
SINGULAR POINTS

OF COMPLEX ALGEBRAIC CURVES

Arkadiusz P loski

December 2013

These notes are based on my introductory lectures on plane curve singularities given at
Institute of Mathematics of Maria Curie-Sk lodowska University in autumn 2013.

Contents

1 Plane affine curves and polynomial automorphisms of C2 1
1.1 Degree and asymptotic directions . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Polynomial automorphisms of C2 . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Singular points and tangents 5

3 Formal power series 7

4 Parametrizations 9

5 Local analytic curves 11

6 The Milnor number 12

7 Puiseux characteristic 14

1 Plane affine curves and polynomial automorphisms of C2

1.1 Degree and asymptotic directions

Let F = F (X,Y ) =
∑
cαβX

αY β be a polynomial with complex coefficients cαβ . We put

suppF = {(α, β) ∈ N2 : cαβ 6= 0},

degF = sup{α+ β : (α, β) ∈ suppF},

F+ =
∑

α+β=deg F

XαY β.

By conventions: deg 0 = −∞, 0+ = 0. We have degFG = degF + degG, (FG)+ = F+G+.
The ring C[X,Y ] of polynomials in two variables is an UFD (unique factorization do-

main). In particular F is an irreducible polynomial if and only if F is a prime element of
C[X,Y ]. Using the algorithm of the greatest common divisor (see, for example M. Bôcher,
Introduction to Higher Algebra, Chapter XVI) we check
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Lemma 1.1 If F = F (X,Y ) and G = G(X,Y ) have no common factor of positive degree
in Y then a(X) = A(X,Y )F (X,Y ) +B(X,Y )G(X,Y ) in C[X,Y ] with a(X) 6= 0.

In what follows we identify the polynomial F = F (X,Y ) and the polynomial function
C2 3 (x, y) 7→ F (x, y) ∈ C. We put

V (F ) = {(x, y) ∈ C : F (x, y) = 0} .

Lemma 1.2

(a) If F 6= const then V (F ) and C2 \ V (F ) are infinite.

(b) If F,G ∈ C[X,Y ] are relatively prime then the set V (F ) ∩ V (G) is finite.

(c) If F has no multiple factors and V (F ) ⊂ V (G) then F divides G.

We leave to the reader the simple proof of Lemma 1.2 (to check (b) use Lemma 1.1).
A subset V ⊂ C2 is an affine plane algebraic curve (an affine curve in short) if there is a

polynomial F 6= const such that V = V (F ). If F has no multiple factors then we say that
F is a minimal polynomial of the affine curve V = V (F ). Any two minimal polynomials of
the curve V differ only by a constant factor. An affine curve is irreducible if its minimal
polynomial is irreducible. Note that V (FG) = V (F ) ∪ V (G). We check easily

Lemma 1.3

(a) V is irreducible if and only if there are no two affine curves V ′ and V ′′ such that
V = V ′ ∪ V ′′ and V ′, V ′′ 6= V .

(b) Let V ⊂ C2 be an affine curve. Then V has a decomposition V = V1 ∪ . . .∪ Vs, where
each Vi is an irreducible curve and Vi 6⊂ Vj for i 6= j. This decomposition is unique
up to the order in which V1, . . . , Vs are written.

To define the notion of projective line we define an equivalence relation on the set C2\{(0, 0)}
by setting

(x, y) ∼ (x′, y′)

if there is a nonzero complex number λ such that x′ = λx and y′ = λy. Then we define

P1(C) = C2 \ {(0, 0)}
/
∼ .

Let V be an algebraic curve with minimal polynomial F = F (X,Y ). Then we put

deg V = degF ,

V∞ = {(k : l) ∈ P1(C) : F+(k, l) = 0} (the set of asymptotic directions of V ).

Theorem 1.4 (Geometric characterization of degree)
Let V be an affine curve of degree n = deg V and let L be a line such that L 6⊂ V . Then

(a) #(V ∩ L) ≤ n,

(b) if V∞ ∩ L∞ 6= ∅ then #(V ∩ L) < n,

(c) if V∞∩L∞ = ∅ then the set of lines L′ parallel to L such that #(V ∩L′) < n is finite.
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Proof of Theorem 1.4
Let F be the minimal polynomial of V . Then degF = n and the set V∞ has the equation
F+ = 0. Let X = a+ kT , Y = b+ lT be a parametrization of the line L. Then L∞ = {(k :
l)}. Let

Φ(T ) = F (a+ kT, b+ lT ) ∈ C[T ] .

It is easy to check that

(1) Φ(T ) = F+(k, l)Tn + . . .+ F (a, b),

(2) #(V ∩ L) = #Φ−1(0).

One has Φ(T ) 6= 0 because we have assumed L 6⊂ V . From (1) and (2) we get immediately
properties (a) and (b) of Theorem 1.4. To check (c) we need

Lemma 1.5 If F ∈ C[X,Y ] has no multiple factors and F+(k, l) 6= 0 then the polynomials
F and DF := k(∂F/∂X) + l(∂F/∂Y ) are relatively prime.

Proof of Lemma 1.5
The condition F+(k, l) 6= 0 implies degDF = degF − 1. Let F = F1 . . . Fr with irreducible
factors Fi. Then DF = (DF1)F2 . . . Fr + . . . + F1 . . . Fr−1DFr. Suppose that F and DF
have a common factor, we may assume that it is the polynomial F1. If F1 divides DF
then F1 divides (DF1)F2 . . . Fr and consequently DF1 since F1 and F2 . . . Fr are coprime.
Clearly F+

1 divides F+ and F+
1 (k, l) 6= 0. By the remark made at the beginning of the proof

deg(DF1) = degF1 − 1. A contradiction since from the fact that F1 divides DF1 it follows
that degF1 ≤ deg(DF1)

Now, we may continue the proof of Theorem 1.4. We have to check property (c) of
Theorem 1.4. Let us consider the set W := V (F ) ∩ V (k(∂F/∂X) + l(∂F/∂Y )). It is
finite by Lemmas 1.5 and 1.2 (b). Let N = #W and let L1, . . . , LN be the lines passing
through the points of W and parallel the line L. Let L′ be a line parallel to L and different
from L1, . . . , LN . We claim that #(V ∩ L′) = n. Let X = a′ + kT , Y = b′ + lT be a
parametrization of L′ and consider the polynomial

F (a′ + kT, b′ + lT ) = F+(k, l)Tn + . . .+ F (a′, b′) .

It is a polynomial of degree n. All roots of this polynomial are simple (i.e. of multiplicity 1).
Indeed, if the polynomial F (a′ + kT, b′ + lT ) had a root t0 ∈ C of multiplicity > 1 then the
point (x0, y0) = (a′ + kt0, b

′ + lt0) would lie in the set W , which contradicts the assumption
W ∩ L′ = ∅. Thus we get #(V ∩ L′) = n because different roots of F (a′ + kT, b′ + lT )
correspond to different points of V ∩ L′

1.2 Polynomial automorphisms of C2

A polynomial map F : C2 → C2 is called polynomial automorphism if F−1 : C2 → C2

exists and is also a polynomial map. We denote by Aut(C2) the group of polynomial
automorphisms of C2. Examples

1) F (X,Y ) = (aX + bY + c, a1X + b1Y + c1), ab1 − a1b 6= 0

2) F (X,Y ) = (aX, bY + P (X)), ab 6= 0, P (X) is a polynomial of degree > 1, or
F (X,Y ) = (aX +Q(Y ), bY ), where Q(Y ) is a polynomial of degree > 1.
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Theorem 1.6 (Jung-Van der Kulk)
Any polynomial automorphism is a composition of automorphisms of type 1) and 2).

Proof. See A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture.
Progress in Mathematics, vol. 190. Birkhäuser 2000.

For any polynomial map F = (F1, F2) we set jacF = (∂F1/∂X)(∂F2/∂Y )−(∂F1/∂Y )(∂F2/∂X).
Let F : C2 → C2 be a polynomial automorphism. Then F−1 ◦ F = identity and

((jacF )−1 ◦ F )(jacF ) = 1 in C[X,Y ] .

Thus jacF = const 6= 0.

Jacobian Conjecture (Keller 1939)
Let F : C2 → C2 be a polynomial map such that jacF = const 6= 0. Then F is a polynomial
automorphism.

This conjecture is still open, see S. Smale, Mathematical Problems for the Next Century.
Mathematical Intelligencer, vol. 20 (Springer 1998), pp. 7–15.

Polynomial curves and automorphisms

An irreducible curve V ⊂ C2 is a polynomial curve if there exists a pair of polynomials
P (T ), Q(T ) ∈ C[T ], in one variable T , such that

(i) (x, y) ∈ V if and only if there exists t ∈ C such that x = P (t), y = Q(t).

(ii) If t1 6= t2 then (P (t1), Q(t1)) 6= (P (t2), Q(t2)).

Theorem 1.7 Let V be a polynomial curve with parametrization P (T ) = aTn+. . ., Q(T ) =
bTn + . . ., where a 6= 0 or b 6= 0 then deg V = n and V∞ = {(a : b)}.

Proof. We may assume that degP < degQ (the case degP = degQ we treat analogously).
Then a = 0 and b 6= 0, so (a : b) = (0 : 1). To calculate deg V and V∞ let us consider
a line L such that L 6⊂ V . If L = V (pX + qY + r), where p, q, r ∈ C, p 6= 0 or q 6= 0
then #(V ∩ L) = #{t ∈ C : pP (t) + q Q(t) + r = 0}. Since L 6⊂ V the polynomial
pP (t) + q Q(t) + r is nonzero of degree ≤ degQ = n, the equality holding if and only if
q 6= 0. We get then

(3) #(V ∩ L) ≤ n,

(4) if L∞ = {(0 : 1)} then #(V ∩ L) < n.

To finish the proof it suffices to check

(5) if L∞ 6= {(0 : 1)} then there exists a line L′ parallel to L such that #(V ∩ L′) = n.

To check (5) observe that L∞ 6= {(0 : 1)} if and only if q 6= 0. Suppose q 6= 0 and let
t1, . . . , ts (s ≤ n) be all roots of the polynomial p(dP/dT ) + q(dQ/dT ). Let r′ ∈ C be such
that pP (tj)+ q Q(tj) 6= r′ for j = 1, . . . , s. Let L′ = V (pX+ qY = r′). Then #(V ∩L′) = n
since the polynomial pP (T ) + q Q(T ) + r′ is of degre n and has no multiple roots. Now
Theorem 1.7 follows from Theorem 1.4

Let us present some applications to polynomial automorphisms. The following lemma
is an immediate consequence of definitions.
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Lemma 1.8 Let F = (F1, F2) : C2 → C2 be a polynomial automorphism and let F−1 =
(G1, G2). Then V (F1) and V (F2) are polynomial curves with parametrizations (G1(0, Y2), G2(0, Y2))
and (G1(Y1, 0), G2(Y1, 0)) respectively.

For any polynomial automorphism F = (F1, F2) we set degF = max(degF1,degF2).

Theorem 1.9 For any F ∈ Aut(C2): degF−1 = degF .

Proof. We have degF = max(degF1,degF2) = max(deg V (F1),deg V (F2)). By Theo-
rem 1.7 we get deg V (F1) = max(degG1(0, Y2),degG2(0, Y2)) ≤ max(degG1,degG2) =
degF−1 and deg V (F2) = max(degG1(Y1, 0),degG2(Y1, 0)) ≤ max(degG1,degG2) = degF−1.
Therefore degF ≤ degF−1. Applying the inequality degF ≤ degF−1 to the automorphism
F−1 we get degF−1 ≤ deg(F−1)−1 = degF . Consequently degF = degF−1

Theorem 1.10 (Jelonek). Let F 6= id be a polynomial automorphism. If an affine curve
V ⊂ C2 lies in the set FixF = {(x, y) ∈ C2 : F (x, y) = (x, y)} then #V∞ = 1.

Proof. We may assume that deg V > 1. Then degF1 > 1 and degF2 > 1. We have
V ⊂ {(x, y) ∈ C2 : F1(x, y)−x = 0} = V (F1−X). The curve V (F1−X) has one asymptotic
direction since degF1 > 1 and V (F1) being polynomial curve has one asymptotic direction
by Theorem 1.7. Thus #V∞ = 1

Theorem 1.11 (Jelonek). Let W ⊂ C2 be an affine curve with at least two asymptotic
directions. Suppose that F, F̃ ∈ Aut(C2) and F |W = F̃ |W . Then F = F̃ .

Proof. The condition F |W = F̃ |W implies that W ⊂ Fix(F̃−1 ◦F ). Since #W ≥ 2 we get
F̃−1 ◦ F = id by Theorem 1.10 and F = F̃

The reader will find more result of this type in Z. Jelonek, Sets determining polynomial
automorphisms of C2. Bull. Polish Acad. Sci. Math. 37, 1989.

2 Singular points and tangents

Let F = F (X,Y ) ∈ C[X,Y ] be a nonconstant polynomial. For any p = (a, b) ∈ C2 we write

F =
∑

c
(p)
α,β(X − a)α(Y − b)β .

We define
ordpF = inf{α+ β : c(p)

α,β 6= 0} (the order of F at p)

and
inpF =

∑
α+β=ordpF

c
(p)
α,β(X − a)α(Y − b)β (the initial form of F at p) .

We say that F is homogeneous in X − a and Y − b if F = inpF for p = (a, b).
Let V ⊂ C2 be an affine curve with minimal polynomial F = F (X,Y ). We put ordpV =

ordpF (the multiplicity of V at p). The lines passing through p given by the equation
inpF = 0 are called tangents to V at p. Thus the curve V has at most ordpV tangents at
p. We put Cp(V ) = V (inpF ) (the tangent cone to V at p).

Theorem 2.1 (Geometrical characterization of multiplicity)
Let V be an affine curve of degree n > 0 and let m = ordpV be the multiplicity of V at a
given point p ∈ V . Suppose that all components of V passing through p are of degree > 1.
Let L be a line passing through p. Then we have
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(a) #((V \ {p}) ∩ L) ≤ n−m,

(b) #((V \ {p}) ∩ L) < n−m if L ∈ Cp(V ),

(c) the set of lines L passing through p such that #((V \ {p}) ∩ L) < n−m is finite.

Proof
Let F = F (X,Y ) be the minimal polynomial of V . For any line L : X = a+kT , Y = b+ lT
passing through p = (a, b) we consider ΦL(T ) = F (a + kT, b + lT ). It is easy to see that
ΦL(T ) = F+(k, l)Tn + . . .+ (inpF )(k, l)Tm. Observe that

• ord0ΦL ≥ m with equality if and only if L /∈ Cp(V ),

• #((V \ {p}) ≤ the number of nonzero roots of ΦL(T ) = 0 ≤ n −m, the equality is
strict if ord0Φ > m.

This proves properties (a) and (b). To prove (c) we need the following lemma.

Lemma 2.2 Suppose that F = F (X,Y ) is of degree n > 1 and has no multiple factors.
Let p = (a, b) ∈ V (F ) and suppose that there is no line L such that p ∈ L ⊂ V (F ). Then F
and DpF := (X − a) ∂F

∂X + (Y − b)∂F
∂Y are relative prime.

We leave the proof of Lemma 2.2 to the reader (cf. the proof of Lemma 1.5).
We are now able to prove property (c). Note that by Lemma 2.2 the set V (F )∩V (DpF )

is finite. Let us consider the lines passing though p and satisfying the conditions:

• V∞ ∩ L∞ = ∅,

• L /∈ Cp(V ),

• L ∩ V (F ) ∩ V (DpF ) = {p}.

Obviously all but finite number of lines passing through p satisfy the above conditions.
From the first two conditions we infer that the polynomial ΦL(T ) is of degree n and has
n−m nonzero roots counted with multiplicities. We have to check that the third condition
implies that nonzero roots of ΦL(T ) are simple. To this purpose suppose that ΦL(t0) = 0 and
(dΦL/dT )(t0) = 0 for a t0 ∈ C. Let x0 = a+kt0, y0 = b+ lt0. Then, we have F (x0, y0) = 0,
k ∂F

∂X (x0, y0) + l ∂F
∂Y (x0, y0) = 0 and consequently (x0, y0) ∈ L ∩ V (F ) ∩ V (DpF ) = {(a, b)}

which implies t0 = 0. This proves (c)
As an example of the above characterization of multiplicity we will deduce the following

Theorem 2.3 Let V be a polynomial curve with parametrization (P (T ), Q(T )) and p =
(P (t0), Q(t0)) ∈ V . Then ordPV = min(ordt0P, ordt0Q).

Proof. We may assume that t0 = 0, p = (P (0), Q(0)) = (0, 0) and deg V > 1. By
Theorem 1.7 we have that n := deg V = max(degP,degQ). Let m = min(ord0P, ord0Q).
To check that ord0V = m it sufficies to prove that for any line L passing through 0 we have
#((V \ {0})∩L) ≤ n−m with equality for all but finite number of lines passing through 0.

Let L be a line with equation lX−kY = 0. The points of the set (V \{0})∩L correspond
to the nonzero roots of the equation l P (T ) − k Q(T ) = 0. Therefore #((V \ {0}) ∩ L) ≤
deg(l P (T ) − k Q(T )) − ord0(l P (T ) − k Q(T )) ≤ max(degP,degQ) −min(degP,degQ) =
deg V − m. To finish the proof we have to show that for all but finite number of lines
L = V (lX − kY ) the equation l P (T )− k Q(T ) = 0 has exactly n−m nonzero roots.

The reader will check
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Lemma 2.4 Suppose that the polynomials P (T ), Q(T ) ∈ C[T ] are linearly independent.
Then P (T )Q′(T )− P ′(T )Q(T ) 6= 0 in C[T ].

Since deg V > 1 the polynomials P (T ) and Q(T ) are linearly independent and the set
{t ∈ C : P (t)Q′(t) − P ′(t)Q(t) = 0} is finite. Now, it suffices to observe that for all but a
finite number of lines L = V (lX − kY ) the following conditions hold

• deg(l P (T )− k Q(T )) = n,

• ord0(l P (T )− k Q(T )) = m.

• Let t1, . . . , ts be nonzero roots of the equation P (T )Q′(T )− P ′(T )Q(T ) = 0. Then L
does not pass through the points (P (t1), Q(t1)), . . ., (P (ts), Q(ts)).

Let V be an affine curve with minimal polynomial F = F (X,Y ). A point p = (a, b) ∈ V is
a singular point of V if

∂F

∂X
(a, b) =

∂F

∂Y
(a, b) = 0 .

Obviously p is singular ⇔ ordpV > 1.

Proposition 2.5 The set of singular points SingV of the curve V is finite.

Proof. Clearly SingV ⊂ V (F ) ∩ V (k ∂F
∂X + l ∂F

∂Y ). Use Lemma 1.5

Proposition 2.6 If a polynomial curve V has a regular parametrization (P (T ), Q(T )) i.e.
(P ′(t), Q′(t)) 6= (0, 0) for t ∈ C then SingV = ∅.

Proof. Use Theorem 2.3

To end with let us quote

Theorem 2.7 (Lin-Zaidenberg)
A polynomial curve has at most one singular point.

Proof. See V. Lin and M. Zaindenberg, An irreducible simply connected algebraic curve
in C2 is equivalent to a quasihomogeneous curve. Dokl. Akad. Nauk SSSR 271(1983),
1048-1052.

3 Formal power series

A formal power series in two variables X,Y is an expression of the form
∑
cαβX

αY β where
cαβ ∈ C for α, β = 0, 1, . . .. The set of all power series in X,Y is denoted by C[[X,Y ]]. We
define

addition,
∑

aαβX
αY β +

∑
bαβX

αY β =
∑

(aαβ + bαβ)XαY β,

scalar mult., a
∑

aαβX
αY β =

∑
(a aαβ)XαY β,

multiplication,
(∑

aαβX
αY β

) (∑
bαβX

αY β
)

=
∑
α,β

( ∑
α1+α2=α
β1+β2=β

aα1β1bα2β2

)
XαY β.

With these operators C[[X,Y ]] becomes a C−algebra that includes the polynomial algebra
C[X,Y ]. Let F (X,Y ) =

∑
cαβX

αY β ∈ C[[X,Y ]]. We put

F (0, 0) = c00,
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ordF = inf{α+ β : cαβ 6= 0},

inF =
∑

α+β=ord F

cαβX
αY β .

By conventions: ord 0 = +∞, in 0 = 0. We have ord(F + G) ≥ inf{ordF, ordG} with
equality if ordF 6= ordG and ordFG = ordF + ordG. The ring C[[X,Y ]] has no zero
divisors. A power series U = U(X,Y ) is a unit in C[[X,Y ]] (i.e. UV = 1 for a power series
V = V (X,Y )) if and only if U(0, 0) 6= 0. We write F ∼ G if there is a unit U such that
G = UF . If G = G(X1, Y1) ∈ C[[X1, Y1]] and F1 = F1(X,Y ), F2 = F2(X,Y ) are without
constant terms then the substitution G(F1(X,Y ), F2(X,Y )) is well defined and has usual
properties. Moreover we define ∂

∂X

∑
cαβX

αY β =
∑
αcαβX

α−1Y β, ∂
∂Y

∑
cαβX

αY β =∑
βcαβX

αY β−1. If F =
∑
cαβX

αY β then

cαβ =
1

α!β!
∂α+βF

∂Xα∂Y β
(0, 0) .

Similarly, we define the formal power series in one variable X. The set of all power series
of the form

∑
aνX

ν is denoted by C[[X]]. Clearly C[[X]] ⊂ C[[X,Y ]] and any power series
F = F (X,Y ) ∈ C[[X,Y ]] can be written in the form F =

∑
Fν(X)Y ν where Fν(X) ∈

C[[X]] for ν ≥ 0.
Let r, s > 0 and put |F |r,s =

∑
|cαβr

αsβ for F =
∑
cαβY

αY β. A power series F is
convergent if |F |r,s < +∞ for some r, s > 0. The set of convergent power series is denoted
C{X,Y }. Then C{X,Y } is a subalgebra of C[[X,Y ]]. If G ∈ C{X1, Y1} and F1, F2 ∈
C{X,Y } are without constant terms then G(F1, F2) ∈ C{X,Y }. Moreover, ∂

∂X C{X,Y } ⊂
C{X,Y } and ∂

∂Y C{X,Y } ⊂ C{X,Y }. A power series U = U(X,Y ) ∈ C{X,Y } is a unit in
C{X,Y } if and only if it is a unit in C[[X,Y ]].

Let k > 0 be an integer. We say that F =
∑
Fν(X)Y ν ∈ C[[X,Y ]] is distinguished in

Y (with order k) if ordF (0, Y ) = k i.e. F (0, Y ) ∼ Y k. A polynomial Y k + A1(X)Y k−1 +
. . . + Ak(X)C[[X]][Y ] is called distinguished if A1(0) = . . . = Ak(0) = 0. In what follows
we formulate the theorems for the case of convergent power series.

Theorem 3.1 (Späth Division Theorem)
Let F = F (X,Y ) ∈ C{X,Y } be distinguished in Y with order k > 0. Then for every power
series G = G(X,Y ) ∈ C{X,Y } there exist unique Q ∈ C{X,Y } and unique R ∈ C{X}[Y ]
with degY R < k such that

G = QF +R .

Proof. O. Zariski and P. Samuel, Commutative Algebra, vol. II.

Theorem 3.2 (Weierstrass’ Preparation Theorem)
Let F = F (X,Y ) ∈ C{X,Y } be distinguished in Y with order k > 0. Then there exists
unique distinguished polynomial W = W (X,Y ) = Y k +A1(X)Y k−1 + . . .+Ak(X) of degree
k such that F ∼W .

Proof. We deduce Theorem 3.2 from Theorem 3.1. Let us apply the division theorem to
G = Y k and F . Then Y k = QF + R where R ∈ C{X}[Y ] is of degree in Y less than k.
Let W = Y k − R. Then W = QF and ordW (0, Y ) = ordQ(0, Y ) + ordF (0, Y ). Since
ordW (0, Y ) ≤ k and ordF (0, Y ) = k then we get ordQ(0, Y ) = 0 i.e. Q(0, 0) 6= 0 and
ordW (0, Y ) = k. Thus F ∼ W . The uniqueness follows from the uniqueness of Q and R
in the division theorem

8



Corollary 3.3 (Implicit function theorem)
Let F = F (X,Y ) ∈ C{X,Y }, where F (0, 0) = 0 and ∂F

∂Y (0, 0) 6= 0. Then there is exactly
one series ϕ ∈ C{X} such that ϕ(0) = 0 and F (X,ϕ(X)) = 0.

Theorem 3.4 (Hensel’s lemma)
Let F (X,Y ) = Y n + F1(X)Y n−1 + . . . + Fn(X) ∈ C{X}[Y ] be a polynomial of degree
n > 0 such that F (0, Y ) = (Y − c1)n1 . . . (Y − cs)ns, where ci 6= cj for i 6= j. Then
F (0, Y ) = W1(X,Y − c1) . . .Ws(X,Y − c1) in C{X}[Y ] where Wj = Wj(X,Yj) are distin-
guished polynomials of degree nj for j = 1, . . . , s.

Proof. We proceed by induction: for s = 1 there is nothing to show. Let s > 1 and
consider F (X,Y1 + c1) ∈ C{X,Y1}. It is a distinguished in Y1 power series with order
n1 > 0. Therefore F (X,Y1 + c1) = W1(X,Y1)Q(X,Y1) where Q(X,Y1) is a unit. We check
that Q(X,Y1) is a polynomial in Y1 and F (X,Y ) = W1(X,Y − c1)Q(X,Y − c1). We have
Q(0, Y − c1) = (Y − c′2)n2 . . . (Y − c′s)

ns where c′2 = c2 − c1, . . ., c′s = cs − c1. If suffices to
apply the induction hypothesis to Q(X,Y − c1)

Corollary 3.5 Suppose that the polynomial F (X,Y ) = Y n + F2(X)Y n−2 + . . .+ Fn(X) ∈
C{X}[Y ], n > 1 is not distinguihed i.e. F (0, Y ) 6= Y n (note that the coefficient of Y n−1 is
zero!). Then F is reducible i.e. it is a product of polynomials of lower degree.

Proof. The polynomial F (0, Y ) ∈ C[Y ] has at least two different roots in C (if F (0, Y ) =
(Y − c)n with c 6= 0 then the coefficient of Y n−1 is 6= 0). Use Hensel’s lemma

Theorem 3.6 (Puiseux’ Theorem, first version)
Let F (X,Y ) = Y n + F1(X)Y n−1 + . . . + Fn(X) ∈ C{X}[Y ]. Then there exists an integer
e > 0 and a power series ψ(T ) of one variable T such that F (T e, ψ(T )) = 0.

Proof. Suppose that n > 1 and that Puiseux’ theorem is true for all polynomials of
degree < n. Substituting Ỹ = Y + 1

nF1(X) we get F̃ (X, Ỹ ) = Ỹ n+F̃2(X)Ỹ n−2+. . .+F̃n(X).
Therefore we may assume in the sequel that F1(X) = 0. If F (0, Y ) 6≡ Y n then F is reducible
by Corollary 3.5 and the theorem is true for F by induction hypothesis. Let us suppose that
F is distinguished and F (X,Y ) 6≡ Y n. Let I = {i ∈ [2, n] : Fi(X) 6= 0 in C{X}} and write
mini∈I{1

i ordFi} = p
q with coprime integers p, q > 0. Let X1, Y1 be new variables. Inserting

X = Xq
1 and Y = Xp

1Y1 to F (X,Y ) we get F (Xq
1 , X

p
1Y1) = Xpn

1 Y p
1 +F2(Xq

1)Xp(n−2)
1 Y n−2

1 +
. . .+Fn(Xq

1) = Xpm
1 F1(X1, Y1) in C{X1, Y1} since ordFi(Xa

1 )Xp(n−i)
1 = (ordFi)q+p(n−i) ≥

(ipq )q+ p(n− i) = pn for i ≥ 2. Moreover, there is i ≥ 2 such that ordFi(X
q
1)Xp(n−i)

1 = pn.
Therefore the polynomial F1(X1, Y1) = Y n

1 + . . . satisfies the assumptions of Corollary 3.5
and is reducible. Applying the induction hypothesis to a factor of F1(X1, Y1) we get an
integer e1 > 0 and a power series ψ1(T ) such that F1(T e1 , ψ1(T )) = 0. Consequently
F (T e1q, T e1pψ1(T )) = 0 and it suffices to take e = e1q and ψ(T ) = T e1pψ1(T ).

4 Parametrizations

Let T be a variable. A parametrization is a pair (ϕ(T ), ψ(T )) of convergent power series such
that ϕ(0) = ψ(0) = 0 and ϕ(T ) 6= 0 or ψ(T ) 6= 0. Two parametrizations (ϕ(T ), ψ(T )) and
(ϕ1(T1), ψ1(T1)) are equivalent if there exists a convergent power series τ(T ), ord τ(T ) = 1
such that ϕ(T ) = ϕ1(τ(T )), ψ(T ) = ψ1(τ(T )). A parametrization (ϕ(T ), ψ(T )) is good if
there does not exist τ(T ), ord τ(T ) > 1 and a parametrization (ϕ1(T1), ψ1(T1)) such that
ϕ(T ) = ϕ1(τ(T )), ψ(T ) = ψ1(τ(T )).
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Property 4.1 Any parametrization (ϕ(T ), ψ(T )) with ϕ(T ) 6= 0 is equivalent to a parame-
trization of the form (Tn

1 , ψ1(T1)).

Proof. Let n = ordϕ(T ). Write ϕ(T ) = TnU(T ) with U(0) 6= 0. Using Hensel’s lemma we
check that there exists a power series V (T ) such that U(T ) = V (T )n. Let τ(T ) = T V (T ).
Since ord τ(T ) = 1 we may write ψ(T ) = ψ1(τ(T )) where ψ1(T1) is a power series. The
parametrization (ϕ(T ), ψ(T )) is equivalent to the parametrization (Tn

1 , ψ1(T1))

Property 4.2 A parametrization of the form (Tn, c1T
n1 +c2T

n2 + . . . ) where c1, c2, . . . 6= 0
is good if and only if gcd(n, n1, n2, . . .) = 1.

We leave to the reader the proof of Property 4.2.
A parametrization of the form (Tn, c1T

n1 + c2T
n2 + . . .), where gcd(n, n1, n2, . . .) = 1

is called Puiseux’ parametrization. The expression c1Xn1/n + c2X
n2/n + . . . called Puiseux’

series is frequently used instead of Puiseux parametrization. Let U(n) = {ε ∈ C : εn = 1}.

Property 4.3 Let (Tn, ψ(T )) be a Puiseux’ parametrization. Then ψ(ε1T ) = ψ(ε2T ) for
ε1, ε2 ∈ U(n) implies ε1 = ε2.

Proof. From ψ(ε1T ) = ψ(ε2T ) it follows ψ(εT ) = ψ(T ) where ε = ε1ε
−1
2 . Therefore

it suffices to check that ψ(εT ) = ψ(T ) implies ε = 1. Let ψ(T ) = c1T
n1 + c2T

n2 + . . .
with c1, c2, . . . 6= 0. From ψ(εT ) = ψ(T ) we get εn1 = 1, εn2 = 1, . . .. Since εn = 1
and n, n1, n2, . . . have no common factor greater than 1, we can find an integer m and
integers a, a1, . . . , am such that an + a1n1 + . . . + amnm = 1. Consequently, we get ε =
εan+a1n1+...+amnm = (εn)a(εn1)a1 . . . (εnm)am = 1

Proposition 4.4 Let (Tn, ψ(T )) be a Puiseux’ parametrization. Then there exists a dis-
tinguished polynomial F (X,Y ) = Y n + F1(X)Y n−1 + . . . + Fn(X) such that F (Tn, Y ) =∏

εn=1(Y − ψ(εT )). The polynomial F (X,Y ) is irreducible in C{X}[Y ].

Proof. Let us begin with the following

Claim. Let H(T ) be a power series of one variable such that H(εT ) = H(T ) for all
ε ∈ U(n). Then there exists a power series H0(T0) such that H(T ) = H0(Tn).

Proof of the claim. Each series H(T ) of one variable can be written in the form H(T ) =
H0(Tn) +H1(Tn)T + . . .+Hn−1(Tn)Tn−1. Let ε ∈ U(n) be a primitive root of unity and
suppose that H(εT ) = H(T ). Then Hk(Tn)εk = Hk(Tn) for k = 0, . . . , n− 1 which implies
Hk(Tn) = 0 for k > 0 since εk 6= 1 for k = 1, 2, . . . , n− 1

To prove the proposition consider the product∏
ε∈U(n)

(Y − ψ(εT )) = Y n + F̃1(T )Y n−1 + . . .+ F̃n(T ) .

It is easy to check that F̃k(εT ) = F̃k(T ) for all ε ∈ U(n) and k = 1, . . . , n. By the claim we
get F̃k(T ) = Fk(Tn) and it suffices to take F (X,Y ) = Y n + F1(X)Y n−1 + . . .+ Fn(X).

To check that F (X,Y ) ∈ C{X}[Y ] is irreducible suppose that G(X,Y ) divides F (X,Y ).
Then G(Tn, ψ(ε1T )) = 0 for a root ε1 ∈ U(n) and substituting εε−1

1 for T , ε ∈ U(n) shows
that G(Tn, ψ(εT )) = 0 for ε ∈ U(n). From Property 4.3 it follows that

∏
ε∈U(n)(Y −

ψ(εT )) = F (Tn, Y ) divides G(Tn, Y ) which implies that F (X,Y ) divides G(X,Y ). Thus
we get G(X,Y ) = F (X,Y )
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Theorem 4.5 (Puiseux’ Theorem, second version)
Suppose that F = F (X,Y ) = Y n +F1(X)Tn−1 + . . .+Fn(X) is a distinguished polynomial,
irreducible in C{X}[Y ]. Then there is a Puiseux’ parametrization (Tn, ψ(T )) such that

F (Tn, Y ) =
∏

ε∈U(n)

(Y − ψ(εT )) .

Proof. According to the first version of Puiseux’ theorem there exist an integer e > 0 and
a power series ψ(T ) such that F (T e, ψ(T )) = 0. Since F is distinguished we have ψ(0) = 0.
Let e > 0 be the minimal integer such that F (T e, ψ(T )) = 0 for a series ψ(T ). Then
(T e, ψ(T )) is a Puiseux’ parametrization by Property 4.2 and from Proposition 4.4 easily
follows that e = n

Using the Weierstrass Preparation Theorem and Puiseux’ Theorem we get

Theorem 4.6 (Normalization Theorem)
Let F = F (X,Y ) be an irreducible power series. Then there exists a good parametrization
(ϕ(T ), ψ(T )) such that F (ϕ(T ), ψ(T )) = 0. Any two such parametrizations are equivalent.

5 Local analytic curves

Convergent power series defined functions in neighbourhoods (nbhds) of the origin, and the
size of the nbhd depends on the series. Let F ∈ C{X,Y } be a nonzero power series without
constant term, convergent in a nbhd U of 0 ∈ C2. We put V (F,U) = {(x, y) ∈ U : F (x, y) =
0}. Using the Weierstrass Preparation Theorem and well-known properties of polynomials
we check

Lemma 5.1 Let U be a sufficiently small nbhd of the origin (i.e. such that all considered
power series are convergent in U). Then

(a) The sets V (F,U) and U \ V (F,U) are infinite.

(b) If F,G are relatively prime then the set V (F,U) ∩ V (G,U) is finite.

(c) If F has no multiple factors and V (F,U) ⊂ V (G,U) then F divides G.

In what follows we are interested in properties of V (F,U) which does not depend on the
nbhd U . Observe that if F and G have no multiple factors then V (F,U) = V (G,U) for a
nbhd of 0 ∈ C2 if and only if F ∼ G. The above observation leads to the following

Definition 5.2 Let F = F (X,Y ) ∈ C{X,Y } be a nonzero power series without constant
term. Then the local (analytic) curve {F = 0} is the set

{G ∈ C{X,Y } : G ∼ F in C{X,Y }} .

Note that {F1 = 0} = {F2 = 0} if and only if F1 ∼ F2. The local curve {F = 0} is
called reduced (resp. irreducible) if the power series F has no multiple factors (resp. is
irreducible). The local irreducible curves are also called branches. In what follows we say
that the set V (F,U) represents the local reduced curve {F = 0} in the nbhd U . Two local
reduced curves {F = 0} and {G = 0} are analytically equivalent (a.e.) if there exists a pair
of convergent power series Φ(X,Y ) = (aX + bY + . . . , cX + dY + . . .) where ad − bc 6= 0
such that F ◦Φ ∼ G. This is equivalent to the following condition: there exist nbhds U ,U ′
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of 0 ∈ C2 and a bianalytic mapping U → U ′ which maps the set representing {F = 0} in U
on the set representing {G = 0} in U ′. A local curve {F = 0} is singular of multiplicity m if
m = ordF > 1. Any nonsingular local curve (of multiplicity 1) is a.e. to the line {Y = 0};
any local curve of multiplicity 2 is a.e. to the local curve {Y 2 −Xk = 0} where k ≥ 2. A
function defined on the set of reduced local curves is an analytic invariant if it is constant
on a.e. curves. For any local curves {F = 0}, {G = 0} we define the intersection number
i0(F,G):

Definition 5.3 Let F,G be nonzero power series without constant terms and let F =
F1 . . . Fm in C{X,Y } with irreducible factors Fi, i = 1, . . . ,m. Let (ϕi(Ti), ψi(Ti)) be a
good parametrizations such that Fi(ϕi(Ti), ψi(Ti)) = 0 in C{Ti}. Then

i0(F,G) =
m∑

i=1

ordG(ϕi(Ti), ψi(Ti)) .

The following properties of intersection multiplicity are basic for us.

(i) i0(F,G) = +∞ if and only if F and G have a common factor in C{X,Y },

(ii) i0(F,G1G2) = i0(F,G1) + i0(F,G2),

(iii) i0(F,G+HF ) = i0(F,G),

(iv) i0(F,G) = i0(G,F ),

(v) if Φ(X,Y ) = (aX + bY + . . . , cX + dY + . . .) where ad− bc 6= 0 then

i0(F ◦ Φ, G ◦ Φ) = i0(F,G) ,

(vi) i0(F,G) = 1 if and only if ∂F
∂X (0, 0)∂G

∂Y (0, 0)− ∂F
∂Y (0, 0) ∂G

∂X (0, 0) 6= 0.

In what follows we put i0(F,G) = 0 if F (0) 6= 0 or G(0) 6= 0. The reader will find the
detailed proofs of the above properties in A. P loski, Introduction to the local theory of plane
algebraic curves, in Analytic and algebraic geometry (eds T. Krasiński and St. Spodzieja)
 Lódź University Press,  Lódź 2013.

6 The Milnor number

For every nonzero power series F ∈ C{X,Y } without constant term we define the Milnor
number

µ0(F ) = i0

(
∂F

∂X
,
∂F

∂Y

)
.

Note that µ0(F ) < +∞ if and only if F has no multiple factors. We will get the main
properties of the Milnor number from Teissier’s lemma:

Lemma 6.1 Let F = F (X,Y ) be an Y −distinguished power series with no multiple factors.
Then

i0

(
F,
∂F

∂Y

)
= µ0(F ) + i0(F,X)− 1 .
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Proof. If ∂F
∂Y (0, 0) 6= 0 then the lemma is obvious. Let ∂F

∂Y = G1 . . . Gs with irreducible
G1, . . . , Gs ∈ C{X,Y } and let pi(Ti) = (ϕi(Ti), ψ(Ti)) be a good parametrization of the
branch Gi(X,Y ) = 0. From ∂F

∂Y (pi(Ti)) = 0 in C{Ti} we get d
dTi
F (pi(Ti)) = ∂F

∂X (pi(Ti))dϕi

dTi
,

hence ordF (pi(Ti)) = ord ∂F
∂X (pi(Ti)) + ordϕ(Ti) for i = 1, . . . , s. Using the definition of

intersection multiplicity we get

i0

(
F,
∂F

∂Y

)
=

s∑
i=1

i0(F,Gi) =
s∑

i=1

ordF (pi(Ti))

=
s∑

i=1

ord
∂F

∂X
(pi(Ti)) +

s∑
i=1

ordϕi(Ti)

=
s∑

i=1

i0

(
∂F

∂X
,Gi

)
+

s∑
i=1

i0(X,Gi) = µ0(F ) + i0

(
X,

∂F

∂Y

)
=µ0(F ) + i0(F,X)− 1 .

Property 6.2

(a) If Φ(X,Y ) = (aX+bY +. . . , cX+dY +. . .) where ad−bc 6= 0 then µ0(F ) = µ0(F ◦Φ).

(b) If G ∼ F then µ0(G) = µ0(F ).

Proof. The proof of (a) we leave to the reader. To check (b) assume that F is Y −
distinguished. We have i0(F, ∂F/∂Y ) = i0(G, ∂G/∂Y ) and i0(F,X) = i0(G,X) by proper-
ties of intersection numbers. Therefore (b) follows from Teissier’s lemma

Property 6.3 If F = F1 . . . Fm is a product of pairwise coprime Fi then

µ0(F ) +m− 1 =
m∑

i=1

µ0(Fi) + 2
∑

1≤i<j≤m

i0(Fi, Fj) .

Proof. By basic properties of intersection numbers we get

i0

(
F,
∂F

∂Y

)
=

m∑
i=1

i0

(
Fi,

∂Fi

∂Y

)
+ 2

∑
1≤i<j≤m

i0(Fi, Fj) .

To obtain the formula it suffices to apply Teissier’s lemma to power series F, F1, . . . , Fm

Let F = F (X,Y ) ∈ C{X,Y } be an irreducible power series of order n > 1. We may assume
that F = Y n + terms of order greater than n. Let Y1 be a new variable. A power series
F1 = F1(X,Y1) is a proper transform of F (X,Y ) (by the quadratic transformation Y =
XY1, X = X) if F (X,XY1) = XnF1(X,Y1). Note that ordF1(0, Y1) = ordF (0, Y ) = n.

Property 6.4 If F is an irreducible power series, F1 its proper transform then µ0(F ) =
(ordF )(ordF − 1) + µ0(F1).

Proof. If p(T ) = (Tn, ψ(T )) is a Puiseux’ parametrization of F (X,Y ) = 0 then ordψ(T ) >
n and p1(T ) = (Tn, ψ(T )/Tn) is a Puiseux’ parametrization of F1(X,Y1) = 0. A simple
computation shows that i0(F, ∂F/∂Y ) = i0(F1, ∂F1/∂Y1) + n(n− 1), hence µ0(F ) = n(n−
1) + µ0(F1) by Teissier’s lemma

By repeated application of Property 6.4 we get
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Property 6.5 For every irreducible power series F ∈ C{X,Y } there exist a sequence of
irreducible series F0, . . . , Fs such that F0 = F , Fi+1 = 0 is a proper transformation of Fi = 0
and Fs = 0 is nonsingular. Moreover, µ0(F ) =

∑s
i=1(ordFi)(ordFi − 1).

Note that the above formula for µ0(F ) implies that the Milnor number of a branch is always
an even number. Now, we may formulate the main result of this section.

Theorem 6.6 There is a unique analytic invariant δ0 defined on reduced algebroid curves
such that

(i) if ordF = 1 then δ0(F ) = 0,

(ii) if F = 0 is an irreducible, singular curve then δ0(F ) = 1
2(ordF )(ordF − 1) + δ0(F1)

where F1 = 0 is a proper transformation of F = 0,

(iii) if F = F1 . . . Fr is a product of pairwise coprime power series Fi (r = r(F )) then

δ0(F ) =
r∑

i=1

δ0(Fi) +
∑

1≤i<j≤r

i0(Fi, Fj) .

Moreover, the Milnor formula µ0(F ) = 2 δ0(F )− r(F ) + 1 holds for any reduced local
curve F = 0.

Proof. The uniqueness of δ0 follows immediately from Property 6.5 by induction on the
numbers of quadratic transformations needed to desingularize a branch. We prove simulta-
neously the existence of δ0 and the Milnor formula by putting δ0(F ) = 1

2(µ0(F ) + r(F )− 1)
and by using the Properties 6.2, 6.3 and 6.4

Example 6.7 The reduced curve F = 0 has an ordinary r − fold singularity if it has r
branches, all non-singular and intersecting each other with multiplicity 1. For such a curve
µ0 = (r − 1)2 and δ0 = 1

2r(r − 1).

For an elementary, intersection–theoretical approach to the local invariants of plane curve
singularities we refer the reader to Pi. Cassou-Nogues, A. P loski, Invariants of plane curve
singularities and Newton diagrams, Univ. Iag. Acta Math. Fasc. XLIX, 2011, pp. 9–34.

7 Puiseux characteristic

Let {F (X,Y ) = 0} be an irreducible singular local curve. Assume that ordF (0, Y ) = ordF
(if F is irreducible then ordF (X, 0) = ordF or ordF (0, Y ) = ordF ) and let (Tn, ψ(T )) =
(Tn, c1T

n1 + c2T
n2 + . . .) where c1, c2, . . . 6= 0 be a Puiseux’ parametrization such that

F (Tn, ψ(T )). Then n = ordF > 1 and n ≤ n1 < n2 < . . . . Recall that gcd(n, n1, n2, . . .) =
1. A characteristic exponent is, by definition, each exponent nk such that gcd(n, n1, . . . , nk−1) 6=
gcd(n, n1, . . . , nk). The set of characteristic exponents is finite; if β1 < . . . < βg are all
characteristic exponents then we put β0 = n and call the sequence (β0, β1, . . . , βg) the
characteristic of the branch {F = 0}.

Let ek = gcd(β0, . . . , βk) for k = 0, 1, . . . , g. Then n = e0 > e1 > . . . > eg−1 > eg = 1
is a sequence of divisors of the number n = ordF . Let U(n) = {ε ∈ C : εn = 1}. Then
U(n) = U(e0) ⊃ U(e1) ⊃ . . . ⊃ U(eg) = {1} and U(ek−1) 6= U(ek) for k = 1, . . . , g.

Property 7.1 If ε ∈ U(ek−1) \ U(ek) then ord(ψ(εT )− ψ(T )) = βk.
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Proof. Fix k ∈ {1, . . . , g} and write ψ(T ) = ψk(T ek−1 + cT βk + . . . (terms of order > βk)
where c 6= 0. Then ψ(εT )− ψ(T ) = c(εβk − 1)T βk + . . . and ord(ψ(εT )− ψ(T )) = βk since
εβk 6= 1

Proposition 7.2 Let {F (X,Y ) = 0} be a singular branch with characteristic (β0, β1, . . . , βg).
Then

µ0(F ) =
g∑

k=1

(ek−1 − ek)βk − β0 + 1 .

Proof. Assume that ordF (0, Y ) = ordF and let (Tn, ψ(T )) be a Puiseux’ parametrization
such that F (Tn, ψ(T )) = 0. A simple computation shows that

∂F

∂Y
=

∏
ε6=1

(Y − ψ(εT ))U(T, Y ) + (Y − ψ(T ))G(T, Y )

in C{T, Y } where U(0, 0) 6= 0. Hence we get

i0

(
F,
∂F

∂Y

)
=ord

∂F

∂Y
(Tn, ψ(T )) =

∑
ε6=1

ord(ψ(εT )− ψ(T ))

=
g∑

k=1

#(U(ek−1) \ U(ek))βk =
g∑

k=1

(ek−1 − ek)βk

by Property 7.1. By Teissier’s lemma we get

µ0(F ) = i0

(
F,
∂F

∂Y

)
− i0(F,X) + 1 =

g∑
k=1

(ek−1 − ek)βk − β0 + 1

Remark 7.3 If {F = 0} is a branch with characteristic (β0, β1, . . . , βg) then we put mk =
βk/ek, nk = ιek−1/ek for k = 1, . . . , g and call (m1, n1), . . . , (mg, ng) the characteristic pairs
of the branch.

Two reduced local curves {F = 0} and {G = 0} have the same topological type if there
exist nbhds U ,U ′ of 0 ∈ C2 and a homomorphisms U → U ′ which maps the set representing
{F = 0} in U on the set representing {G = 0} in U ′. In 1929, K. Brauner proved the
following theorem.

Theorem 7.4 Let {F = 0} be a singular branch with characteristic (β0, . . . , βg). Then it
has the same topological type as the branch defined by Puiseux’ parametrization

X=Tn ,

Y =T β1 + T β2 + . . .+ T βg .

In 1932, W. Burau and O. Zariski proved that the converse of the above theorem is true.

Theorem 7.5 Let {F = 0} be a singular branch. Then the Puiseux characteristic (β0, . . . , βg)
is an invariant of topological type of {F = 0}.

Finally, M. Lejeune-Jalabert and O. Zariski proved the following theorem

Theorem 7.6 Let {F = 0} be a reduced local analytic curve. Then the topological type of
{F = 0} is determined by the topological type of every irreducible component of {F = 0}
and all the pairs of intersection multiplicity of these components.
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From the properties of the Milnor number proved above (Property 6.3 and Proposition 7.2)
and Theorem 7.6 we get

Theorem 7.7 The Milnor number of a reduced local analytic curve is an invariant of topo-
logical type.

Let F (T,X, Y ) be a convergent power series in three variables T,X, Y such that F (T, 0, 0) =
0 and for t ∈ C close to the origin the power series Ft = F (t,X, Y ) have no multiple factors.
In 1976 Le Dung Trang and Ramanujam proved

Theorem 7.8 If µ0(Ft) ≡ const for t ∈ C close to 0 ∈ C then the local analytic curves
{Ft = 0} have the same topological type.
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