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In this lecture we will try to answer the following questions.

Questions

Q1. What is mechanics?

Q2. What is a fluid?

Q3. What is a Newtonian fluid?

Q4. What are non-Newtonian fluids?

Q5. Why mechanics of non-Newtonian fluids is important?

Q6. What are the effects that can not be described by classical models?

Q7. What will be the content of this course?

Q8. Is J.M. appropriate lecturer?

Q9. What are the unique features of the course?

Q10. Are there other approaches to describe such ”strange” features of materials?

Classical mechanics
Classical mechanics describes the evolution of mass particles which follow three Newton laws:

Law of inertia If the external force F = 0 then object in a state of uniform motion tends
to remain in that state of motion.

Law of force If there is an external force, it is equal to the time change of the momentum
mv

d

dt
(mv) = F.

Law of action and reaction For every action there is an equal and opposite reaction.

We show four examples of one-dimensional linear spring.

1. Linear spring The displacement of the spring y satisfies ODE

m
d2y

dt2
= FE + FS ,

where FS is the spring force and FE is the external force. If the spring force FS = −ky
and FE is gravitational force, then

m
d2y

dt2
= mg − ky.

The initial-value problem has to be solved

d2y

dt2
+
k

m
y = 0

y(0) = y0

dy

dt
(0) = y1.
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2. Spring with damping force We can add the damping force for the spring Fd = −bdy
dt

d2y

dt2
+

b

m

dy

dt
+
k

m
y = 0.

3. Generalized non-linear spring Spring force is a nonlinear function of y : FS = FS(y),
for example Duffing spring FS(y) = αy + βy3. The well-known Duffing oscillator with
the dumping satisfies

d2y

dt2
+

b

m

dy

dt
− 1

m
(αy + βy3) = 0.

4. Further generalizations – implicit relation Finally, we can have a fully implicit re-
lation for the between the spring force FS and the displacement y, and between the
damping force FD and the velocity dy

dt

f̃ (FS , y) = 0

g̃

(
FD,

dy

dt

)
= 0.

Continuum mechanics
Instead of describing only a mass point we would like to describe whole body. To do this we
describe it as a continuum. Let B is a body, K0(B) a configuration in the initial state and
Kt(B) the configuration at time t (see Figure).

The we define a motion χ which maps from K0(B) to Kt(B) : x = χ(X, t). Further we define
the following kinematical quantities

Velocity

v(X, t) =
∂χ(X, t)

∂t
=⇒ v(x, t) := v(χ−1(x, t), t)

Deformation gradient

F =
∂χ(X, t)

∂X
=

∂x

∂X

Left Cauchy-Green tensor
B = FFT

Right Cauchy-Green tensor
C = FTF.
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Balance equations
Balance of mass This balance is derived in the following way: (% density, v fluid velocity)

m(Pt) =

∫
Pt

% dx

d

dt
m(Pt) = 0 ∀Pt ⊂ Kt(B)

0 =
d

dt
m(Pt) =

∫
Pt

%(x, t) dx =

∫
P0

d

dt
%(χ(X, t), t) det∇Xχ(X, t) dX

=

∫
P0

(
∂%

∂t
+

∂%

∂χk

∂χk
∂t

+ %divv

)
det∇Xχ(X, t) dX

=

∫
Pt

(
∂%

∂t
+∇x%v + %divv

)
dx =

∫
Pt

∂%

∂t
+ div (v%) dx

%,t + div (%v) = 0

Balance of linear momentum

(%v),t + div (%v ⊗ v)− divT = %b,

b volume force, T Cauchy stress tensor.

Balance of angular momentum
T = TT

Balance of energy

∂(%E)

∂t
+ div (%Ev) + divq− div (Tv) = %b · v + %r,

E energy, q thermal flux, r thermal source.

Together with these balance equations we need to add some information to be able to
solve the problem:

1. Constitutive equations – characterize the response of class of materials at certain class
of processes. So far we have 8 equations and 14 unknowns still necessary to add some
constitutive equations.

2. Boundary conditions

3. Initial conditions

Comments:

• Balance equations are formulated on averages (similar to calculus of variation) it sug-
gests to work with weak formulation.

• The last formulation is not equivalent in a weak sense (only classical sense)
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What is a Newtonian fluid?
We have to distinguish between compressible and incompressible fluid.
Constitutive equation for the Cauchy stress tensor T for compressible Newtonian fluid

T = −p(%)I + 2µ(%)D(v) + λ(%)(divv) I (1)

= −p(%)I + 2µ(%)Dd(v) +
2µ(%) + 3λ(%)

3
(divv) I

where Ad := A− 1
3 (trA) I.

Incompressibility

Definition 1. Volume of any chosen subset (at initial time t = 0) remains constant during
the motion.

0 =
d

dt
|Pt| =

d

dt

∫
Pt

dx =

∫
Pt

divv dx =⇒ divv = 0

in solid mechanics we can write detF = 1∫
P0

detF dX =

∫
Pt

dx

Consequences of incompressibility, balance of mass + incompressibility{
∂%
∂t + v · ∇%+ %divv = 0
divv = 0

=⇒
{

∂%
∂t + v · ∇% = 0
divv = 0

Non-homogeneous incompressible Newtonian fluid

T = −mI + 2µ(%)Dd(v), µ(%) > 0. (2)

Homogeneous incompressible Newtonian fluid

T = −mI + 2µ∗Dd(v), µ∗ > 0. (3)

The mean normal stress m = −(trT)/3 is the unknown. The pressure p in the compressible
model is in a similar situation as m in the incompressible model, but in the compressible
model the pressure has to be constitutively defined, and it is not the unknown.

What is non-Newtonian fluid?
A fluid is non-Newtonian if its response to mechanical loading can not be describe either (1),
(2) or (3).

Concept of viscosity
Newton (1687):

"The resistance arising from the want of lubricity in parts of the fluid, other
things being equal, is proportional to the velocity with which the parts are
separated from one another."
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Definition 2 (Viscosity). Viscosity is the coefficient proportionality between the shear stress
and the shear-rate

Generalized viscosity

Txy =
Fz
A
∼ v(h+ y)− v(y)

h
∼ v′(y) = 2Dxy

µg(κ) :=
Txy(κ)

κ
, where κ = v′

Simple shear flow: v(x, y, z) =

v(y)
0
0

 D =
1

2

 0 v′ 0
v′ 0 0
0 0 0

 .

bTxy = µv′(y).

Experimental data show that the viscosity depends on the shear-rate, pressure, etc.
One can understand the word ’proportional’ in the sense of arbitrary denpendence. Then

we can understand Newton’s statement in the sense of implicit relation

G(Txy, Dxy, . . . ) = 0.

Physical dimension of the dynamic viscosity

[µ] =
N
m2

m
m s−1

=
kg m s−2

m2s
= kg m−1s−1 =: 1 000 cP,

and kinematic viscosity [
µ∗

%∗

]
= m2s−1.

Kinematic viscosity of some fluids
Fluid Viscosity [cP]
Air (at 18◦ C) 0.02638
Benzene 0.5
Water (at 18) 1
Olive oil (at 20) 84
Motor oil SAE 50 540
Honey 2000–3000
Ketchup 50000–70000
Peanut butter 150000–250000
Tar 3× 1010

Earth lower mantle 3× 1025
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Non-Newtonian phenomena and model for non-Newtonian
fluids
Definition 3. The fluid is non-Newtonian if and only if its behavior can not be described by
the model of Navier-Stokes fluid

compressible T = −p(%, θ)I + 2µ(%, θ)D + λ(%, θ)(divv)I

incompressible T = −pI + 2µ(%, θ)D.

This definition is not useful. We describe the non-Newtonian phenomena.

Non-Newtonian phenomena
(1) Shear thinning, shear thickening property

(2) Pressure thickening property

(3) Presence of activation/deactivation criteria (connected with the stress or with the shear
rate)

(4) Presence of non-zero normal stress differences in a simple shear flow

(5) Stress relaxation

(6) Non-linear creep

Consider a fluid velocity v = (u(y), 0, 0) with the stress tensor in the form

T = −pI + S.

We are interested in the shear rate |D12| and the shear stress |S12|. The shear rate |D12| is
in the literature denoted for example as κ neboor γ̇, shear stress |S12| is denoted as σ or τ .

Ad (1) Shear thinning, shear thickening property

We are interested in the dependence of |S12| on |D12|. Let us define a generealized
viscosity µg as

µg(|D12|) :=
|S12(|D12|)|
|D12|

.

Newtonian fluid
For the Newtonian fluid it holds S12 = µD12 and D12 = u′(y), so |S12| is a linear
function of |D12| with the proportionality coefficient µ (see Figure 1).

In the case of Newtonian fluid µg = µ = konst., the graph µg vs. γ̇ is in the Figure 2.

Non-Newtonian fluid
Shear thickening property (dilatant fluids) means that |S12| is a superlinear function

of |D12| (Figure 3). The generalized viscosity µg is a increasing function, in the Figure
4 is the example where the generalized viscosity is degenerate at the beginning, usually
the generealized visosity is positive in zero.

Shear thinning property (pseudoplastic fluids) means that |S12| is a sublinear function
of |D12| (Figure 5). The generalized viscosity µg is a decreasing function, in the Figure
6 is the example where the generalized viscosity is singular at the beginning, usually
the generealized visosity is finite in zero.

Generally we can say that there is no reason that |S12| is monotone function of |D12| 1.
1It does not have to be even a function.
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σ = µγ̇

γ̇

σ

0

Figure 1: Newtonian fluid,
(shear stress / shear rate)

γ̇

µ

µg

0

Figure 2: Newtonian fluid,
(generalized viscosity / shear rate)

γ̇

σ

0

Figure 3: Shear thickening,
(shear stress / shear rate)

generalized viscosity
degenerates

γ̇

µg

0

Figure 4: Shear thickening,
(generealized viscosity / shear rate)

γ̇

σ

0

Figure 5: Shear thinning,
(shear stress / shear rate)

generalized viscosity
is singular

γ̇

µg

0

Figure 6: Shear thinning,
(generalized viscosity / shear rate)

The best known models are power-law fluids where the stress tensor look like

T = −pI + 2µ∗|D(v)|r−2︸ ︷︷ ︸
µg(|D|)=µ̃g(|D|2)

D(v).

For r = 2 (3) we speak about the Newtonian fluid, for r > 2 (1) shear thickening fluid
and for 1 < r < 2 (2) shear thinning fluid, see Figures 7 and 8.

Shear thinning fluid is for example the blood. Shear thickenning fluid are for example
some painting colors, sauces (dressings), ketchups. Viscosity is declared as a quality
parameter for some industrial products.
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Figure 7: Shear stress / shear rate. Figure 8: Generalized viscosity / shear rate.

Ad (2) Pressure thickening property The generalized viscosity is not constant as in the
case of Newtonian fluids2 (see Figure 9) but it is a function of pressure p (see Figure
10). Experimental data say that the viscosity is an incresing function of the pressure,
not decreasing.

p

µ0

µg

0

Figure 9: Newtonian fluid

p

µ0

µg

0

Figure 10: Viscosity dependent on pressure

Around the year 1890 Barus proposed a model

µ(p) = µ0 exp(αp), α > 0.

The Nobel prize was given for the experimental validation of the pressure dependence.
These models are used for example in journal bearings where the pressure differences
are very high.

Compressible vs. incompressible fluid For the compressible fluid the pressure
p = p̃(%) is a function of the density %. Let us suppose that we can invert this relation
% = %̃(p), then the formulation

T = −p̃(%)I + 2µ(%)D + λ(%)(divv)I

is equivalent with
T = −pI + 2µ̃(p)D + λ̃(p)(divv)I,

which is the model with the viscosity dependent on the pressure.

Een if the material is compressible (but not extremely), the incompressible pressure
dependence model is used. Such models are difficult to treat both analytically and
numerically.

2Already Stokes in his work wrote about the dependence of the viscosity on the pressure. For the simplicity
he further supposed the viscosity to be constant.
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Ad (3) Presence of activation/deactivation criteria

The fluid starts to flow when it reaches the critical value of the stress τ – called the yield
stress. in the case that the following dependence of the stress on the shear rate is linear,
respectively nonlinear, we call the fluid Bingham fluid, respectively Herschel-Bulkley
fluid3.

The standard formulation is the following:

D = 0⇔ |S| ≤ τ,

T = −pI + 2τ
D

|D|
+ µ̃g(|D|2)D⇔ |S| > τ.

If µ̃g is constant, it is the Bingham fluid, if not, it is Herschel-Bulkley fluid (see Figure
11).

Further example is the fluid where the response is connected with the chemical pro-
cesses. At some value |D12| the fluid locks and does not flow, see Figure 12.

γ̇

τ

σ

0

Figure 11: Herschel-Bulkley

γ̇

locking

τ

σ

0

Figure 12: Locking

Except these explicit relations between the shear stress |S12| and shear rate |D12| we
can consider a general implicit relation in the form

g(|S12|, |D12|) = 0.

We do not have to just compute the tensor S from the knowledge of D and insert it
into the balance of linear momentum, it is also possible to define a tensor function G

G(D,S) = 2µ(|D|2)
(
τ∗ + (|S| − τ∗)+

)
D− (|S| − τ∗)+S

that maps
Rd×dsym × Rd×dsym → Rd×dsym

and this equation add to the system of balance equations. The advantage is that G is
continuous and no special tools has to be used. The disadvantage is that the system
we are solving is bigger.

Ad (4) Presence of non-zero normal stress differences in a simple shear flow

In the three dimensional space we define three viscometric functions:
µ viscosity
N1 := T11 − T22 first normal stress difference
N2 := T22 − T33 second normal stress difference

In the simple shear flow we suppose a fluid velocity in the form v = (u(y), 0, 0).
3We call it fluid although the definition of the fluid says that the fluid can not sustain the shear stres.
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Newtonian fluid Let us compute the Cauchy stress T

D =
1

2

 0 u′(y) 0
u′(y) 0 0

0 0 0

 , T = −pI + 2µD =

 −p µu′(y) 0
µu′(y) −p 0

0 0 −p

 .

We can see that N1 = N2 = 0, and so there are no normal stress differences in the
Newtonian.

Non-Newtonian fluid Non-Newtonian fluids like for example the amyl dissolved in
the water, exhibit the presence of non-zero stress differences in the simple shear flow.
If we press the fluid in one direction, it reacts in other direction, usually perpendicular.
These effects are connected with this property:

• Rod climbing

• Die swell

• Delayed die swell
Let us denote D the diameter of the pipe and DE the biggest diameter of the fluid
after flowing out from the pipe. For the Newtonian fluids it was experimentally
found that

DE

D
= 1.13.

For non-Newtonian fluids is this ratio equal even to four and it holds

DE

D
=

[
0.13 +

(
1 +

1

2

(
N1

2S

)
w

)2
]1/6

,

where S is the shear stress and a subscript w means that it is a value on the wall.

• Flow through the sloping channel
In the case of Newtonian fluid the surface of the fluid is smooth (free boundary),
in the case of non-Newtonian fluid the surface is not smooth, there are bumps.

• Inverted secondary flow
Consider a container with a fluid, the fluid is covered with no gap between the
fluid and the cover. Now we start to rotate with the cover. The secondary flow
creates in the fluid, this secondary flow can be seen in the cross-section. In the
case of non-Newtonian fluid is the direction of the secondary flor oposite than in
the case of Newtonian fluid and the direction depends on the size of N2.

Ad (5) Stress relaxation

Stress relaxation test is the following (see Figure 13): At time t = 0 we deform the
material with constant relative prolongation ε and then we study the shear stress σ.

Consider two basic materials: linear elastic spring and linear dashpot (two coaxial
cylinders with almost same radii, between these cylinders is a Newtonian fluid with the
viscosity µ).

Linear spring is described with Hooke law σ = Eε, where E is the elastic modulus.
Linear dashpot is described by the relation σ = µε̇, where µ is the viscosity.

The result of the stress relaxation test is in the case of linear spring in the Figure 14, in
the case of linear dashpot in the Figure 15. In the case of dashpot is the stress singular
in zero.

Most of materials are the combination of these two basic materials, their response is
depicted in the Figure 16
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t

ε0

ε

0

⇒

t

???

σ

0

Figure 13: Stress relaxation test

t

Eε0

σ

0

Figure 14: Linear spring

t

σ

0

Figure 15: Linear dashpot

Figure 16: Viscoelastic solid Viscoelastic fluid

Ad (6) Non-linear creep

Non-linear creep test is the following (see Figure 17): At time t = 0 we deform the
material with constant stress σ, at time t = t∗ we turn off the stress and study the
relative prolongation ε.

The result of the creep test is in the case of linear spring in Figure 18, in the case of
linear dashpot in Figure 19.

Again, most of materials are the combination of two basic materials, in Figure 20 is
the resultfor the material similar to viscoelastic solid a viscoelastic fluid.

Except the algebraic models there exist also rate-type models, integral models and
stochastic models. A detailed overview of non-Newtonian models is in the following
section.
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tt∗

σ0

σ

0

⇒

t

???

ε

0

Figure 17: Non-linear creep test

tt∗

σ0
E

ε

0

Figure 18: Linear spring

tt∗

σ0
µ

ε

0

Figure 19: Linear dashpot

Figure 20: Viscoelastic solid Viscoelastic fluid

Non-Newtonian models

Models with variable viscosity
General form:

T = −pI + 2µ(D,T)D︸ ︷︷ ︸
S

(4)

Particular models mainly developed by chemical engineers.

Shear dependent viscosity

Ostwald–de Waele power law [24], [12]

µ(D) = µ0|D|n−1 (5)
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Fits experimental data for: ball point pen ink, molten chocolate, aqueous dispersion of
polymer latex spheres

Carreau Carreau–Yasuda [8], [36]

µ(D) = µ∞ +
µ0 − µ∞

(1 + α|D|2)
n
2

(6)

µ(D) = µ∞ + (µ0 − µ∞) (1 + α|D|a)
n−1
a (7)

Fits experimental data for: molten polystyrene

Eyring [14] , [29]

µ(D) = µ∞ + (µ0 − µ∞)
arcsinh (α|D|)

α|D|
(8)

µ(D) = µ0 + µ1
arcsinh (α1|D|)

α1|D|
+ µ2

arcsinh (α2|D|)
α2|D|

(9)

Fits experimental data for: napalm (coprecipitated aluminum salts of naphthenic and palmitic
acids; jellied gasoline), 1% nitrocelulose in 99% butyl acetate

Cross [11]

µ(D) = µ∞ +
µ0 − µ∞

1 + α|D|n
(10)

Fits experimental data for: aqueous polyvinyl acetate dispersion, aqueous limestone suspen-
sion

Sisko [35]

µ(D) = µ∞ + α|D|n−1 (11)

Fits experimental data for: lubricating greases

Models with pressure dependent viscosity

Barus [1]

µ(T) = µ ref expβ (p− p ref) (12)

Fits experimental data for: mineral oils4, organic liquids5

Models with stress dependent viscosity

Ellis [21]

µ(T) =
µ0

1 + α|Tδ|n−1
(13)

Fits experimental data for: 0.6% w/w carboxymethyl cellulose (CMC) solution in water,
poly(vynil chloride)6

4 [20]
5 [6]
6 [33]
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Glen [16]

µ(T) = α|Tδ|n−1 (14)

Fits experimental data for: ice

Seely [34]

µ(T) = µ∞ + (µ0 − µ∞) exp

(
−|T

δ|
τ0

)
(15)

Fits experimental data for: polybutadiene solutions

Blatter [25] , [5]

µ(T) =
A

(|Tδ|2 + τ2
0 )

n−1
2

(16)

Fits experimental data for: ice

Models with discontinuous rheology

Bingham Herschel–Bulkley [4], [17]

|Tδ| > τ∗ if and only if Tδ = τ∗
D

|D|
+ 2µ(|D|)D

|Tδ| ≤ τ∗ if and only if D = 0

(17)

Fits experimental data for: paints, toothpaste, mango jam7

Differential type models
Rivlin–Ericksen fluids

Rivlin–Ericksen [31], [32]

General form:
T = −pI + f(A1A2A3 . . . ) (18)

where

A1 = 2D (19a)

An =
dAn−1

dt
+ An−1L + LTAn−1 (19b)

where d
dt denotes the usual Lagrangean time derivative and L is the velocity gradient.

Criminale–Ericksen–Filbey [10]

T = −pI + α1A1 + α2A2 + α3A
2
1 (20)

Fits experimental data for: polymer melts (explains mormal stress differences)

Reiner–Rivlin [30]

T = −pI + 2µD + µ1D
2 (21)

Fits experimental data for: N/A
7 [2]
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Rate type models
Maxwell, Oldroyd, Burgers

Maxwell [22]

T = −pI + S (22a)

S + λ1

O

S = 2µD (22b)

O

M :=
dM

dt
− LM−MLT (23)

Fits experimental data for: N/A

Oldroyd-B [23]

T = −πI + S (24a)

S + λ
O

S = η1A1 + η2

O

A1 (24b)

Fits experimental data for: N/A

Oldroyd 8-constants

[23]

T = −πI + S (25a)

S + λ1

O

S +
λ3

2
(DS + SD) +

λ5

2
(trS)D +

λ6

2
(S : D) I (25b)

= −µ
(
D + λ2

O

D + λ4D
2 +

λ7

2
(D : D) I

)
(25c)

Fits experimental data for: N/A

Burgers [7]

T = −πI + S (26a)

S + λ1

O

S + λ2

OO

S = η1A1 + η2

O

A1 (26b)

Fits experimental data for: N/A

Giesekus [15]

T = −πI + S (27a)

S + λ
O

S− αλ2

µ
S2 = −µD (27b)

Fits experimental data for: N/A
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Phan-Thien–Tanner [26], [27]

T = −πI + S (28a)

Y S + λ
O

S +
λξ

2
(DS + SD) = −µD (28b)

Y = exp

(
−ελ

µ
trS

)
(28c)

Fits experimental data for: N/A

Johnson–Segalman [19]

T = −pI + S (29a)
S = 2µD + S′ (29b)

S′ + λ

(
dS′

dt
+ S′ (D− aD) + (D− aD)

T
S′
)

= 2ηD (29c)

Fits experimental data for: spurt

Johnson–Tevaarwerk [18]

T = −pI + S (30a)
O

S + α sinh
S

s0
= 2µD (30b)

Fits experimental data for: lubricants

Integral type models
Kaye–Bernstein–Kearsley–Zapas [3], [9]

T =

∫ t

ξ=−∞

∂W

∂I
C +

∂W

∂II
C−1dξ (31)

Fits experimental data for: polyisobutylene, vulcanised rubber
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Entropy and Newtonian fluids
Definition 4. There exists a specific density of entropy η (further just entropy) which is a
function of state variables,

η = η̃(y0, y1, . . . ),

where y0 = e is a density of internal energy (further just energy), and it holds:

(i)
∂η̃

∂e
> 0 ⇒ e = ẽ(η, y1, y2, . . . ), denote a temperature θ :=

∂ẽ

∂η

(ii) η → 0+, if θ → 0+

(iii) S(t) =

∫
Ω

(%η)(t, x) dx→ Smax for t→ +∞, if Ω is mechanically and thermally (ener-

getically) isolated

For Newtonian fluids it holds

η = η̃(e, %)⇔ e = ẽ(η, %).

Balance equations:

%̇ = −%divv,

%v̇ = divT + %b,

%Ė = div(Tv + q) + %b · v.

Differentiate e, multiply by %,

%ė = %
∂ẽ

∂η
η̇ + %

∂ẽ

∂%
%̇

and insert it into the balance of linear momentum,

%b · v + div(Tv + q)− (divT) · v − %b · v = %
∂ẽ

∂η
η̇ − %2 ∂ẽ

∂%
divv.

Now denote
θ =

∂ẽ

∂η
, p = %2 ∂ẽ

∂%

and obtain

%θη̇ = T · ∇v + divq + p divv

symetrie T
= T ·D + divq + p divv.

Using the deviatoric parts we get

%θη̇ = Td ·Dd +
1

3
(trT)

1

3
(divv) I · I︸︷︷︸

3

+ divq + p divv

= Td ·Dd +

(
1

3
(trT) + p

)
divv + divq.

Dividing by θ we get

%η̇ − div
(q
θ

)
=

1

θ

[
Td ·Dd +

(
1

3
(trT) + p

)
divv +

q · ∇θ
θ

]
︸ ︷︷ ︸

ξ

.
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ξ is called rate of entropy production. The second law of thermodynamics says that ξ ≥ 0,
and so

ζ :=
ξ

θ
= %η̇ − div

(q
θ

)
≥ 0.

If we denote m = (trT)/3 the mean normal stress, then it holds

ξ = Td ·Dd +

(
1

3
(trT) + p

)
divv+

q · ∇θ
θ

=
{
Td,m+ p,q

}︸ ︷︷ ︸
termodynamical fluxes

·
{
Dd,divv,

∇θ
θ

}
︸ ︷︷ ︸

termodynamical afinities

(32)

What is ξ for Navier-Stokes equations?
Compressible Navier-Stokes-Fourier equations

T = −p(%, η)I + 2µ(%, η)D + λ(%, η)(divv)I,

q = K(%, η)∇θ.

It holds
m+ p =

2µ+ 3λ

3
divv

and
Td = 2µDd.

Insert it into (32).

Option 1

ξ = 2µ|Dd|2 +
2µ+ 3λ

3
(divv)2 +K

|∇θ|2

θ
.

If µ ≥ 0, 2µ+ 3λ ≥ 0 a K ≥ 0, then ξ ≥ 0.

Option 2

ξ =
1

2µ
|Td|2 +

3

2µ+ 3λ
(m+ p)2 +

1

K

|q|2

θ
.

If µ > 0, 2µ+ 3λ > 0 a K > 0, then ξ > 0.

We ask: When is ξ = 0?

Option 1 We do not want any restriction for the velocity or temperature, that is why
µ = 2µ+ 3λ = K = 0.

Option 2 It is possible only if Td = 0,m = −p,q = 0.

Incompressible Navier-Stokes-Fourier equations

Option 1

ξ = 2µ|Dd|2 +K
|∇θ|2

θ
.

If µ ≥ 0 a K ≥ 0, then ξ ≥ 0.

Option 2

ξ =
1

2µ
|Td|2 +

1

K

|q|2

θ
.

If µ > 0 a K > 0, then ξ > 0.
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Remark
θ =

∂e

∂η
, p = %2 ∂e

∂%
.

Gibbs equation

θ dη = de+ pd

(
1

%

)
,

from this equation the relation for the pressure can be derived. This equation holds for
compressible gas, there is no reason why it should hold in general for more complicated
materials.

Question: Is there a way how from the knowledge for constitutive relations for η and ξ
get the constitutive relations for T and q?

Principle of maximimzation of the rate of entropy production
Our aim is to derive Navier-Stokes equations. It holds

ξ = Td ·Dd + (m+ p) divv +
q · ∇θ
θ

, (33)

we choose a constitutive relation for ξ̃

ξ = ξ̃(Dd,divv,∇θ) = 2µ|Dd|2 +
2µ+ 3λ

3
(divv)2 +K

|∇θ|2

θ
.

There is many possibilities when ξ = ξ̃, we choose the one when ξ̃ is maximal. That is why
we maximize it over Dd,divv,∇θ such that (33) holds

max
(33)+Dd,div v,∇θ

ξ̃(Dd,divv,∇θ).

This heuristic principle is called principle of maximimzation of the rate of entropy production.
The maximization is done using Lagrangeo multipiers. We define the Lagrange function

L = ξ̃(Dd,divv,∇θ) + λ

(
ξ̃(Dd,divv,∇θ)−

(
Td ·Dd + (m+ p) divv +

q · ∇θ
θ

))
,

and we are looking for its extreme , i.e.

∂L

∂Dd
= 0,

∂L

∂ divv
= 0,

∂L

∂∇θ
= 0.
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We obtain

(1 + λ)
∂ξ̃

∂Dd
= λTd,

(1 + λ)
∂ξ̃

∂ divv
= λ(m+ p),

(1 + λ)
∂ξ̃

∂∇θ
= λ

q

θ
.

(34)

Now we eliminate λ in this way. We multiply the first equation by Dd, the second by divv
and the third by ∇θ,

1 + λ

λ
=

ξ̃
∂ξ̃
∂Dd ·Dd + ∂ξ̃

∂ div v divv + ∂ξ̃
∂∇θ · ∇θ

=
1

2
.

If we insert this result into (34) and do the differentiation, we obtain Navier-Stokes equations

Td = 2µDd,

m+ p =
2µ+ 3λ

3
divv,

q

θ
= K

∇θ
θ
.

Maximization ξ̃ for incompressible Navier-Stokes equations
For isothermal incompressible materials it holds

trD = divv = 0, θ = θ∗ = const.

Constraint for ξ is
ξ = T ·D. (35)

First, let ξ̃ is given by
ξ̃ = 2µ|D|2.

We use the principle of maximization of the rate of entropy production

max
(35)+D+trD=0

ξ̃(D).

We define the Lagrange function

L = ξ̃(D) + λ1

(
ξ̃(D)− (T ·D)

)
+ λ2 trD

and maximize it with respect to D,

(1 + λ1)
∂ξ̃

∂D
= λ1T− λ2I.

Multiply this equation by D and get

1 + λ1

λ1
=

T ·D
∂ξ̃
∂D ·D

=
1

2
,

further take the trace of this equations and get

3λ2 = λ1 trT ⇒ λ2

λ1
=

1

3
trT.
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We have
T = 2µD +

1

3
(trT)I.

Incompressible Navier-Stokes equations can be also derived in other way. Let

ξ̃ =
1

2µ
|Td|2 (q = 0) (36)

and we are maximizing ξ̃
max

(36)+Td
ξ̃(Td).

We obtain
Dd = D =

1

2µ
Td =

1

2µ

(
T− 1

3
(trT)I

)
,

which is less usual, but equivalent formulation of incompressible Navier-Stokes equations.

Integral form of entropy production
Integrate the balance of energy (b = 0, r = 0, v · n = 0) over Ω

d

dt

∫
Ω

%

(
e+
|v|2

2

)
dx =

∫
Ω

div (Tv + q) dx =

∫
∂Ω

(Tv + q) · n dS = 0

In order to have conservation of energy it suffices to assume pointwise

q · n = −Tv · n = −Tn · v = − ((Tn)τ + (Tn)n) · (vτ + (v · n)n) = −(Tn)τ · vτ

For the total entropy S =
∫

Ω
%η dx we also have

d

dt
S(t) =

∫
ω

1

θ

[
Tδ : Dδ + . . .

]
−
∫
∂Ω

q · n
θ

d

dt
S(t) =

(
Tδ,Dδ

)
L2(Ω)

+ (m+ p,divv)L2(Ω) +

(
q,
∇θ
θ

)
L2(Ω)

+ (−(Tn)τ ,vτ )L2(Ω)

The simplest proportional relation

Td = 2µDd,

m+ p =
2µ+ 3λ

3
divv,

Q

θ
= K

∇θ
θ

(Tn)τ = −γvτ

with
µ ≥ 0, 2µ+ 3λ ≥ 0, K ≥ 0, γ ≥ 0

guarantee the second law of thermodynamics.
In general we have

G1

(
Td,Dd

)
= 0,

G2 (m+ p,divv) = 0,

G3

(
Q

θ
,
∇θ
θ

)
= 0,

G4 ((Tn)τ ,vτ ) = 0.

If Dδ = 0 or divv = 0 or ∇θ = 0 or vτ = 0 we get constrained material (rigid), resp.
incompressible, resp. isothermal process, resp. no-slip boundary condition.

No dissipation if Tδ = 0 and q = 0 and m = −p and (Tn)τ = 0.
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Remark: If you have dissipation you have energy estimates

Cauchy model for finite elasticity
Kinematical quantities

FK0
=

∂χ

∂X
,

ḞK0 = LFK0 ⇒ BK0 = FK0F
T
K0
,

where BK0
is the left Cauchy-Green tensor, we can compute its time derivative

ḂK0
= LBK0

+ BK0
LTa tr ḂK0

= 2D ·BK0
.

Let us have the entropy
η = η̃(e,BK0

)⇔ e = ẽ(η,BK0
),

For example the neo-Hookean material fullfils

ẽ = e0(η) +
µ

2
(trBK0 − 3).

Insert e into the balance of energy

%θη̇ = div(Tv + q)− divT · v − µBK0 ·D
= T ·D− µBK0 ·D + divq

= (T− µBK0) ·D + divq.

We get

%η̇ + div
(q
θ

)
=

1

θ

[
(T− µBK0

) ·D +
q · ∇θ
θ

]
︸ ︷︷ ︸

produkce entropie

.

Elastic material does not disipate, that is why the rate of entropy production has to be zero,
and so

T = µBK0
,

and for the incompressible material we have

T = −ΦI + µBK0 .

Korteweg fluids
We will use the principle of maximization of the rate of entropy production to derive the
model derived in 1901 by Dutch mathematician Korteweg. This model is used for describing
capilar effects, multiphase and granulated materials. The model is formulated by the following
equations

%̇ = −%divv,

%v̇ = divT,

T = −p(%)I + 2µ(%)D(v) + λ(%)(divv)I + K,

K =
κ

2
(∆(%2)− |∇%|2)I− κ(∇%⊗∇%).
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In the paper [13] Dunn and Serrin showed that this model is thermodynamically compatible.
We know that if we suppose this constitutive relation

η = η̃(e, %),

then for compressible Navier-Stokes equations we obtain

%η̇ + div
(q
θ

)
=

1

θ

[
Td ·Dd + (m+ p) divv +

q · ∇θ
θ

]
=

1

θ

[
Td

dis ·Dd + tdis divv +
qdis · ∇θ

θ

]
.

We introduce disipative terms (with subscript dis) and write the constitutive relation for the
rate of entropy production

ξ = ξ̃(Td
dis, tdis,qdis) =

1

2µ
|Td

dis|2 +
2

2µ+ 3λ
t2dis +

1

K
|qdis|2

and using the principle of maximization of the rate of entropy production we get Navier-
Stokes-Fourier system.

For the Korteweg model we consider the entropy dependent on the gradient of density %

η = η̃(e, %,∇%)↔ e = ẽ(η, %,∇%).

Differentiate
%ė = %

∂ẽ

∂η
η̇ + %

∂ẽ

∂%
%̇+ %

∂ẽ

∂∇%
∇̇%,

we know that %̇ = −%divv, and need to compute ∇̇%,

∇̇% = −∇(% divv)− (∇v)∇%.

Let us denote
θ =

∂ẽ

∂η
, p = %2 ∂ẽ

∂%
,

therefore we have

%θη̇ = %Ė − %v̇ · v − p %̇
%
− % ∂ẽ

∂∇%
∇̇% =

= div(Tv + q)− divT · v + p divv + %
∂ẽ

∂∇%
· ∇(% divv) + %

(
∂ẽ

∂∇%
⊗∇%

)
· ∇v =

= T·∇v+

(
%
∂ẽ

∂∇%
⊗∇%

)
·∇v+divq+p divv+div

(
%2 divv

∂ẽ

∂∇%

)
−%(divv) div

(
%
∂ẽ

∂∇%

)
.

The principle of objectivity says that e is a function of the size of ∇%,

e = ẽ(η, %, |∇%|),

this implies that
∂ẽ

∂∇%
⊗∇%

is a symmetric tensor. We obtain

%θη̇ =

(
T + %

∂ẽ

∂∇%
⊗∇%

)
·D+

(
p− %div

(
%
∂ẽ

∂∇%

))
divv+ div

(
q + %2(divv)

∂ẽ

∂∇%

)
=

=

(
Td + %

(
∂ẽ

∂∇%
⊗∇%

)d)
︸ ︷︷ ︸

Td
dis

·Dd+

(
p− % div

(
%
∂ẽ

∂∇%

)
+m+

%

3

∂ẽ

∂∇%
· ∇%

)
︸ ︷︷ ︸

tdis

divv+div

(
q + %2(divv)

∂ẽ

∂∇%

)
︸ ︷︷ ︸

qdis

.
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We get the equation

%η̇ − div
(qdis

θ

)
=

1

θ

[
Td

dis ·Dd + tdis divv +
qdis · ∇θ

θ

]
.

ξ = 0, pokud Td
dis = 0, tdis = 0,qdis = 0, pak

T = Td +mI = −%
(
∂ẽ

∂∇%
⊗∇%

)d
− p(. . . )I− %

3

(
∂ẽ

∂∇%
· ∇%

)
I + %div

(
%
∂ẽ

∂∇%

)
I

= −p(e, %,∇%)I + %div

(
%
∂ẽ

∂∇%

)
I− %

(
∂ẽ

∂∇%
⊗∇%

)
.

The special choice of internal energy

e = ẽ(η, %,∇%) = e0(η, %) +
β

2%
|∇%|2 ⇒ %

∂ẽ

∂∇%
= β∇%

gives the Korteweg model

T = −p(. . . )I + %β div ∆%I− β(∇%⊗∇%)

= −pI +
β

2

(
∆(%2)− |∇%|2

)
I− β(∇%⊗∇%).

From the choice of constitutive equations for the rate of entropy production

ξ = ξ̃(Td
dis, tdis,qdis) =

1

2µ
|Td

dis|2 +
3

2µ+ 3λ
t2dis +

1

K
|qdis|2

and the choice8

Td
dis = 2µDd,

tdis =
2µ+ 3λ

3
divv,

qdis = K∇θ

we see that ξ ≥ 0 and the second law of thermodynamics is satisfied. Then we get the
Korteweg model

q = K∇θ − %2 divv
∂ẽ

∂∇%
= K∇θ − β%(divv)∇%,

T = −pI + 2µD + λ(divv)I +
β

2

(
∆(%2)− |∇%|2

)
I− β(∇%⊗∇%).

Viscoelastic materials
Our aim is to model materials capable of describing non-Newtonian phenomena like nonlinear
stress relaxation, nonlinear creep or the normal stress differences in simple shear flow. Such
materials are for example geomaterials, biological materials, polymers and other chemical
products like food for example.

Repeat what is the stress relaxation test and creep test.

Stress relaxation test Stress relaxation test is the following (see Figure 21): At time
t = 0 we deform the material with constant relative prolongation ε and then we study the
shear stress σ. For linear spring it holds

σ = Eε,
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t

ε0

ε

0

⇒

t

???

σ

0

Figure 21: Stress relaxation test

t

Eε0

σ

0

Figure 22: Linear spring

t

σ

0

Figure 23: Linear dashpot

for the linear dashpot it holds
σ = µε̇.

Let us define the stress relaxation function

G(t) =
σ(t)

ε0
.

Real materials exhibit the following bahavior

Figure 24: Viscoelastic solid Viscoelastic fluid

Creep test Creep test is the following (see Figure 25): At time t = 0 we deform the
material with constant stress σ, at time t = t∗ we turn off the stress and study the relative
prolongation ε.

8It is possible to use the principle of maximization of the rate of entropy production, but for the simplicity
we can guess it, because the rate of entropy production is quadratic.
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tt∗

σ0

σ

0

⇒

t

???

ε

0

Figure 25: Creep test

tt∗

σ0
E

ε

0

Figure 26: Linear spring

tt∗

σ0
µ

ε

0

Figure 27: Linear dashpot

Let us define the creep test function

J(t) =
ε(t)

σ0
.

Real materials exhibit the following bahavior

Figure 28: Viscoelastic solid Viscoelastic fluid

The result of stress relaxation test is in the case of linear spring in Figure 26, in the case
of linear dashpot in Figure 27.

Creation of simple models by combining linear springs and linear
dashpots
Maxwell element We get the Maxwell element if we connect the linear spring and linear
dashpot in series. Denote F resp. FS resp. FD the force in the whole element resp. in the

26



Spring Dashpot

l

Figure 29: Maxwell element

spring resp. in the dashpot, and ∆ resp. ∆S resp. ∆D o the prolongation of the whole
element resp. of the spring resp. of the dashpot. Then for the linear spring holds

FS = E∆S, σS = EεS,

for the linear dashpot
FD = µ∆̇D, σD = µε̇D.

For the Maxwell element we do the computation in details. First we derive the constitutive
relation. In the series connection is the stress in the spring and dashpot the same, i.e.
σD = σS, the whole prolongation is the sum of the prolongation of the spring and the
dashpot, i.e. ∆ = ∆S + ∆D. We substitute from the constitutive relation for the linear
spring and the linear dashpot

∆̇ = ∆̇S + ∆̇D =
ḞS
E

+
FD
µ
,

and get the constitutive equation fot the Maxwell element

Eε̇ = σ̇ +
E

µ
σ ⇔ p1σ̇ + p0σ = q1ε̇.

From the initial condition we obtain

p1σ(0+) = q1ε(0+).

Now copmute how the Maxwell element behaves in the creep test. Let σ(t) = σ0, then

ε(t) =
σ0

q1
(p1 + p0t)

and the creep function is equal to

J(t) =
ε(t)

σ0
=

1

q1
(p1 + p0t).

The response is linear it is not a satisfacory result.
Further compute the stress relaxation test for Maxwell element. Let ε(t) = ε0H(t), where

H(t) is the Heavisideova function

σ(t) =
q1

p1
ε0e
− p0

p1
t

and the stress relaxation function is equal to

G(t) =
σ(t)

ε0
=
q1

p1
e−

p0
p1
t.

This response looks reasonably.
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Now compute how the stress σ depends on th deformation ε

˙(
σ(t)e

p0
p1
t
)

=
q1

p1
ε̇e

p0
p1
t

σ(t) = σ(0+)e−
p0
p1
t +

q1

p1

∫ t

0

ε̇(t)e−
p0
p1

(t−τ) dτ

initial cond.
=

q1

p1
ε(0+)e−

p0
p1
t +

q1

p1

∫ t

0

ε̇(t)e−
p0
p1

(t−τ) dτ

= ε(0+)G(t) +
q1

p1

∫ t

0

ε̇(t)G(t− τ) dτ.

In the higher dimension this result corresponds to the fact that we obtained the integral
relation between T and D.

Now compute how ε depends on σ.

q1ε(t) = q1ε(0+) + p1

∫ t

0

σ̇(τ) dτ + p0

∫ t

0

σ(τ) dτ

= q1ε(0+) +

∫ t

0

σ̇(τ)(p1 + p0(t− τ)) dτ + p0σ(0+)t.

Using initial condition we obtain

ε(t) =

(
p1

q1
+
p0

q1
t

)
σ(0+) +

∫ t

0

σ̇(τ)

(
p1

q1
+
p0

q1
(t− τ)

)
dτ

= J(t)σ(0+) +

∫ t

0

σ̇(τ)J(t− τ) dτ.

We obtained the rate-type model and two integral type models, all equivalent. All models
hold in one dimensional space, but it is not clear how to generalize them into three dimensional
space.

1. Linear dashpot is not an approximative theory, but the linear spring is.

2. What to do if the dashpot or the spring depend on the deformation in nonlinear way?

3. Partial time derivative is neither material time derivative nor objective time derivative,
the generalizations are not unique.

4. Many nonlinear 3D models can reduce in 1D to the same equation. So many models
can be used to capture 1D experimental data.

Kelvin-Voigt element We get the Kelvin-Voigt element if we paralelly connect the spring
and the dashpot.

The prolongations are the same for the spring and the dashpot. The total force is equal
to the sum of the forces in spring and dashpot, so

F = FS + FD, ∆ = ∆S = ∆D.

Using constitutive relations for the linear spring and the linear dashpot we get

p0σ = q0ε+ q1ε̇,

ε(0+) = 0.

The stress relaxation function is equal to

G(t) =
q0

p0
+
q1

p0
δ(t),

28



Spring

Dashpot

l

Figure 30: Kelvin-Voigtů element

this is disadvantage for Kelvin-Voigt. The creep function is

J(t) =
p0

q0

(
1− e−

q0
q1
t
)
,

which is the advantage of Kelvin-Voigt element
Both derived models were onedimensional, we show teh modification into the higher

dimension. Suppose that the fluid is incompressible, trD = 0. Consider the stress tensor in
the form

T = −pI + S

and say that S satisfies the same equation as derived earlier, let us try

S + λṠ = 2µD.

Suppose we have two coordinate systems – starred and unstarred, the starred one is
related to the unstarred by

x∗ = Q(x− x0) + c,

where Q is orthogonal. We want the tensor S to transform as

S∗ = QSQT.

In the starred system the material satisfies the equation

S∗ + λṠ
∗

= 2µD∗,

which is equivalent to

QSQT + λ
d

dt

(
QSQT

)
= 2µQDQT.

If it holded
QSQT + λ

d

dt

(
QSQT

)
= Q

(
S + λṠ

)
QT,

everything would be OK, but this does not hold because

d

dt

(
QSQT

)
= Q̇SQT + QṠQT + QSQ̇T

and the sum of the first and last term can never be equal zero. So, our try is bad – Ṡ is not
objective. Let us denote the objective derivative of S by

◦
S satisfying

◦
S∗= Q

◦
S QT.
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Define now
◦
S=

dS

dt
− LS− SLT + (trL)S

and verify that this derivative is objective. We want

◦
S∗= Q

◦
S QT = Q

(
dS

dt
− LS− SLT + (trL)S

)
QT.

Compute.

dS∗

dt
− L∗S∗ − S∗(LT)∗ + (trL∗)S∗ =

◦
QSQT=

=
d

dt

(
QSQT

)
− L∗QSQT −QSQT(LT)∗ + (trL∗)QSQT.

We need to know what is L∗. After some algebraic manipulation it can be computed that

L∗ = Q̇QT + QLQT.

Inserting this into the previous calculation we get

d

dt

(
QSQT

)
− L∗QSQT −QSQT(LT)∗ + (trL∗)QSQT =

= Q̇SQT + QṠQT + QSQ̇T −
(
Q̇QT + QLQT

)
QSQT−

QSQT
(
Q̇QT + QLQT

)
+ tr

(
Q̇QT + QLQT

)
QSQT =

= QṠQT −QLSQT −QSLTQT + tr
(
Q̇QT + QLQT

)
QSQT =

= Q
(
Ṡ− LS− SLT

)
QT + Q(trL)SQT,

because the trace is cyclic and
0 = Q̇QT + QQ̇T.

The derivative is objective even if there is not the last term with the trace

O
S=

dS

dt
− LS− SLT .

This derivative is called Oldroyd upper convected derivative. If we use it in the Maxwell
element we obtain the Maxwell model

T = −pI + S, S + λ
O
S= 2µD.

Incompressible rate-type fluid models – derivation of ther-
modynamically compatible models
Motivaation and the aim Combining two linear dashpots and one linear spring we obtain
the relation between the shear stress and shear rate

p1Ṫxy + p0Txy = q1Ḋxy + q0Dxy.
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In the previous section we explained why it is not trivial to generalize this model into three
dimensional space. A similar model is a Yeleswerapu model for blood:

divv = 0,

%v̇ = divT + %b,

T = −pI + S,

S + λ1

(
Ṡ− LS− SLT

)
= µ(|D|)D + λ2(Ḋ− LD−DLT),

µ(|D|) = µ∞ + (µ0 − µ∞)

[
1 + ln(1 + Λ|D|)

1 + Λ|D|

]
.

But is this model thermodynamically compatible satisfying the second law of thermodynam-
ics?

First we derive three dimensional Kelvin-Voigt model.

Kelvin-Voigt model
Suppose the entropy in the form η = η̃(e, %,BkR) ⇔ e = ẽ(η, %,BkR) = ê(η, %, trBkR) and
define kinematical quantities. First the deformation gradient

FkR =
∂χkR
∂X

left and right Cauchy-Green tensor

BkR = FkRF
T
kR , CkR = FT

kRFkR .

Compute

%Ė − %v̇ · v = %ė = %
∂ê

∂η
η̇ + %

∂ê

∂%
%̇+ %

∂ê

∂ (trBkR)
I · ḂkR .

We know that ḞkR = LFkR which implies

ḂkR = LBkR + BkRL
T ⇒ I · ḂkR = 2BkR ·D.

Continue computing

%θη̇ − divq = T ·D + p divv − 2%
∂ê

∂ (trBkR)
BkR ·D =

=

(
T− 2%

∂ê

∂ (trBkR)
BkR

)d
·Dd +

(
m− 2

3
%

∂ê

∂ (trBkR)
trBkR + p

)
divv.

Divide by temperature θ and get

%η̇ − div
(q
θ

)
=

1

θ

[
Td

dis ·Dd + tdis divv +
q · ∇θ
θ

]
︸ ︷︷ ︸

ξ

.

The incompressibility and constant temperature gives

ξ = Td
dis ·Dd =

(
T− 2%

∂ê

∂ (trBkR)
BkR

)d
·Dd.

Further for a general ξ = ξ̃(Tdis,D) choose the constitutive relation

ξ̃ =
1

2ν
|Tdis|2,
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or
ξ̃ = 2ν|D|2.

In the first case we maximize ξ with respect to Tdis with no other constrains, in the second
case we maximize with respect to D with the incompressibility condition trD = 0. We obtain

T = −mI + 2νD + 2%
∂ê

∂ (trBkR)
Bd
kR .

If we use neo-Hookean free energy

%ψ =
µ

2
(trBkR − 3) ,

the it holds
∂ê

∂ (trBkR)
=
µ

2
I

and we obtain Kelvin-Voigt model

T = −mI + 2νD + µBd
kR .

If the rate of entropy production is zero, then

Td
dis = 0,

p+m+ µ
1

3
trBkR = 0,

q = 0

and we obtain
T = Td +mI = Td

dis + µBd
kR +mI = −pI + µBkR .

If we do not require the incompressibility and use the relations as in Navier-Stokes-Fourier

Td
dis = 2νDd,

p+m+ µ
1

3
trBkR =

2ν + 3λ

3
divv,

q = k∇θ,

we get

T = −pI + 2νD + λ(divv)I + µBkR ,

q = k∇θ.

Viscoelastic model (K.R. Rajagopal, A.R. Srinivasa [28])
The body made from the viscoelastic material is at time t in configuration κ(t), this con-
figuration is called the current configuration. We will compare this configuration with the
configuration κ(r) which is a configuration of the system in rest at the beginning, so called
the reference configuration.

We define now the natural configuration κ(p(t)). It is a configuration of the system cor-
responding to the current configuration κ(t) the body would go to on the sudden removal
of external stimuli. Then the only difference between the natural and current configura-
tion is purely elastic deformation. By defining the natural configuration we split the whole
deformation into purely elastic part and the dissipative part.

We motivate the notion of the natural configuration using a simple example. Suppose we
have a simple linear viscoelastic material where in every material point is Maxwell element.
The spring represent the elastic part and the dashpot the viscous part In Figure 31a) jthe
material is at the beginning in rest, relaxed. The spring and the dashpot are not stretched.
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a)

b)

c)

Figure 31: Motivational example for the natural configuration

The system is in the reference configuration κ(r). Then we stretch it (Figure 31b)) and
the system goes to the current configuration κ(t). Now we let the system relax, the spring
shrinks to its reference length but the dashpot remains stretched. (Figure 31c)). The system
is in the natural configuration κ(p(t)). Because during the relaxation the deformation of the
dashpot does not change, we can think that the whole free energy of the system is hidden
only in the deformation of the natural configuration. konfigurace.

κ(r) κ(t)

κ(p(t))

G

F

Fp(t)

1

Figure 32: Přirozená konfigurace

We define some kinematical quantities. First we define the deformation gradient (in
Figure 32 denoted by F)

FkR = ∇χ

that maps infinitesimal element from κ(r) to κ(t). We define standard left and right Cauchy-
Green tensors.

BkR = FkRF
T
kR , CkR = FT

kRFkR ,

Further we define Fkp(t) as a mapping of the infinitesimal element from κ(p(t)) to κ(t) (in
Figure. 32 denoted by Fp(t)) and G that maps from κ(r) to κ(p(t)). These two new variables
are related through the deformation gradient

G = F−1
kp(t)

FkR .
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Define leftand right Cauchy-Green tensor corresponding to κ(p(t))

Bkp(t) = Fkp(t)F
T
kp(t)

, Ckp(t) = FT
kp(t)

Fkp(t)

and the rate of the deformation of κ(p(t)) (in the analogy with the usual relation between
the velocity gradient and deformation gradient), resp. its symmetric part

Lkp(t) = ĠG−1, Dkp(t) =
Lkp(t) + LT

kp(t)

2
.

The material time derivative of Bkp(t) is equal to

Ḃkp(t) = Ḟkp(t)F
T
kp(t)

+ Fkp(t)Ḟ
T
kp(t)

=

ḞkRG
−1FT

kp(t)
+ FkR

˙
G−1FT

kp(t)
+ Fkp(t)

˙
G−TFT

kR + Fkp(t)G
−TḞT

kR =

LBkp(t) + Bkp(t)L
T − 2Fkp(t)Dkp(t)F

T
kp(t)

,

where we used
˙

A−1 = −A−1ȦA−1.

And we naturally obtained the Oldroyd upper convected time derivative

O
Bk(p(t))= Ḃkp(t) − LBkp(t) −Bkp(t)L

T = −2Fkp(t)Dkp(t)F
T
kp(t)

.

Note that
O
I = −2D. It holds that

tr Ḃkp(t) = 2Bkp(t) ·D− 2Fkp(t)Dkp(t) · Fkp(t) .

Choose the entropy in the form η = η̃(e, %,Bkp(t)), we can invert it and use the internal
energy e = ẽ(η, %,Bkp(t)), concretely choose

e = e0(η, %) +
µ

2%

(
trBkp(t) − 3

)
and as in the case for Kelvin-Voigt we obtain

ξ = (T− µBkp(t)) ·D + (p+ m̃) divv +
q · ∇θ
θ

+ µFkp(t)Dkp(t) · Fkp(t) .

For simplicity q = 0 and divv = 0 and like in [28], we suppose that the elastic response
is also incompressible, i.e. detBkp(t) = 1. From this and incompressibility FkR results that
detG = 1. Differentiating detG gives trDkp(t) = 0.

For the rate of entropy production holds (we the zero traces of D and Dkp(t))

ξ = (T− µBkp(t))
d ·D + µCd

kp(t)
·Dkp(t)

= Td
dis ·D + µCd

kp(t)
·Dkp(t) .

We choose the following constitutive relation for the rate of entropy production

ξ = ξ̃(D,Dk(p(t),Ckp(t)) = 2ν0|D|2 + 2ν1Dkp(t) ·Ckp(t)Dkp(t) .

We observe that Dkp(t) ·Bkp(t)Dkp(t) = |Dkp(t)Fkp(t) |2 ≥ 0, and the second law of thermody-
namics is satisfied. We define the Lagrange function

L(D,Dkp(t)) = ξ̃(. . . ) + λ1(ξ̃(. . . )−Td
dis ·D− µCd

kp(t)
·Dkp(t)) + λ2 trD + λ3 trDkp(t) .

and maximize. The necessary conditions are

∂L

∂D
= 0,

∂L

∂Dkp(t)

= 0.
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We substite for L

1 + λ1

λ1

∂ξ̃

∂D
= Td

dis +
λ2

λ1
I, (37)

1 + λ1

λ1

∂ξ̃

∂Dkp(t)

= µCd
kp(t)

+
λ3

λ1
I. (38)

First we do the differentiation

∂ξ̃

∂D
= 4ν0D,

∂ξ̃

∂Dkp(t)

= 4ν1Ckp(t)Dkp(t) .

and eliminate the Lagrange multipliers. To do this we add (37) ·D + (38) ·Dkp(t) , and use
the constrains of incompressibility

1 + λ1

λ1
=

Td
dis ·D + µCd

kp(t)
·Dkp(t)

∂ξ̃
∂D ·D + ∂ξ̃

∂Dkp(t)

·Dkp(t)

=
ξ̃

2ξ̃
=

1

2
.

We take the trace of (37) and obtain

0 = trTd
dis − 3

λ2

λ1
⇒ λ2

λ1
= 0.

If we take the trace of (38), we obtain

λ3

λ1
=

2

3
ν1Dkp(t) ·Ckp(t) .

We get

Td
dis = 2ν0D, (39)

2ν1

(
Ckp(t)Dkp(t) −

1

3
(Dkp(t) ·Ckp(t))I

)
= µCd

kp(t)
. (40)

From the equations (39) it implies that

T = −pI + 2ν0D + µBd
kp(t)

.

Before the further calculation we remind that

Ḃkp(t) = LBkp(t) + Bkp(t)L
T − 2Fkp(t)Dkp(t)F

T
kp(t)

,

and compute the Oldroyd upper convected time derivative of the deviatoric part of Bkp(t) .

O

Bd
kp(t)

=

O(
Bkp(t) −

1

3
(trBkp(t))I

)
=

O
Bkp(t) −

1

3
(tr Ḃkp(t))I−

1

3
(trBkp(t))

O
I=

= −2Fkp(t)Dkp(t)F
T
kp(t)
− 1

3
tr(LBkp(t) + LTBkp(t))I+

+
2

3
tr(FT

kp(t)
Fkp(t)Dkp(t))I +

2

3
(trBkp(t))D =

= −2Fkp(t)Dkp(t)F
T
kp(t)
− 2

3
(D ·Bkp(t))I +

2

3
(Ckp(t) ·Dkp(t))I +

2

3
(trBkp(t))D.

Multiply (40) from the left by F−T
kp(t)

and from the right by FT
kp(t)

, we obtain

2ν1

(
Fkp(t)Dkp(t)F

T
kp(t)
− 1

3
(Ckp(t) ·Dkp(t))I

)
= µCd

kp(t)
.
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From the relations for the Oldroyd derivative of the deviatoric part of Bkp(t) we get

2ν1

(
−1

2

O

Bd
kp(t)
−1

3
(D ·Bd

kp(t)
)I +

1

3
(trBkp(t))D

)
= µBd

kp(t)
.

Note that the trace both sides of the equation is zero, in the three dimensional space it is five
scalar equations for six unknowns. We complete the system of equations with the equation
for incompressibility of the elastic response

det

(
Bkp(t) +

1

3
(trBkp(t))I

)
= 1.

We obtain the set of equations for nonlinear viscoelastic rate-type fluid model

divv = 0,

%v̇ = divT,

T = −pI + 2ν0D + µBd
kp(t)

,

2ν1

(
−1

2

O

Bd
kp(t)
−1

3
(D ·Bd

kp(t)
)I +

1

3
(trBkp(t))D

)
= µBd

kp(t)
, (41)

det

(
Bkp(t) +

1

3
(trBkp(t))I

)
= 1. (42)

Linearization of the viscoelastic model

By linearization of the elastic response we show that this model reduces to Oldroyd-B model.
Suppose that the left Cauchy-Green tensor is in the form Bkp(t) = I + A, where ‖A‖ =
ε, 0 < ε � 1. By linearization we understand that after substitution into the nonlinear
viscoelastic model we will neglect all term of the order O(ε2) and higher. We use the last
equation for incompressibility (42) and do the Taylor expansion of determinant. We obtain

1 = det
(
Bkp(t)

)
= det(I + A) = 1 + tr(A) +

1

2

(
(trA)2 − tr

(
A2
))

+O(ε3) ⇒

tr(A) =
1

2

(
tr
(
A2
)
− (trA)2

)
+O(ε3)︸ ︷︷ ︸

O(ε2)

.

From this it implies that

trBkp(t) = 3 +
1

2

(
tr
(
A2
)
− (trA)2

)
+O(ε3),

we obtain the relation for Bd
kp(t)

,

Bd
kp(t)

= Bkp(t) −
1

3
(trBkp(t))I = A− 1

6

(
tr
(
A2
)
− (trA)2

)
I +O(ε3)I.

Further we need to compute
O

Bd
kp(t)

.

O

Bd
kp(t)

= Ḃd
kp(t)
− LBd

kp(t)
−Bd

kp(t)
LT =

O
A −

1

3

(
Ȧ ·A− (trA)︸ ︷︷ ︸

O(ε2)

(tr Ȧ)
)
I +O(ε2).

Inserting all into (41) we get

µA + ν1

O
A= 2ν1D−

1

3
ν1

[(
2D− Ȧ

)
·A
]
I +O(ε2). (43)
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This model is ver similar to Oldroyd-B model, the difference is in the last term. We show
that this term is of the order O(ε2), and so we can neglect it. Take the scala product of (43)
with tensor A, we get

µ |A|2︸︷︷︸
O(ε2)

+ν1Ȧ ·A− ν1 (LA ·A + ALT ·A)︸ ︷︷ ︸
O(ε2)

= 2ν1(D ·A)− 1

3
ν1

[(
2D− Ȧ

)
·A
]

trA︸︷︷︸
O(ε2)

.

From this it implies that9 (
2D− Ȧ

)
·A = O(ε2).

We showed that the nonlinear viscoelatic model linearizes to Oldroyd-B model.

divv = 0,

%v̇ = divT,

T = −pI + 2ν0D + µA,

µA + ν1

O
A = 2ν1D,

and so derived thermodynamically compatible nonlinear viscoelastic model is in some sense
consistent with the well-known viscoelastic model.

Nonlinear two-component viscoelastic model
Let consider the material consisting of two components, to each component corresponds
one natural configuration kp1(t) a kp2(t) (see Figure (33)). We choose the entropy η =

κ(r) κ(t)

κ(p1(t))

κ(p2(t))

G1

G2

F

Fkp1(t)

Fkp2(t)

Figure 33: Two natural configurations

η̃(e, %,Bkp1(t)
,Bkp2(t)

), we can invert it and use the internal energy e = ẽ(η, %,Bkp1(t)
,Bkp2(t)

)
and concretely we choose

e = e0(η, %) +
µ1

2%

(
trBkp1(t)

− 3
)

+
µ2

2%

(
trBkp2(t)

− 3
)
,

9Note that from this we can read
Ȧ = 2D+O(ε),

which is expected.
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again we consider only isothermal processes and the incompressible material trD = trDkp1(t)
=

trDkp2(t)
= 0. After some calculation we obtain a relation for the rate of entropy production

ξ = (T− µ1Bkp1(t)
− µ2Bkp2(t)

) ·D + µ1C
d
kp1(t)

·Dkp1(t)
+ µ2C

d
kp2(t)

·Dkp2(t)

= Td
dis ·D + µ1C

d
kp1(t)

·Dkp1(t)
+ µ2C

d
kp2(t)

·Dkp2(t)
.

We choose the following constitutive relation for the rate of entropy production

ξ = ξ̃(D,Dkp1(t)
,Dkp2(t)

,Bkp1(t)
,Bkp2(t)

) = 2ν0|D|2 + 2ν1Dkp1(t)
·Bkp1(t)

Dkp1(t)
+

2ν2Dkp2(t)
·Bkp2(t)

Dkp2(t)
.

Again we observe that the rate of entropy production is non-negative and so the second law
of thermodynamics is satified. We define the Lagrange function

L(D,Dkp1(t)
,Dkp2(t)

) = ξ̃(. . . )+λ1(ξ̃(. . . )−Td
dis·D−µ1C

d
kp1(t)

·Dkp1(t)
−µ2C

d
kp2(t)

·Dkp2(t)
)+

λ2 trD + λ3 trDkp1(t)
+ λ4 trDkp2(t)

.

Necessary conditions for the maximum are

∂L

∂D
= 0,

∂L

∂Dkp1(t)

= 0,
∂L

∂Dkp2(t)

= 0.

We substitute for L

1 + λ1

λ1

∂ξ̃

∂D
= Td

dis +
λ2

λ1
I, (44)

1 + λ1

λ1

∂ξ̃

∂Dkp1(t)

= µ1C
d
kp1(t)

+
λ3

λ1
I, (45)

1 + λ1

λ1

∂ξ̃

∂Dkp2(t)

= µ1C
d
kp2(t)

+
λ4

λ1
I. (46)

Do the differentiation

∂ξ̃

∂D
= 4ν0D,

∂ξ̃

∂Dkp1(t)

= 4ν1Ckp1(t)
Dkp1(t)

,
∂ξ̃

∂Dkp2(t)

= 4ν2Ckp2(t)
Dkp2(t)

.

and eliminate the Lagrange multipliers. To do this we add (44)·D+(45)·Dkp1(t)
+(46)·Dkp2(t)

,
use the constrains of incompressibility and get

1 + λ1

λ1
=

Td
dis ·D + µ1C

d
kp1(t)

·Dkp1(t)
+ µ2C

d
kp2(t)

·Dkp2(t)

∂ξ̃
∂D ·D + ∂ξ̃

∂Dkp1(t)

·Dkp1(t)
+ ∂ξ̃

∂Dkp2(t)

·Dkp2(t)

=
ξ̃

2ξ̃
=

1

2
.

Now take the trace of (44) and obtain

0 = trTd
dis − 3

λ2

λ1
⇒ λ2

λ1
= 0.

By taking the traces of (45) and (46), we obtain

λ3

λ1
=

2

3
ν1Dkp1(t)

·Ckp1(t)
,

λ4

λ1
=

2

3
ν2Dkp2(t)

·Ckp2(t)
.
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We get

Td
dis = 2ν0D, (47)

2ν1

(
Ckp1(t)

Dkp1(t)
− 1

3
(Dkp1(t)

·Ckp1(t)
)I

)
= µ1C

d
kp1(t)

, (48)

2ν2

(
Ckp2(t)

Dkp2(t)
− 1

3
(Dkp2(t)

·Ckp2(t)
)I

)
= µ2C

d
kp2(t)

. (49)

From (47) it implies that

T = −pI + 2ν0D + µ1B
d
kp1(t)

+ µ2B
d
kp2(t)

.

As in the case of model with one natural configuration it holds

O

Bd
kp1(t)

= −2Fkp1(t)
Dkp1(t)

FT
kp1(t)

− 2

3
(D ·Bkp1(t)

)I +
2

3
(Ckp1(t)

·Dkp1(t)
)I +

2

3
(trBkp1(t)

)D,

O

Bd
kp2(t)

= −2Fkp2(t)
Dkp2(t)

FT
kp2(t)

− 2

3
(D ·Bkp2(t)

)I +
2

3
(Ckp2(t)

·Dkp2(t)
)I +

2

3
(trBkp2(t)

)D

Multiplying (48) from the left by F−T
kp1(t)

and from the right by FT
kp1(t)

, and (49) from the left

by F−T
kp2(t)

and from the right by FT
kp2(t)

, we get

2ν1

(
Fkp1(t)

Dkp1(t)
FT
kp1(t)

− 1

3
(Bkp1(t)

·Dkp1(t)
)I

)
= µ1B

d
kp1(t)

,

2ν2

(
Fkp2(t)

Dkp2(t)
FT
kp2(t)

− 1

3
(Bkp2(t)

·Dkp2(t)
)I

)
= µ2B

d
kp2(t)

.

From the relations for Oldroyd derivatives of Bd
kp1(t)

a Bd
kp2(t)

we obtain

2ν1

(
−1

2

O

Bd
kp1(t)

−1

3
(D ·Bd

kp1(t)
)I +

1

3
(trBkp1(t)

)D

)
= µ1B

d
kp1(t)

,

2ν2

(
−1

2

O

Bd
kp2(t)

−1

3
(D ·Bd

kp2(t)
)I +

1

3
(trBkp2(t)

)D

)
= µ2B

d
kp2(t)

.

The trace of both equations is zero, we have 2 × 5 scalar equations for 2 × 6 unknowns.
We complete the system of equations with two equations for incompressibility of two elastic
responses

det

(
Bkp1(t)

+
1

3
(trBkp1(t)

)I

)
= 1,

det

(
Bkp2(t)

+
1

3
(trBkp2(t)

)I

)
= 1.
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We obtain the governing equations for the nonlinear two-component viscoelastic rate-type
fluid model

divv = 0,

%v̇ = divT,

T = −pI + 2ν0D + µ1B
d
kp1(t)

+ µ2B
d
kp2(t)

,

2ν1

(
−1

2

O

Bd
kp1(t)

−1

3
(D ·Bd

kp1(t)
)I +

1

3
(trBkp1(t)

)D

)
= µ1B

d
kp1(t)

,

2ν2

(
−1

2

O

Bd
kp2(t)

−1

3
(D ·Bd

kp2(t)
)I +

1

3
(trBkp2(t)

)D

)
= µ2B

d
kp2(t)

,

det

(
Bkp1(t)

+
1

3
(trBkp1(t)

)I

)
= 1,

det

(
Bkp2(t)

+
1

3
(trBkp2(t)

)I

)
= 1.
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Homework

This is not full list of homework. It is just to complete the lecture notes.

Homework 1. Under the assumption

ξ = Td ·Dd + (m+ p) divv +
q · ∇θ
θ

, (50)

derive Navier-Stokes equations by principle of maximization of entropy production

max
(50)+Td,m,q

ξ̃(Td,m,q),

where ξ̃ is given by

ξ̃ =
1

2µ
|Td|2 +

3

2µ+ 3λ
(m+ p)2 +

1

K

|q|2

θ
.

Homework 2. Consider the following model

T = −pI + ν∞ +
ν0 − ν∞

(1 + Γ2|D|2)
1−n
2

D,

where ν0, ν∞,Γ > 0. Explain which non-Newtonian behaviour exhibits fluid described by that
model for n ∈ R.
Homework 3. Show that constitutive relation for Bingham fluid

|S| ≤ τ∗ ⇔ D = 0,

|S| > τ∗ ⇔ S =
τ∗D
|D|

+ 2µ(|D|2)D

is equivalent to
2µ(|D|2)

(
τ∗ + (|S| − τ∗)+

)
D = (|S| − τ∗)+S,

where τ∗ > 0, µ(·) : R+
0 → R+

0 and x+ = max{0, x}.
Homework 4. Use the principle of maximization of entropy production ξ = ξ̃(Td,Dd) for
Td ∈ A, where

A :=
{
Td ∈ R3×3

sym, ξ = Td : Dd
}
.

In two cases for ξ̃ given by:

1. ξ̃ = |Td|r/(r−1),

2. ξ̃ = |Dd|2−r|Td|2.
Homework 5. Stokes fluid is given by constitutive relation

T = −pI + 2µD + αD2,

where α and µ are constant. Explain which non-Newtonian behaviour exhibits Stokes fluid.

Homework 6. Consider Korteweg’s model in unidirectional velocity field v = (u(y), 0, 0).
Show that model exhibits normal stress differences

T11 − T22 6= 0,

T22 − T33 6= 0.
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