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1 Buildings

Let Π be a Coxeter diagram with vertex set I and let W be the corresponding

Coxeter group. Thus W is a group generated by the set I subject to relations

which can be read off from the labels on the edges of Π. Let ∆ be a building

of type Π. For these notes, it suffices to consider ∆ as a graph whose vertices

are the chambers, where two chambers are joined by an edge whenever they lie

in a common panel. If the type of a panel P (viewed as a simplex) is I\{i}, we

give each edge joining two chambers of P the ”color” i.

The pair (W, I) is called a Coxeter system. Let ΣΠ be the corresponding

Cayley graph. Thus ΣΠ is the graph with vertex set W , where two vertices

x, y ∈ W are joined by an edge whenever y−1x ∈ I. We endow ΣΠ with its

natural edge-coloring whereby an edge {x, y} has ”color” i ∈ I if and only if

x = yi in W . The apartments of ∆ are subgraphs isomorphic to this edge-

colored Cayley graph.

For each edge {x, y} of ΣΠ, the set of vertices nearer to x than to y and the

set of vertices nearer to y than to x form a partition of the vertex set of ΣΠ (i.e.

1



of W ). Sets of this form are called roots. A root of an apartment Σ of ∆ is the

image in Σ of a root under some isomorphism from ΣΠ to Σ. A root of ∆ is a

root of one of its apartments.

For each subset J of I, let ΠJ denote the subgraph of Π spanned by J . The

J- residues of ∆ (for some J ⊂ I) are the connected components of the graph

obtained from ∆ by deleting all the edges of ∆ whose color is not in J (but

without deleting any chambers). For a given J-residue R, the set J is precisely

the set of colors appearing on the edges of R; this set is called the type of R and

its cardinality is called the rank of R. A residue is a J-residue for some J ⊂ I.

The panels of ∆ are the residues of rank one. Every J-residue is a building

of type ΠJ . In particular, the panels are complete graphs. A J-residue is

irreducible if the diagram ΠJ is connected.

2 Spherical Buildings

The classification of spherical buildings (in rank at least three) was first given

in [8]. In this section we follow more closely the revised proof given in Chapter

40 of [13].

From now on, we suppose that ∆ is spherical (i.e. that its apartments are

finite), thick (i.e. that every panel contains more than two chambers) and irre-

ducible (i.e. that the Coxeter diagram Π is connected).

Definition 1. For each root α of ∆, let Uα denote the intersection of the stabi-

lizers in the group Aut(∆) of all the chambers of ∆ that are contained in a panel

containing two chambers of α. The group Uα is called the root group belonging

to α. It acts trivially on α and faithfully on every panel in the wall of α (i.e.

on every panel containing exactly one chamber of α).

Definition 2. The building ∆ is Moufang if for every root α, the root group Uα

acts transitively on the set of apartments containing α. If ∆ is Moufang and P

is a panel in the wall of a root α, then the root group acts sharply transitive on

the set P\α.

Now let C be a chamber of ∆ and let E2(C) be the subgraph of ∆ spanned

by all the irreducible rank two residues of ∆ that contain C. (There is exactly
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one such residue for each edge of Π and the intersection of two of these residues

is a panel containing C if the corresponding edges are adjacent, {C} otherwise.)

The subgraph E2(C) is called the foundation of ∆.

Theorem 3. The building ∆ is uniquely determined by E2(C).

In other words, if ∆′ is a second building of type Π and π is an isomorphism

from E2(C) to E2(C ′), where C ′ is a chamber of ∆′, then there is an isomor-

phism from ∆ to ∆′ that extends π. A map π from E2(C) to E2(C ′) sending C

to C ′ is an isomorphism if and only if for each edge J{i, j} of Π, the restriction

of π to the J-residue of ∆ containing C is an isomorphism from this residue to

the J-residue of ∆′ containing C ′.

Applying Theorem 3 with ∆′ = ∆, it is possible to deduce that the auto-

morphism group of ∆ is large. More precisely, we have the following:

Theorem 4. If the rank of ∆ (i.e. the cardinality of I) is at least three, then

∆ is Moufang and all the irreducible residues of rank at least two of ∆ are also

Moufang.

3 Generalized polygons

An irreducible spherical building of rank two is the same thing as a generalized

polygon. A generalized polygon is simply a bipartite graph whose diameter is

half the length of a shortest circuit. To avoid certain trivialities, we assume as

well that every vertex has at least three (but possibly infinitely many) neigh-

bors and that the diameter is at least three. (The diameter is not allowed to be

infinite). A generalized n-gon is a generalized polygon of diameter n.

Let Γ be a generalized n-gon for some n ≥ 3 and let G = Aut(G). A circuit

of length 2n in Γ is called an apartment. A root of Γ is an undirected path of

length n. For each vertex x of Γ, let Γx denote the set of neighbors of x. For

each root α = (x0, x1, ..., xn) of Γ, we denote by Uα the pointwise stabilizer in

G of the set Γx1
∪ ...∪Γxn−1

. The group Uα is called the root group associated

with α.
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4 Moufang polygons

Definition 5. A generalized n-gon satisfies the Moufang property if for each root

α of Γ, the root group Uα acts transitively on the set of apartments containing α.

A Moufang n-gon is a generalized n-gon satisfying the Moufang property.

A generalized 3-gon (or triangle) is the same thing as the incidence graph of

a projective plane. The notion of a Moufang generalized n-gon generalizes the

notion of a Moufang projective plane first introduced in [4].

We now assume that Γ is a Moufang n-gon for some n ≥ 3. We choose

an apartment Σ and label the vertices of Σ by the integers modulo 2n so that

i is adjacent to i + 1 and different from i + 2 for all i. Let Ui be the root

group corresponding to the root (i, i + 1, ..., i + n) for all i and let U+ denote

the subgroup of G generated by the subgroups U1, U2, ..., Un. The (n+ 1)-tuple

(U+, U1, U2, ..., Un) is called the root group sequence associated with Γ; it is

unique up to conjugation in G and up to the re-numbering Ui 7→ Un+1−i of the

root groups U1, ..., Un. In [12], we show:

Theorem 6. A Moufang n-gon is uniquely determined by the associated root

group sequence (U+, U1, U2, ..., Un).

As an example, we consider the case n = 3. Let A be an alternative division

ring. This is a ring satisfying all the axioms of a skew-field except the law of as-

sociativity for multiplication, but with a strengthened law of inverses: For each

non-zero u ∈ A, there exists an element u′ such that u′ · uv = v and vu · u′ = v

for all v ∈ A. Now let U1, U2, U3 be three groups parameterized by the additive

group of A. By this we mean that we can choose isomorphisms u 7→ xi(u) from

the additive group of A to the (multiplicative) group Ui for all i ∈ [1, 3]. We now

impose the relations [U1, U2] = [U2, U3] = 1 and [x1(u), x3(v)] = x2(uv) for all u,

v ∈ A. These equations determine the structure of a group U+ = 〈U1, U2, U3〉.
It turns out that (U+, U1, U2, U3) is the root group sequence associated with

a generalized triangle which we denote by T (A). If A is a skew-field, T (A)

is the incidence graph of the projective plane associated with a 3-dimensional

right vector space over A. Moufang showed in [4] that every Moufang projective

plane is parameterized by an alternative division ring. This result can be re-

formulated as follows: Every Moufang triangle is isomorphic to T (A) for some
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alternative division ring A.

Alternative division rings were classified by Bruck and Kleinfeld [2, 3]: An

alternative division ring is either a skew-field (possibly commutative) or a kind

of 8-dimensional nonassociative algebra over a commutative field K called a

Cayley-Dickson division algebra.

This case is typical. For each n, we find an algebraic system (in some general

sense) with which we can parameterize the groups U1, ..., Un and give formu-

las for all the commutators in [Ui, Uj ] for all distinct i, j in [1, n] expressed in

terms of the parameters. These formulas determine the root group sequence

(U+, U1, ..., Un) and thus Γ In each case, there then remains the problem of

classifying the relevant algebraic systems. That this strategy has any chance of

success rests on the following result [10, 14]:

Theorem 7. Moufang n-gons exist only for n = 3, 4, 6 and 8.

In [13] is proved that every Moufang polygon is isomorphic to one of the

nine families of Moufang polygons:

1. Moufang Triangles

2. Moufang Quadrangles of type involutory

3. Moufang Quadrangles of type quadratic form

4. Moufang Quadrangles of type indifferent

5. Moufang Quadrangles of type pseudo-quadratic form

6. Moufang Quadrangles of type E6, E7 and E8

7. Moufang Quadrangles of type F4

8. Moufang hexagons

9. Moufang octagons

We indicate the conclusions in each case beginning with the largest value of

n. Moufang octagons are parameterized (see [11]) by pairs (K,σ) where K is

a commutative field of characteristic two and σ is an endomorphism of K such
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that σ2 is the Frobenius map of K, i.e. (xσ)σ = x2 for all x ∈ K.

Moufang hexagons are parameterized (see [9]) by certain triples (J, F,#),

where F is a commutative field, J a vector space over F and # a map from J

to itself satisfying a certain list of properties. These triples are closely related

to certain Jordan algebras which have been closely studied by Albert, Jacobson

and several of Jacobsons students. They were classified by Petersson and Racine

[6, 7]. We give two examples: Let J be a commutative field containing F and

suppose either that J3 ⊆ F or that [J : F ] = 3 and J/F is separable. We set

x# = x2 for all x ∈ J in the first case and x# = x/N(x) for all x ∈ J∗ in the

second, where N is the norm of the extension J/F . In all the other cases, the

dimension of J over F is 9 or 27.

Example 1. The hexagons H(J, F,#).

Let

(J, F,N,#, T,×, 1)

be one of the hexagonal system defined in Chapter 15 in [13]. The functions T ,

N and × and the element 1 are all uniquely determined by J , F and the adjoin

map #. Let U1, U3 and U5 be groups parametrized by J and let U2, U4 and U6

be groups defined by the relations

[x1(a), x3(b)] = x2(T (a, b))

[x3(a), x5(b)] = x4(T (a, b))

[x1(a), x5(b)] = x2(−T (a#, b))x3(a× b)x4(T (a, b#))

[x2(t), x6(u)] = x4(tu)

[x1(a), x6(t)] = x2(−tN(a))X3(ta#)x4(t2N(a))x5(−ta)

for all a, b ∈ J and t, u ∈ F .

There are three distinct classes of Moufang quadrangles: classical, indiffer-

ent and exceptional. The classical quadrangles are parameterized by pseudo-

quadratic forms (see 8.2 of [8]). The indifferent quadrangles are parameterized

by algebraic systems involving certain purely inseparable field extensions in

characteristic two. The exceptional quadrangles (of which there are four fam-

ilies) are parameterized by pairs of vector spaces and several maps connecting

these vector spaces and the fields over which they are defined. The parameter

systems for the first three families involve the even Clifford algebra of a certain

type of quadratic form. The parameter systems for the fourth family is still
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more exotic; these quadrangles (like the indifferent quadrangles and the Mo-

ufang octagons) exist only in characteristic two. See [5].

Example 2. The quadrangles QT (K,K0, σ) of involutory type.

Let (K,K0, σ) be an involutory set and let U1 and U3 be groups parametrized

by the group K0 and let U2 and U4 be groups parametrized by the additive

group of K. Let QT (K,K0, σ) denote the graph defined by the relations

[x2(a), x4(b)−1] = x3(aσb+ bσa) and

[x1(t), x4(a)−1] = x2(ta)x3(aσta)

for all t ∈ K0 and a, b ∈ K.

Example 3. The quadrangles QT (K,L0, q) of quadratic form type.

Let (K,L0, q) be an anisotropic quadratic space as defines in (12.2)-(12.4) in

[13] with L0 6= 0 and letf denote the bilinear form associated with q. Let U1

and U3 be groups parametrized by the additive group of K and let U2 and U4

be groups parametrized by L0. Let QT (K,L0, q) denote the graph defined by

the relations

[x2(a), x4(b)−1] = x3(f(a, b)) and

[x1(t), x4(a)−1] = x2(ta)x3(tq(a))

for all t ∈ K and a, b ∈ L0.

The Moufang triangles T (A) for A a field or a skew-field and the classical

quadrangles are the spherical buildings associated with certain classical groups.

The remaining Moufang triangles (those parameterized by a Cayley-Dickson

division algebra), the remaining quadrangles (except those defined only in char-

acteristic two) and all the Moufang hexagons (except those defined over a purely

inseparable field extension in characteristic three) are the spherical buildings as-

sociated with k-forms of absolutely simple algebraic groups of k-rank two. All

other Moufang polygons, namely those which are defined only in characteristic

two or three, are related to groups of mixed type as defined in (10.3.2) of [8].

Example 4. The triangles T (A).

Lat A be an alternative division ring and let U1, U2, U3 be three groups all

parametrized by additive group of A. Let T (A) denote the graph defined by
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the relations

[x1(t), x3(u)] = x2(tu)

for all t, u ∈ A according to the introduced conventions.

5 Root Systems

Let V be an n-dimensional Euclidean space and let Φ be an irreducible reduced

root system spanning V (as defined in Chapter 6 of [1]; see especially §4). Thus

Φ = Xn for some X ∈ {A;B;C;D;E;F ;G}. For each α ∈ Φ, let

Hα = {v ∈ V |α · v = 0}

and

sα(v) = v − 2(v · α)α = (α · α)

for all v ∈ V . A Weyl chamber of Φ is the closure of a connected component

of the space V with all the hyperplanes of the form Hα for α ∈ Φ removed. We

define two Weyl chambers to be adjacent if their intersection spans a subspace

of dimension n − 1. This defines a graph Θ on the Weyl chambers that is

isomorphic to the Cayley graph associated with the spherical Coxeter diagram

called Xn. For each α ∈ Φ, the set of all Weyl chambers contained in

{v ∈ V |α· ≥ 0}

is a root of Φ (as defined in Section 1) and every root of Θ is of this form

(for a unique α ∈ Φ). We can thus identify Φ with the set of roots of Θ.

Notation 1. Let α, β be two roots of Φ such that β 6= ±α. Let (α, β) denote

the set of elements

α1, ..., αs

of Φ of the form pα + qβ for positive real numbers p and q. We order the vec-

tors in this set so that the angle between α and αi increases as i increases. This

ordered set is called the interval from α to β.

Remark 1. Suppose that ∆ is a building of type Xn with n ≥ 3, so ∆ is one of

the spherical buildings described in the previous section. Let Σ be an apartment
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of ∆, let α, β be linearly independent elements of Φ and let α1, ..., αs be as in

3.1. If we identify Σ with the graph Θ and thus Φ with the set of roots of Σ,

then

[Uα, Uβ ] ⊂
s∏
i=1

Uαi

unless the interval (α, β) is empty, in which case [Uα, Uβ ] = 1.

Let X̃n denote the corresponding extended Dynkin diagram with the arrows

on the multiple bonds deleted. The diagrams X̃n which arise in this way are

precisely the connected affine Coxeter diagrams; they can be viewed, for exam-

ple, in Theorem 4 in Chapter VI, §4, of [1].

For each α ∈ Φ and each integer k, let

Hα,k = {v ∈ V |α · v = k}

and

sα,k(v) = sα(v) + 2kα = (α · α)

for all v ∈ V . The affine hyperplane Hα,k is thus the fixed point set of sα,k.

An alcove of Φ is the closure of a connected component of the space V with

all the affine hyperplanes of the form Hα,k removed. Let Γ be the graph whose

vertices are the alcoves such that two alcoves are adjacent whenever their inter-

section is of dimension n−1 (i.e. the vectors u−v for all u, v in the intersection

span a subspace of dimension n− 1). The graph Γ is isomorphic to the Cayley

graph of the Coxeter system associated with the Coxeter diagram X̃n, and the

corresponding Coxeter group is isomorphic to the group generated by all the

maps of the form sα,k.

For each α ∈ Φ and each integer k, let Kα,k denote the set of alcoves in the

set

{v ∈ V |v · α ≥ k}.

Each Kα,k is a root of Γ and every root of .. is of this form (for a unique

pair α, k). We can think of the affine hyperplane Hα,k as the wall of Kα,k.

Two walls Hα,k and Hβ,l of Γ are parallel if α = β and adjacent if, in addition,

|k − l| = 1.

A point v in V is called special if v · α is an integer for all α ∈ Φ. A sector

is a translation of a Weyl chamber by a special point, i.e. a set of the form
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C+v, where C is a Weyl chamber and v is a special point. We think of a sector

S as the subgraph of Γ spanned by all the alcoves in S. Two sectors S1 and

S2 are adjacent if there are two Weyl chambers C1 and C2 whose intersection

spans a subspace of dimension n− 1 and two special points v1 and v2 such that

S1 = C1 + v1 and S2 = C2 + v2.
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