞∑

k=0

pk+1

∫ u

0
G0(u− v) dG∗k

0 (v) , u ≥ 0 . (3.26)

In the case of a compound Poisson model we know from Theorem 2.5
that G0 is equal to the integrated tail distribution F s

U of claim sizes. We
rediscover the classical Pollaczek–Khinchin formula for the ruin probability
ψ(u) from Theorem III.2.4.

Corollary 3.2 The ruin function in the compound Poisson model is

ψ(u) =

∞∑

k=1

(1 − ρ)ρk(F s
U )∗k(u), (3.27)
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which is the same as

ψ(u) =
∞∑

k=0

ρk+1

∫ u

0
F s
U (u− v) d(F s

U )∗k(v) . (3.28)

The proof is immediate as it suffices to insert (2.20) and (2.21) into (3.25).
In the same way (3.28) follows from (3.26).

Corollary 3.3 In the Sparre Andersen model with exponential claim size
distribution Exp(δ),

ψ(u) = (1 − γ/δ) e−γu (3.29)

for all u ≥ 0, where γ is the unique positive root of (2.22).

Corollaries 3.2 and 3.3 yield the following result, which coincides with (III.2.10).

Corollary 3.4 In the compound Poisson model with exponential claim size
distribution Exp(δ),

ψ(u) =
λ

βδ
e−(δ−λ/β)u , u ≥ 0 . (3.30)

We now determine the joint distribution of (X+(u), Y +(u)), whereX+(u)
is the surplus just before ruin time τ(u) and Y +(u) is the severity of ruin.
More generally, we consider the multivariate ruin function

ψ(u, x, y) = IP(τ(u) <∞,X+(u) ≤ x, Y +(u) > y) , (3.31)

where u, x, y ≥ 0. We derive a representation formula for ψ(u, x, y), which
generalizes the representation formula (3.24) for the (univariate) ruin func-
tion ψ(u) and expresses ψ(u, x, y) in terms of p,G0 and ψ(0, x, y). Here,
ψ(0, x, y) is obtained from the distribution of (X+(0), Y +(0)). Recall the
pre-occupation measure γ− = H+

0 =
∑∞

k=0(G
+)∗k =

∑∞
k=0 p

kG0
∗k intro-

duced in Section 2.1.

Theorem 3.5 The multivariate ruin function ψ(u, x, y) satisfies the integral
equation

ψ(u, x, y) = ψ(0, x − u, y + u) + p

∫ u

0
ψ(u− v, x, y) dG0(v) (3.32)

for all u, x, y ≥ 0; its solution is

ψ(u, x, y) =

∫ u

0
ψ(0, x − u+ v, y + u− v) dH+

0 (v) . (3.33)
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Corollary 3.6 For all u, y ≥ 0,

ψ(u,∞, y) = p

∫ u

0
G0(y + u− v) dH+

0 (v) . (3.34)

Note that formulae (3.33) and (3.34) are extensions of (3.26), since
ψ(u) = ψ(u,∞, 0). Furthermore, recall that in the case of the compound
Poisson model, the characteristics p,G0 and

ϕ(0, x, y) = IP(τ(0) <∞,X+(0) > x, Y +(0) > y) (3.35)

can be easily expressed in terms of λ, β and FU as shown in Sections III.2.4
and 2.2. In particular, we have the representation formula (III.2.19):

ϕ(0, x, y) = λβ−1

∫ ∞

x+y
(1 − FU (v)) dv , x, y ≥ 0 . (3.36)

Clearly, then ψ(0, x, y) = ϕ(0, 0, y) − ϕ(0, x, y) can also be expressed by
λ, β and FU . Using (3.36), from (3.33) we immediately obtain the following
formula for ψ(u, x, y).

Theorem 3.7 In the compound Poisson model,

ψ(u, x, y)

= ρ

∫ u

0

(
F s
U ((x− u+ v)+ + (y + u− v)) − F s

U (y + u− v)
)
dH+

0 (v) ,

(3.37)

for all u, x, y ≥ 0, where ρ = λβ−1µU and H+
0 (v) =

∑∞
k=0 ρ

kF s
U
∗k(v).

Note that the marginal ruin function ψ(u,∞, y) can be obtained directly
from Corollary 3.6 and Theorem 2.5.

Corollary 3.8 The probability ψ(u,∞, y) that, in the compound Poisson
model, the overshoot Y +(u) at ruin time τ(u) exceeds y is given by

ψ(u,∞, y) =

∞∑

k=0

ρk+1

∫ u

0
F s
U (y + u− v) d(F s

U )∗k(v) . (3.38)

The marginal ruin function ψ(u,∞, y) can also be obtained in the Sparre
Andersen model with exponentially distributed claim sizes if one uses Corol-
lary 3.6 and Theorem 2.6.
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Corollary 3.9 In the Sparre Andersen model with exponential claim size
distribution Exp(δ)

ψ(u,∞, y) = ψ(u) e−δy = (1 − γ/δ) e−(γu+δy) (3.39)

for all u, y ≥ 0, where γ is the unique positive root of (2.22).

In order to determine the probability that, besides the overshoot Y +(u),
the total maximal deficit Z+(u) after time τ(u) exceeds level z we define for
u, x, y, z ≥ 0:

ψ(u, x, y, z) = IP(τ(u) <∞,X+(u) ≤ x, Y +(u) > y,Z+(u) > z) .

Clearly, for y ≥ z we have ψ(u, x, y, z) = ψ(u, x, y, y) = ψ(u, x, y). Using the
same argument as in the proof of Theorem 3.5 we get the following defective
renewal equation for ψ(u, x, y, z). For all u, x, y, z ≥ 0, we have

ψ(u, x, y, z) = ψ(0, x−u, y+u, z+u)+p

∫ u

0
ψ(u−v, x, y, z) dG0(v) . (3.40)

Hence, using a result from the renwal theory,

ψ(u, x, y, z) =

∫ u

0
ψ(0, x− u+ v, y + u− v, z + u− v) dH+

0 (v) (3.41)

for all u, x, y, z ≥ 0, where here and below H+
0 (v) =

∑∞
k=0 p

kG∗k
0 (v). More-

over, since

ψ(0,∞, y, z) = p
(∫ max{y,z}

y
ψ(z − v′) dG0(v

′) +G0(max{y, z})
)

,

(3.41) yields the following extension to (3.34). For all u, y, z ≥ 0

ψ(u,∞, y, z) = p

∫ u

0

∫ max{y,z}+u−v

y+u−v
ψ(z + u− v − v′) dG0(v

′)

×G0(max{y, z} + u− v) dH+
0 (v) .

3.2 Lundberg Bounds

In Theorem 3.10 below, we extend the result of Theorem III.3.2 and derive a
two-sided Lundberg bound for the ruin function ψ(u) in the Sparre Andersen
model with general distributions of inter-occurrence times and claim sizes.
Consider the equation

m̂Y (s) = m̂U(s)l̂T (βs) = 1 . (3.42)
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Clearly, m̂Y (0) = 1. This equation may have a second root. If such a
root s 6= 0 exists, then it is unique and strictly positive. The solution to
(3.42), if it exists, is called the adjustment coefficient and is denoted by
γ. For the compound Poisson model, the solutions to (III.3.22) and (3.42)
coincide. As we will see in the next Section 3.3, the adjustment coefficient γ
in Theorem 3.10 satisfies

∫ ∞
0 eγx dG0(x) = p−1. Let x0 = sup{x : FY (x) <

1}.

Theorem 3.10 Suppose that there exists a positive solution γ to (3.42).
Then

b− e−γu ≤ ψ(u) ≤ b+ e−γu (3.43)

for all u ≥ 0, where

b− = inf
x∈[0,x0)

eγxF Y (x)
∫ ∞
x eγy dFY (y)

, b+ = sup
x∈[0,x0)

eγxF Y (x)
∫ ∞
x eγy dFY (y)

. (3.44)

A somewhat weaker though probably more useful bound is obtained if
we express the prefactors in the two-sided Lundberg inequality (3.43) via
the claim size distribution FU . Thus we define further constants b∗−, b

∗
+ by

b∗− = inf
x∈[0,x′

0
)

eγxFU (x)
∫ ∞
x eγy dFU (y)

, b∗+ = sup
x∈[0,x′

0
)

eγxFU (x)
∫ ∞
x eγy dFU (y)

, (3.45)

where γ is the solution to (3.42) and x′0 = sup{x : FU (x) < 1}. Note that

1

b−
= sup

x
IE (eγ(Y −x) | Y > x),

1

b∗−
= sup

x
IE (eγ(U−x) | U > x) (3.46)

and that (b+)−1 and (b∗+)−1 can be expressed in a similar way.

Theorem 3.11 The constants b∗−, b−, b+, b
∗
+ defined in (3.44) and (3.45),

respectively, satisfy 0 ≤ b∗− ≤ b− ≤ b+ ≤ b∗+ ≤ 1.

Corollary 3.12 Suppose that (3.42) has a positive solution and FU is IHR.
Then 0 < b∗− ≤ b−.

3.3 The Cramér–Lundberg Approximation

In this section we assume that the distribution F of Y is nonlattice and
IEY < 0. The reader should prove that then the ladder height distribu-
tion G+ corresponding to F is nonlattice too. Furthermore, we assume
that (3.42) has a positive solution γ. The following theorem deals with the



52 CHAPTER IV. SPARRE ANDERSEN MODEL

asymptotic behaviour of ψ(u) as u becomes unbounded large. It extends
Theorem III.3.4 of Section III.3.2 from the compound Poisson model to the
Sparre Andersen model.

Theorem 3.13 For the Sparre Andersen model,

lim
u→∞

eγuψ(u) = c (3.47)

where the constant c ≥ 0 is finite and given by

c =
1 −G+(∞)

γ
∫ ∞
0 veγv dG+(v)

. (3.48)

Note that if c > 0 the asymptotic result obtained in Theorem 3.13 gives
rise to the Cramér–Lundberg approximation ψapp(u) = ce−γu to the ruin
function ψ(u) when u is large.

Remark The constant c in Theorem 3.13 is positive if
∫ ∞
0 veγv dG+(v) <

∞. This condition holds if, for example, m̂F (s) <∞ for s < γ + ε for some
ε > 0. Then m̂F (s) is continuously differentiable in the interval 0 < s <
γ+ ε and hence from the Wiener–Hopf identity the same property holds for

m̂G+(s). Consequently, m̂
(1)
G+(γ) =

∫ ∞
0 veγv dG+(v) <∞.

3.4 Compound Poisson Model with Aggregate Claims

In the compound Poisson modelruin could occur anytime whenever the risk
reserve became negative. What happens if we are only able to inspect the
value of the risk reserve at countably many, equally spaced time epochs
t = h, 2h, . . . for some h > 0? To specify the problem, we consider the risk

reserve process {R(t)} given by R(t) = u+ βt− ∑N(t)
i=1 Ui = u+ βt−X(t),

where {X(t)} is the compound Poisson process with the increments X(t +

h) − X(h) =
∑N(t+h)

i=N(h)+1 Ui. We now say that ruin occurs if R(kh) < 0

for some k = 1, 2, . . .. In terms of the claim surplus process {S(t)} with
S(t) = X(t) − βt, this can be written as S(kh) > u for some k = 1, 2, . . ..
Since the compound Poisson process {X(t)} has independent and stationary
increments, the random variables Yk(h) = X(kh) −X((k − 1)h) − βh, k =
1, 2, . . ., are independent and identically distributed. Hence, ruin occurs if
the random walk {S(nh), n = 0, 1 . . .} with S(nh) =

∑n
k=1 Yk(h) crosses

the level u. We call this model the compound Poisson model with aggregate
claims as it is closely related to the risk model with discrete time. However,
now the aggregate claims do not necessarily take values in IN.
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Another interpretation of a compound Poisson model with aggregate
claims is that of a Sparre Andersen model with constant inter-occurrence
times Tn = h, premium rate β > 0 and (individual) claim sizes Un(h) =
X(nh)−X((n− 1)h) having a compound Poisson distribution with charac-
teristics (λh, FU ). For the initial reserve u, the ruin probability is then given
by ψh(u) = IP(maxn≥0 S(nh) > u), and ψh(u), as a function of u, is called
the ruin function of the compound Poisson model with aggregate claims.
Below we derive a Lundberg bound and a Cramér–Lundberg approximation
for this model. Note that in these results the adjustment coefficient γ is the
same as for the ordinary compound Poisson model.

Theorem 3.14 In the compound Poisson model with aggregate claims there
exist constants 0 ≤ b−(h) ≤ b+(h) ≤ 1 such that

b−(h)e−γu ≤ ψh(u) ≤ b+(h)e−γu , (3.49)

for all u ≥ 0, where the adjustment coefficient γ is the positive solution to
(III.3.22) which is assumed to exist.

Assume now that the distribution of U is nonlattice and (III.3.22) has a
positive solution γ. We next derive a version of the Cramér–Lundberg ap-
proximation (3.47) for the compound Poisson model with aggregate claims.

Theorem 3.15 There exists a positive and finite constant c(h) such that

lim
u→∞

eγuψh(u) = c(h) . (3.50)

In general it is difficult to compare the constant c(h) with the constant c
that appears in the original Cramér–Lundberg approximation (III.3.29) for
the compound Poisson model with permanent (time-continuous) inspection.
Nevertheless, the following asymptotic result holds.

Theorem 3.16 If m̂U (γ + ε) <∞ for some ε > 0, then

lim
h→∞

hc(h) =
c

γβ(1 − ρ)
=

c

ηγλµU
, (3.51)

where η = β(λµU )−1 − 1 is the relative safety loading of the compound
Poisson model with permanent (time-continuous) inspection of risk reserve
and c = ((1 − ρ)β)/(λm̂(1)(γ) − β) is the constant appearing in the original
Cramér–Lundberg approximation (III.3.29).
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3.5 Subexponential Claim Sizes

The Cramér–Lundberg approximation studied in Section 3.3 to the probabil-
ity of ruin is valid for claim sizes having exponentially bounded or light-tailed
distribution. To be more precise, the assumption that (3.42) has a positive
solution γ means that the moment generating function m̂FU

(s) is finite in a
right neighbourhood of s = 0. Furthermore, for all s > 0 with m̂FU

(s) <∞,
the moment generating function m̂F s

U
(s) of the integrated tail distribution

F s
U is

m̂F s
U
(s) =

m̂FU
(s) − 1

sµFU

.

Consequently, m̂F s
U
(s) is finite in the same right neighbourhood of s = 0.

When modelling large claims, one often uses claim size distributions FU
like the Pareto or the lognormal distribution and that do not have this
property. In the present section, we consider the Sparre Andersen model
where the integrated tail distribution F s

U of claim sizes belongs to the class
S of subexponential distributions introduced in Section II.2. We will show
that the ruin function ψ(u) has then the same asymptotic behaviour as
the tail function F s

U (x). See Section II.2.4 for sufficient conditions to have
F s
U ∈ S, in terms of the hazard rate function of FU .

For heavy-tailed claim size distributions, the following result is an ana-
logue to the Cramér–Lundberg approximation from Theorem 3.13. It ex-
tends Theorem III.3.5 and shows that, for IEU fixed, the asymptotics of the
ruin function ψ(u) depends on the claim size distribution FU (x) only through
its behaviour for large values of x. Another interesting fact is that, in the
case of a heavy-tailed claim size distribution, the asymptotic behaviour of
ψ(u) does not depend on the form of the inter-occurrence time distribution
but only on its mean IET .

Theorem 3.17 If F s
U ∈ S, then

lim
u→∞

ψ(u)

F s
U (u)

=
IEU

βIET − IEU
. (3.52)

The proof of Theorem 3.17 will be partitioned into several steps. First we
show the following auxiliary result for the integrated tail distribution F s

Y+
of

the generic increment Y+ = (U − βT )+. Recall that Y+ = max{0, U − βT}
and note that Y+ is not the generic ladder height of a random walk, which
we denote by Y +.



3. RUIN PROBABILITIES: SPARRE ANDERSEN MODEL 55

Lemma 3.18 If F s
U ∈ S, then F s

Y+
∈ S and

lim
x→∞

F s
Y+

(x)

F s
U (x)

=
IEU

IEY+
. (3.53)

We are now in a position to prove that subexponentiality of the inte-
grated tail distribution F s

U of claim sizes implies subexponentiality of the
conditional ladder height distribution G0, where G0(x) = p−1G+(x) and
p = G+(∞).

Lemma 3.19 If F s
Y+

∈ S, then G0 ∈ S and

lim
x→∞

F s
Y+

(x)

G0(x)
=

p

IEY+

∫ 0

−∞
|t|dG−(t) . (3.54)

Examples 1. We showed in Section II.2.4 that the Weibull distribution
F = W(r, c) with 0 < r < 1, c > 0 belongs to S∗. Furthermore, using
Theorems 3.17 and II.2.20 we have (for FU = W(r, 1))

ψ(u) ∼ 1

rβIET − Γ(1/r)

∫ ∞

ur

e−yy1/r−1 dy , u→ ∞ . (3.55)

Note that the integral in (3.55) is the tail of an incomplete gamma function.

2. Let FU ∈ S be the Pareto distribution with density

fU(x) =
αcαx−(α+1) ifx ≥ c,

0 ifx < c,

with α > 1, c > 0. We leave it to the reader to show that then µU =
αc/(α− 1), F s

U ∈ S and ψ(u) ∼ c(βIE T (α− 1) − αc)−1(c/u)α−1 as u→ ∞,
where it suffices to prove that the condition of Corollary II.2.21 is fulfilled
and to use Theorem 3.17.

3. Let FU ∈ S be the lognormal distribution LN(a, b) with −∞ < a < ∞,
b > 0. If we show first that

F s
U (x) ∼ b3 exp(−b2/2)

ea
√

2π

x

(log x− a)2
exp

(

−(log x− a)2

2b2

)

,

and then that the right-hand side belongs to S, then we can conclude that
F s
U ∈ S. Now it is not difficult to show that

ψ(u) ∼ c
u

(log u− a)2
exp

(

−(log u− a)2

2b2

)

, u→ ∞ ,
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where c = b3(
√

2π(βIET − exp(a+ b2/2)))−1.

Bibliographical comments. The surplus just before ruin and the sever-
ity of ruin were studied by many authors, mostly for the compound Pois-
son model; see the bibliographical notes to Section III.2. Note however
that results like formula (3.36) remain true even for much more general
arrival processes with stationary increments. The original proof of Theo-
rem 3.13 given by H. Cramér is analytical, using Wiener–Hopf techniques
and expansions of the resulting solutions. The approach via ladder heights,
as presented in Section 3.3, is due to W. Feller. Theorem 3.16 is from
Cramér (1955), p. 75. The exposition of Section 3.5 follows Embrechts and
Veraverbeke (1982). Properties of subexponential distributions like those
used in the proof of Theorem 3.17 can be found, for example, in Athreya
and Ney (1972), Pakes (1975), Teugels (1975) and Veraverbeke (1977); see
also Section II.2.



Chapter V

Levy insurance risk model

Recently the classical risk model has been generalized by the use of Levy
processes. Let us start with a simple observation.

In the classical model the risk reserve process is defined as

R(t) = x+ βt−
N(t)
∑

j=1

Uj,

where (Uj) are i.i.d. r.v.s independent of Poisson process N(t) with intensity
λ. This is of course a process with independent and stationary increments,
and since R(t) has a.s. right continous and with limits from the left realiza-
tions, R(t) is a spectrally negative Levy process.

1 Basic facts from Lévy processes

Recall now the basic facts from Levy processes that is processes with inde-
pendent and stationary increments with a.s. right continous and with limits
from the left realizations. Here we follow Kyprianou (2006) for definitions,
notations and basic facts on Lévy processes. Let in the sequel X ≡ (X(t))t
be a Lévy process which is defined on the filtered space (Ω,F , {Ft}t≥0, IP)
with the natural filtration that satisfies the usual assumptions of right conti-
nuity and completion. Later if we write IPx, it means that IPx(X(0) = x) = 1
and IP0 = IP; similarly, IE x is expectation with respect to IPx. We denote
by Π(·) the jump measure of X. We define the characteristic exponent Ψ(ϑ)
by

IE eiϑX(t) = e−tΨ(ϑ).

57
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From Lévy-Khintchine formula is is known that

Ψ(ϑ) = iaϑ+
1

2
σ2ϑ2 +

∫

R−{0}
(1 − eiϑx + iϑ1(|x| < 1)Π(dx)

for some spectral measure Π on R − {0} fulfilling

∫

R−{0}
(1 ∧ x2)Π(dx)

. If Π(0,∞) = 0, then the process is said that to be spectrally negative.

Theorem 1.1 Suppose IE |X(1)| < ∞. The process X drifts to infinity if
and only if IEX(1) > 0, oscilates if and only if IEX(1) = 0, and drifts to
minus infinity if and only if IEX(1) < 0.

We also define the first passage time

τ−y := inf{t > 0 : X(t) < y}.

Notice that for y = 0 , when starting at zero from x this passage time
corresponds to ruin time τ from Chapter I. Thus IPx(τ

−
0 <∞), as a function

of x, is the ruin function. In this section we do not use notation ψ(x) for
the ruin function since this notation is reserved for the Laplace exponent.

We now survay basic notions from the theory.

Dual process. The so-called dual process is X̂t = −Xt with jump measure
Π̂ (0, y) = Π (−y, 0). Characteristics of X̂ will be indicated by using the same
symbols as for X, but with a ‘ˆ’ added.

Ladder heights. For the processX we define the associated (L−1(t),H(t))t≥0:

L−1(t) :=

{
inf{s > 0 : L(s) > t} if t < L(∞),
∞ otherwise,

and

H(t) :=

{
XL−1(t) if t < L(∞),

∞ otherwise,

where L ≡ (L(t))t is the local time at the maximum [10, p. 140]. Recall that
(L−1,H) is a bivariate subordinator with the Laplace exponent

κ(ϑ, β) := −1

t
log IE

(

e−ϑL
−1(t)−βH(t)1{t≤L(∞)}

)
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and with the jump measure ΠH . In addition we define the descending lad-
der height process (L̂−1(t), Ĥ(t))t≥0 with the Laplace exponent κ̂(ϑ, β) con-
structed from the dual process X̂ . Recall that under the stability assump-
tion IEX(1) < 0, the random variable L(∞) has an exponential distribution
with parameter κ(0, 0). Moreover, for a spectrally negative Lévy process the
Wiener-Hopf factorization states that

κ(ϑ, β) = Φ(ϑ) + β, κ̂(ϑ, β) =
ϑ− ψ(β)

Φ(ϑ) − β
; (1.1)

see Kyprianou (2006) p. 169-170]. It follows that κ(0, 0) = ψ′(0+).

2 Asymptotic estimates for ruin function

In this section we extend the classical estimation for ruin function. We begin
with the Cramer’s estimate of ruin.

Theorem 2.1 Assume that X(t) is a Lévy process which does not have
monotone path, for which

• limx→∞X(t) = −∞,

• there exists γ > 0 such that ψ(γ) = 0,

• the support of Π is not lattice.

Then

lim
x→∞

eγxIPx(τ
−
0 <∞) = κ̂(0, 0)

(

γ
∂κ̂(0, β)

∂β

∣
∣
∣
β=−γ

)

,

where the linit is interpreted to be zero if the derivative on the right-hand
side is infinite.

The corresponding to Embrecht-Verabeveke theorem is as follows.

Theorem 2.2 Suppose that X is a spectrally positive Lévy process with
mean IEX(1) < 0 and Π(−∞, x) regularly varying at −∞. Then

IPx(τ
−
0 <∞) ∼ 1

IE (X(1))

∫ −x

−∞
Π(−∞, y) dy

as x→ ∞.

Bibliographical comments. The basic facts on Levy insurance risk pro-
cesses can be found in Kyprianou (2006).
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3 Exit problems for spectrally negative processes

In this section we will study spectrally negative Lévy processes. For a spec-
trally negative Lévy process it is convenient to work with the Laplace expo-
nent ψ(ϑ) by

IE eϑX(t) = etψ(ϑ), (3.2)

for ϑ ∈ Θ such that the left hand side of (3.2) is well-defined (from now on
we will assume that that this set Θ is not empty). Recall that in the case
of spectrally negative for Lévy processes we have the following celebrated
formula

ψ(ϑ) = −aϑ+
1

2
σ2ϑ2 +

∫

(−∞,0)
(eϑx − 1 − ϑx1(x > −1))Π(dx)

where the spectral measure Π fulfills

∫ 0

−∞
(1 ∧ x2)Π(dx) <∞.

When X has bounded variation we may always write

ψ(ϑ) = dϑ −
∫

−1<x<0
(eϑx − 1)Π(dx)

where d ≥ 0. Let Φ(q) = sup{ϑ : ψ(ϑ) = q} be the right inverse of ψ.

3.1 Scale functions

We now define a family of scale functions W (q)(x). It is the function which
is 0 for x < 0 and strictly increasing and continuous with Laplace transform

∫ ∞

0
e−βxW (q)(x) dx =

1

ψ(β) − q

for β > Φ(q) and the second scale function

Z(q)(x) = 1 + q

∫ ∞

0
W (q) dy.

For short we write W (0)(x) = W (x).

Theorem 3.1 For any x ∈ R and q ≥ 0

IE x

(

e−qτ
−

0 1(τ−0 <∞)
)

= Z(q)(x) − q

Φ(q)
W (q)(x),
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where we understand q/Φ(q) in the limiting senses for q = 0. In particular

IPx(τ
−
0 ) =

{
1 − ψ

′

(0+)W (x) if ψ
′

(0+) > 0,

1 if ψ
′

(0+) ≤ 0.

Notice that, up to the multiplicative constant

W (x) = IPx(X∞ ≥ 0).

For some cases we have more explicit formulas for q-scale functions.

• Linear Brownian Motion. In this case Ψ(ϑ) = σ2ϑ2/2 + δϑ, where
σ > 0 and δ ∈ R. Then

W (q)(x) =
2

√

2qσ2 + δ
e−δx/σ

2

sinh
( x

σ2

√

2qσ2 + δ
)

for q ≥ 0.

• Spectrally negative stable process. Let α ∈ (1, 2) be the stability pa-
rameter; and take ψ(ϑ) = ϑα. Then

W (q)(x) = αxα−1E′
α,1(qx

α),

for q ≥ 0, where Eβ,1(z) =
∑

k≥0 z
k/Γ(1 + αk) is the Mittag-Lefler

function. If the stable process is with drift d, then we know only the
scale function for q = 0:

W (x) =
1

d
(1 −Eα−1,1(−dxα−1)),

for x ≥ 0.

• Spectrally negative Levy process of bounded variation. Suppose that
X(t) = dt − S(t), where S(t) is a subordinator with jump meather Π
such thatX(t) → ∞ a.s.. Then we necessarily have d

∫ ∞
0 Π(x,∞) dx <

1. Furthermore
∫

[0,∞)
e−βxW (dx) =

1

d−
∫ ∞
0 e−βyΠ(y,∞) dy

,

and hence

W (dx) =
1

d

∑

n≥0

ν∗(dx),



62 CHAPTER V. LEVY INSURANCE RISK MODEL

where ν(dx) = d−1Π(x,∞). In particular if S(t) =
∑N(t)

j=1 Uj, where
N(t) is Poisson process with intensity λ > 0 and U is exponentially
distributed with parameter δ > 0

W (x) =
1

d

(

1 +
λ

dδ − λ
(1 − e−(δ−d−1λ)x)

)

.

Bibliographical comments. More scacle functions can be found in the
paper Hubalek and Kyprianou (2010).
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adjustment coefficient, 31, 51
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ascending ladder epoch, 39
ascending ladder height, 42

Beekman’s formula, 30
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Lundberg
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claim causing ruin, 6
claim number, 2
claim occurrence epochs, 1
claim size, 2
claim surplus process, 4
coefficient
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compound distribution, 15
compound Poisson model

with aggregate claims, 52
compound Poisson process, 22
counting process, 2
Cramér-Lundberg approximation, 33
Cramér-Lundberg model, 30
Cramér-Lundberg approximation, 52

deficit

maximal, 7
total maximal, 6

descending ladder epoch, 39, 40
descending ladder height, 43
distribution

compound, 15
heavy-tailed, 9, 10
integrated tail, 16
ladder height, 30
light-tailed, 9
Pareto-type, 10
subexponential, 13
with regular varying tail, 10

drift, 41

factorization
Wiener-Hopf, 44

filtration, 40
finite horizon, 4
finite-horizon ruin probability, 4
formula

Pollaczek-Khinchin, 30
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hazard, 11
moment generating, 9
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multivariate, 6
slowly varying, 10

gamma process, 30

hazard function, 11
heavy-tailed distribution, 9, 10
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homogeneous Poisson process, 21

infinite-horizon ruin probability, 4
initial reserve, 1
integrated tail, 16
intensity, 21
inter-occurrence times, 2

Karamata’s theorem, 18
key renewal theorem, 32

ladder epoch
n-th ascending, 40
ascending, 39
descending, 39, 40

ladder height
n-th ascending, 42
ascending, 42
descending, 43

ladder height distribution, 30
light-tailed distribution, 9
Lundberg bounds

two-sided, 32
Lundberg exponent, 31

maximal deficit, 7
measure

pre-occupation, 44
model

Poisson
compound, 52

moment generating function, 9
multivariate ruin function, 6

negative drift, 41
net profit condition, 25

oscillating random walk, 41
overshoot, 5, 41

Pareto-type distribution, 10
Poisson model

compound

with aggregate claims, 52

Poisson process
compound, 22

homogeneous, 21

Pollaczek-Khinchin formula, 27, 30

positive drift, 41

pre-occupation measure, 44
premium income, 2

probability of ultimate ruin, 4

process

claim surplus, 4
compound Poisson, 22

risk reserve, 4

random sum, 2

random walk, 19, 39

oscillating, 41
with negative drift, 41

with positive drift, 41

without drift, 41

regularly varying tail, 10
relative safety loading, 46

renewal equation, 32

risk reserve, 2

risk reserve process, 4
ruin

claim causing, 6

severity of, 5

surplus prior to, 6
ruin function, 53

multivariate, 6

ruin probability, 4

finite-horizon, 4
infinite-horizon, 4

ruin time, 4

safety loading

relative, 46

severity of ruin, 5, 29
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single-server system, 4
slowly varying function, 10
spectrally negative, 58
stopping time, 40
surplus prior to ruin, 6
survival probability, 3, 4

tail, 9
regular varying, 10

theorem
Karamata, 18

time
stopping, 40

time in the red, 6
time of ruin, 4
total maximal deficit, 6
two-sided Lundberg bounds, 32

ultimate ruin
probability of, 4

undershoot, 43

Wiener-Hopf factorization, 44


