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ZERO-DIMENSIONAL SPACES IN TOPOLOGY AND ASYMPTOLOGY

TARAS BANAKH

Abstract. We present a classification and charactrization of zero-dimensional spaces in various
categories that naturally appear in topology and large scale geometry.

Geometric properties are characterized by their remaining
invariant under the transformations of the principal group.

Felix Klein, Erlangen program, 1872.

In this famous Erlangen program Felix Klein suggested a uniform treatment of various ge-
omeotries classifying them according to transformations groups that preserve given geometric
properties. In these lecture notes we suggest a uniform approach to various geometric disciplines
(topology, the theory of uniform spaces, asymptotic topology) suggesting a common language
for those sciences. Everything will happen in a single category PreU of preuniform spaces and
their multimaps. Geometric disciplines correspond to subcategories of this category, which differ
by their morphisms. We shall consider five such subcategories: Top, Born, Micro, Macro, Bi.
Each of them treats some specific properties of metric spaces: topological, bornological, micro-
uniform, macro-uniform, bi-uniform. In each subcategory C of PreU we shall introduce the
notions of isomorphism and equivalence and shall classify zero-dimensional homogeneous metric
spaces up to the C-equivalence. Also we shall characterize some specific objects that appear in
those classifications, like the Canto micro-cube 2ω, the Cantor macro-cube 2<N or the Cantor
bi-cube 2<Z.

1. Preuniform spaces

Definition 1.1. A preuniform space is a pair (X,UX) consisting of a set X and a preuniformity
UX on X. A preuniformity on X is any family UX of subsets U ⊂ X × X which contain the
diagonal ∆X = {(x, x) : x ∈ X} of X2. Sets U ∈ UX will be called entourages or radii of the
preuniform space. For each entourage U ∈ UX and a point x ∈ X the set

B(x, U) = {y ∈ X : (x, y) ∈ U}

is called the ball of radius U centered at x.

There are many natural examples of preuniform spaces:

Example 1.2. (1) Each metric space (X, d) carries the canonical preuniformity consisting
of the sets Uε = {(x, y) ∈ X2 : d(x, y) < ε} for ε ∈ R+ where R+ = (0,∞) stands for the
half-line.

(2) Any set X carries the trivial preuniformity {∆X} containing the diagonal ∆X = {(x, x) :
x ∈ X} of X2. Also X carries the discrete preuniformity {X×X,∆X} which is generated
by the discrete {0, 1}-valued metric on X.

(3) Each group G carries the preuniformity consisting of the entourages UF = {(x, y) ∈ G2 :
x ∈ yF} where F ⊂ G is a finite subset consisting the neutral element of G.
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(4) Each topological groupG carries the preuniformity consisting of entourages UN = {(x, y) ∈
G2 : x ∈ yN} where N is a neighborhood of the neutral element of G.

(5) Each uniform space is preuniform.
(6) Each coarse space (in the sense of J.Roe [Roe]) is preuniform.
(7) Each ball structure {B(x, r) : x ∈ X, r ∈ R} (in the sense of I.Protasov [PP]) induces the

preuniformity consisting of the entourages Ur =
⋃
x∈X
{x} × B(x, r) where r ∈ R belongs

to the set of radii R.
(8) Each topological spaceX carries the canonical preuniformity consisting of the sets

⋃
x∈X
{x}×

Ox, where each Ox is a neighborhood of x in X.
(9) More generally, each family F of subsets of X (in particular, each ideal in X) with
∪F = X generates the preuniformity on X that consists of the sets

⋃
x∈X
{x} × Fx where

x ∈ Fx ∈ F for all x ∈ X.

Remark 1.3. It should be mentioned that our notion of a preuniform space is close to the notion
of a ball structure introduced and studied by I.Protasov [PP], [PZ].

2. Morphisms of preuniform spaces

After considering preuniform spaces, which are objects of the category PreU, let us turn to
the morphisms of this category. Those are multivalued maps called also multimaps.

A multimap between two sets X, Y is any subset Φ ⊂ X × Y which can be thought as a
multivalued map Φ : X ⇒ Y assigning to each point x ∈ X the (possibly empty) subset
Φ(x) = {y ∈ Y : (x, y) ∈ Φ}. For a subset A ⊂ X and a multimap Φ : X ⇒ Y we put
Φ(A) =

⋃
x∈A Φ(x). The sets Φ(X) and Φ−1(Y ) are called the range and domain of the multimap

Φ.
Here Φ−1 = {(y, x) : (x, y) ∈ Φ} ⊂ Y×X denotes the multimap, inverse to Φ. The composition

of two multimaps Φ : X ⇒ Y and Ψ : Y ⇒ Z is defined as usual:

Ψ ◦ Φ = {(x, z) ∈ X × Z : ∃y ∈ Y (x, y) ∈ Φ, (y, z) ∈ Ψ}.
The multimap Ψ ◦ Φ : X ⇒ Z assigns to each point x ∈ X the subset Ψ ◦ Φ(x) =

⋃
y∈Φ(x) Ψ(y).

A multimap Φ : X ⇒ Y is defined to be single-valued if |Φ(x)| ≤ 1 for all x ∈ X.

Definition 2.1. By PreU we denote the category of preuniform spaces and their multimaps.

Now we consider five subcategories of PreU which distinguish by their morphisms.

Definition 2.2. A morphism Φ : X ⇒ Y between two preuniform spaces (X,UX) and (Y,UY )
is called

• continuous if ∀x ∈ X ∀y ∈ Φ(x) ∀ε ∈ UY ∃δ ∈ UX Φ(B(x, δ)) ⊂ B(y, ε);
• bornologous if ∀x ∈ X ∀y ∈ Φ(x) ∀δ ∈ UX ∃ε ∈ UY Φ(B(x, δ)) ⊂ B(y, ε);
• micro-uniform if ∀ε ∈ UY ∃δ ∈ UX ∀x ∈ X ∀y ∈ Φ(X) Φ(B(x, δ)) ⊂ B(y, ε);
• macro-uniform if ∀δ ∈ UX ∃ε ∈ UY ∀x ∈ X ∀y ∈ Φ(X) Φ(B(x, δ)) ⊂ B(y, ε);
• bi-uniform if Φ is micro-uniform and macro-uniform.

Exercise 2.3. Show that a multimap Φ : X ⇒ Y between metric spaces X, Y is bornologous if
and only if for each bounded subset B ⊂ X the image Φ(B) is bounded in Y .

Definition 2.4. By Bi (resp. Micro, Macro, Top, Born) we denote the subcategory of the cate-
gory PreU, consisting of preuniform spaces and their bi-uniform (resp. micro-uniform, macro-
uniform, continuous, bornologous) multimaps.
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These five categories are linked by the identity functors:

Top Microoo Bioo // Macro // Born

3. Isomorphisms and equivalences of preuniform spaces

Let C be a subcategory of the category PreU. Morphisms of the category C will be called
C-morphisms.

Definition 3.1. A multi-map Φ : X ⇒ Y between preuniform spaces is called

• an isomorphism in C (or just a C-isomorphism) if Φ, Φ−1 are C-morphisms and Φ◦Φ−1 =
IdY , Φ−1 ◦ Φ = IdX ;
• an equivalence in C (or just a C-equivalence) if Φ, Φ−1 are C-morphisms and Φ(X) = Y ,

Φ−1(Y ) = X.

Besides C-isomorphisms and C-equivalences we shall consider the related notions of C-embedding,
C-immersion and C-surjection.

Definition 3.2. A multi-map Φ : X ⇒ Y between preuniform spaces is called

• a C-immersion if Φ, Φ−1 are C-morphisms and Φ−1(Y ) = X;
• a C-embedding if Φ is a C-immersion and both multimaps Φ, Φ−1 are single-valued;
• a C-surjection if Φ is a C-morphism and Φ(X) = Y , Φ−1(Y ) = X.

Definition 3.3. Two preuniform spaces X, Y are C-equivalent (resp. C-isomorphic) in the
category C if there is a C-equivalence (resp. C-isomorphism) Φ : X ⇒ Y .

In a similar way we can define C-equivalent preuniformities.

Definition 3.4. Let C be a subcategory of PreU two preuniformities U ,V on a set X are called
C-equivalent if the identity map idX : (X,U)→ (X,V) is a C-isomorphism.

It is clear that each C-isomorphism is a C-equivalence. For certain subcategories of PreU
the converse also is true.

Definition 3.5. A preuniform space (X,UX) is defined to be a T1-space if {x} =
⋂

ε∈UX
B(x, ε).

In particular, each topological T1-space endowed with its canonical preuniformity (defined in
Exercise 1.2(8)) is a preuniform T1-space.

Proposition 3.6. Let C be a subcategory of PreU such that each morphism Φ : X ⇒ Y in
C is a continuous multi-map. Then each C-morphism Φ : X ⇒ Y to a preuniform T1-space Y
is single-valued. Consequently, each C-equivalence (resp. C-immersion) Φ : X ⇒ Y between
T1-spaces is a C-isomorphism (resp. C-embedding).

Corollary 3.7. Each equivalence between preuniform T1-spaces in the categories Top, Micro, or
Bi is an isomorphism.

In contrast, in the categories Macro and Born the equivalences are not necessarily isomor-
phisms.

Example 3.8. The multi-map Φ : Z⇒ R, Φ : x 7→ [x, x+ 1), between the metric spaces Z and
R is an equivalence (but not an isomorphism) in the category Macro. So, the metric spaces Z
and R are equivalent but not isomorphic in the categories Macro or Born.
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4. General Problems

In each subcategory C of the category PreU we can consider the following general problems.

Problem 4.1 (Classification). Given a class K of “nice” objects of the category C compose a
list L of preuniform spaces such that each space X ∈ K is C-equivalent (or C-isomorphic) to a
space Y ∈ L.

Problem 4.2 (Characterization). Given a “nice” object X of the category C characterize pre-
uniform spaces that are C-equivalent (or C-isomorphic) to X.

Problem 4.3 (Embedding, Immersion, Surjection). Given two preuniform spaces X, Y find
conditions under which there is a C-embedding, C-immersion, or C-surjection Φ : X ⇒ Y .

Problem 4.4 (Metrizability). Characterize preuniform spaces which are C-equivalent or C-
isomorphic to metric spaces.

Problem 4.5 (Dimension). Introduce a reasonable dimension function

C- dim : C→ ω ∪ {∞}

such that C- dim(Rn) = n for all n ∈ N and C- dim(X) = C- dim(Y ) for any two C-equivalent
spaces X, Y .

5. Operations over preuniform spaces

In this section we describe some operations over preuniform spaces.

5.1. Localization. For a preuniform space X = (X,UX) its localization is the preuniform space

Ẋ = (X, U̇X) endowed with the preuniformity U̇X that consists of the sets⋃
x∈X

{x} ×B(x, Ux)

where Ux ∈ UX for all x ∈ X.

Exercise 5.1. Show that for a metric space X the localization Ẋ of its canonic preuniformity is
Micro-equivalent (resp. Macro-equivalent) to the preuniformity generated by the family of open
(resp. bounded) subsets of X, see Exercise 1.2(9).

Exercise 5.2. Show that a multimap Φ : X ⇒ Y between two preuniform spaces is continuous
(resp. bornologous) if and only if Φ : Ẋ ⇒ Ẏ is micro-uniform (resp. macro-uniform) as a
multimap between the localizations of X, Y .

5.2. Subspaces. Let (X,UX) be a preuniform space and Y ⊂ X be a subset. The preuniformity
UX |Y = {Y 2 ∩ U : U ∈ UX} is called the induced preuniformity on Y and (Y,UX |Y ) is called a
subspace of (X,UX).

Exercise 5.3. For a category C ∈ {Top,Micro,Bi,Macro,Born} check that a multimap Φ :
X ⇒ Y between preuniform spaces X, Y is a C-embedding (resp. C-immersion) if and only if
Φ : X → Φ(X) is a C-isomorphism (a C-equivalence) between X and the subspace Φ(X) of the
preuniform space Y .
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5.3. Finite products. The product X × Y of two preuniform spaces X = (X,UX) and Y =
(Y,UY ) is defined as the set X × Y endowed with the preuniformity UX×Y consisting of the
entourages

U · V = {((x, y), (x′, y′)) : (x, x′) ∈ U, (y, y′) ∈ V },
where U ∈ UX , V ∈ UY .

Exercise 5.4. Show that for metric spaces X, Y the preuniformity of the product X × Y is
Bi-equivalent to the preuniformity generated by the metric

d((x, y), (x′, y′)) = max{dX(x, x′), dY (y, y′)}
where dX , dY are the metrics of the spaces X, Y .

5.4. Tychonoff products. Let Xα, α ∈ A, be preuniform spaces. On their product X =∏
α∈AXα consider the preuniformity UX consisting of the sets

bUαcα∈F = {((xα), (yα)) ∈ X2 : ∀α ∈ F (xα, yα) ∈ Uα}
where F ⊂ A is a finite subset and Uα ∈ UXα for α ∈ F . The obtained preuniform space∏

α∈AXα is called the Tychonoff product of the preuniform spaces Xα, α ∈ A.
If all preuniform spaces Xα, α ∈ A, are equal to some fixed preuniform space X, then the

Tychonoff product
∏

α∈AXα is denoted by XA.
Two Tychonoff products will play an important role in our considerations:

• 2ω, the Cantor micro-cube and
• ωω, the Baire micro-space.

Here the cardinals 2 = {0, 1} and ω are endowed with the discrete preuniformities (induced by
the 2-valued metrics).

Exercise 5.5. Prove that for a sequence (Xn)n∈ω of metric spaces the preuniformity of their
Tychonoff product

∏
n∈ωXn is Micro-equivalent to the preuniformity generated by the metric

d((xn)n∈ω, (yn)n∈ω) = max
n∈ω

(
2−n min{δn(xn, yn), dn(xn, yn)}

)
where dn is the metric of Xn and δn is the discrete 2-valued metrics on Xn.

5.5. Tychonoff coproducts. In this section we shall describe the operation of a Tychonoff
coproduct of pointed preuniform spaces. By a pointed space we understand a space X with a
distinguished point ∗X ∈ X.

By the Tychonoff coproduct
∐α∈AXα of a family of pointed preuniform spaces Xα, α ∈ A, we

understand the set∐α∈AXα = {(xα)α∈A ∈
∏

α∈AXα : |{α ∈ A : xα 6= ∗Xα}| < ℵ0}
endowed with the preuniformity consisting of the entourages

dUαeα∈F =
{(

(xα), (yα)
)
∈ bUαcα∈F : α /∈ F ⇒ xα = yα}

where F ⊂ A is a finite subset and Uα ∈ UXα for α ∈ F .
If all preuniform spaces Xα, α ∈ A, are equal to some fixed pointed preuniform space X,

then the Tychonoff coproduct
∐α∈AXα will be denoted by

∐AX. For the index set A = N the

Tychonoff coproduct
∐AX will be denoted by X<N.

Among the spaces X<N two are of special importance:

• 2<N, the Cantor macro-cube;
• ω<N, the Baire macro-space.
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Exercise 5.6. Prove that for a sequence (Xn)n∈ω of metric spaces the preuniformity of their
Tychonoff coproduct

∐n∈ωXn is Macro-equivalent to the preuniformity generated by the metric

d((xn)n∈ω, (yn)n∈ω) = max
n∈ω

(2n max{δn(xn, yn), dn(xn, yn)})

where dn is the metric of Xn and δn is the discrete 2-valued metric on Xn.

For each function f : Π → ω ∪ {ω} defined on the set Π of prime numbers, consider the
Tychonoff coproduct ∐f =

∐p∈Π∐f(p) p.

Exercise 5.7. Prove that the preuniform space
∐f is Bi-isomorphic to the Tychonoff coproduct∐n∈ω κω of any sequence of cardinals (κn)n∈ω, n ∈ ω such that

• {κn : n ∈ ω} ⊂ {1} ∪ Π;
• |{n ∈ ω : κn = p}| = f(p) for all p ∈ Π.

5.6. Tychonov bi-products. Given a sequence of pointed preuniform spaces (Xn)n∈Z indexed
by integers, consider the preuniform space∏∐

n∈Z

Xn =
∏
n∈−N

Xn ×X0 ×
∐
n∈N

Xn

called the Tychonoff bi-product of the sequence (Xn)n∈Z. Here −N = {n ∈ Z : n < 0} stands for
the set of negative integer numbers.

If all spaces Xn, n ∈ Z, are equal to some fixed pointed preuniform space X, then the Tychonoff
bi-product

∏∐
n∈ZXn is denoted by

∏∐ZX or just by X<Z.
Among the spaces X<Z two are of special importance for us:

• 2<Z, the Cantor bi-cube, and
• ω<Z, the Baire bi-space.

6. The C-Metrizability of preuniform spaces

In this section we consider the problem of metrizablity of preuniform spaces in various sub-
categories C of PreU. We define a preuniform space to be C-metrizable if it is C-isomorphic to
a metric space endowed with its canonical preuniformity.

First we consider the category Top of preuniform spaces and their continuous multimaps.

Theorem 6.1 (Top-metrization). A preuniform space X is Top-metrizable if and only if there
is a sequence {Un}n∈ω ⊂ UX such that

(1) Un+1 ◦ U−1
n+1 ⊂ Un for all n ∈ ω;

(2) ∆X =
⋂
n∈ω Un;

(3) for each x ∈ X and U ∈ UX there is n ∈ ω with B(x, Un) ⊂ B(x, U).

A similar characterization holds for Born-metrizable spaces.

Theorem 6.2 (Born-metrization). A preuniform space X is Born-metrizable if and only if there
is a sequence {Un}n∈ω ∈ UX such that

(1) Un ◦ U−1
n ⊂ Un+1 for all n ∈ ω,

(2) X ×X =
⋃
n∈ω Un,

(3) for each x ∈ X and U ∈ UX there is n ∈ ω with B(x, U) ⊂ B(x, Un).

Next, we consider the metrization problem in the categories Micro, Macro and Bi.
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Theorem 6.3 (Micro-metrization). A preuniform space X is Micro-metrizable if and only if
there is a sequence {Un}n∈ω ⊂ UX such that

(1) Un+1 ◦ U−1
n+1 ⊂ Un for all n ∈ ω,

(2) ∆X =
⋂
n∈ω Un;

(3) for each U ∈ UX there is n ∈ ω such that Un ⊂ U .

A similar characterization holds for the category Macro.

Theorem 6.4 (Macro-metrization). A preuniform space X is Macro-metrizable if and only if
there is a sequence {Un}n∈ω ⊂ UX such that

(1) Un ◦ U−1
n ⊂ Un+1 for all n ∈ ω,

(2) X ×X =
⋃
n∈ω Un,

(3) for each U ∈ UX there is n ∈ ω such that U ⊂ Un.

Theorem 6.5 (Bi-metrization). A preuniform space X is Bi-metrizable if and only if X is
Micro-metrizable and Macro-metrizable if and only if there is a sequence {Un}n∈Z ⊂ UX such
that

(1) Un ◦ U−1
n ⊂ Un+1 for all n ∈ Z,

(2) ∆X =
⋂
n∈Z Un and

⋃
n∈Z Un = X ×X,

(3) for each U ∈ UX there are numbers n,m ∈ Z such that Un ⊂ U ⊂ Um.

7. Uniformizations of a preuniform space

Definition 7.1. A preuniform space (X,UX) is called

• Micro-uniformizable if ∀ε ∈ UX ∃δ ∈ UX δ ◦ δ−1 ⊂ ε;
• Macro-uniformizable if δ ∈ UX ∃ε ∈ UX δ ◦ δ−1 ⊂ ε;
• Bi-uniformizable if it is Micro-uniformizable and Macro-uniformizable.

It is easy to see that each metric space is Bi-uniformizable. Now given a category C ∈
{Top,Micro,Macro,Born}, we define the uniformizable C-(co)reflexion of a preuniform space.

Definition 7.2. The uniformizable C-reflexion of a preuniform space (X,U) is the preuniform
space XC = (X,UC) endowed with the maximal Bi-uniformizable preuniformity UC such that
the identity map idX : (X,U)→ (X,UC) is a morphism of the category C.

The dual notion is that of the uniformizable C-coreflexion.

Definition 7.3. The uniformizable C-coreflexion of a preuniform space (X,U) is the preuniform
space XC = (X,UC) endowed with the maximal Bi-uniformizable preuniformity UC such that
the identity map idX : (X,UC)→ (X,U) is a morphism of the category C.

The constructions X 7→ XC and X 7→ XC determine the functors

(·)C, (·)C : C→ Bi.

In fact, the functors (·)Macro, (·)Born, (·)Micro, (·)Top are not interesting.

Exercise 7.4. Show that for any preuniform space X the spaces XMacro, XBorn, X
Micro, XTop

coincide with the preuniform space (X,U) where U is the family of all subsets U ⊂ X ×X that
contain the diagonal ∆X of X.

On the other hand, the Bi-uniformizable spaces XTop, XMicro, X
Macro and XBorn are not trivial

and will play an important role in our considerations. We shall describe the preuniformities of
these spaces with help of pseudometrics.



8

We recall that a pseudometric on a set X is a function d : X ×X → [0, ) that satisfies three
axioms:

• d(x, x) = 0,
• d(x, y) = d(y, x),
• d(x, z) ≤ d(x, y) + d(y, z)

for all points x, y, z ∈ X.
Each preudometric d on X induces the canonical preuniformity on X consisting of the en-

tourages Uε = {(x, y) ∈ X2 : d(x, y) < ε} where ε ∈ R+ and R+ = (0,∞).

Definition 7.5. A pseudometric d on a preuniform space (X,UX) is defined to be

• continuous if the identity map idX : (X,UX)→ (X, d) is continuous;
• bornologous if the identity map idX : (X, d)→ (X,UX) is bornologous;
• micro-uniform if the identity map idX : (X,UX)→ (X, d) is micro-uniform;
• macro-uniform if the identity map idX : (X, d)→ (X,UX) is macro-uniform;
• bi-uniform if d is micro-uniform and macro-uniform.

Proposition 7.6. For a preuniform space X the preuniformity of the space XTop (resp. XMicro)
consists of all sets U ⊂ X2 for which there is a continuous (resp. micro-uniform) pseudometric
d on X such that {(x, y) ∈ X2 : d(x, y) < 1} ⊂ U .

A similar characterization holds for the uniformizations XMacro and XBorn.

Proposition 7.7. For a preuniform space X the preuniformity of the space XBorn (resp. XMacro)
consists of all sets U ⊂ X2 for which there is a bornologous (resp. macro-uniform) pseudometric
d on X such that ∆X ⊂ U ⊂ {(x, y) ∈ X2 : d(x, y) < 1}.

Exercise 7.8. Prove that for a paracompact topological space X the preuniformity of the Bi-
uniformizable Top reflexion XTop consists of all sets U ⊂ X2 that contain a set of the form⋃
V ∈V V × V for some open cover V of X.

8. Completeness of preuniform spaces

Let (X,UX) be a preuniform space. A sequence (xn)n∈ω ∈ Xω is defined to be

• convergent to a point x ∈ X if ∀U ∈ UX ∃n ∈ ω ∀m ≥ n xm ∈ B(x, U);
• Cauchy if ∀U ∈ UX ∃n ∈ ω ∀m, k ≥ n xm ∈ B(xk, U).

Exercise 8.1. Show that each convergent sequence in a preuniform space (X,UX) is Cauchy in
the preuniform space (X,UX ◦ U−1

X ) where UX ◦ U−1
X = {U ◦ U−1 : U ∈ UX}.

Definition 8.2. A preuniform space X is called sequentially complete if each Cauchy sequence
(xn) in X converges to some point x ∈ X.

It is clear that a metric space X is complete if and only if its canonical preuniformity is
sequentially complete.

9. Covering numbers of preuniform spaces

Let (X,UX) be a preuniform space and A ⊂ X be a subset. For an entourage δ ∈ UX the
cardinal

covδ(A) = min
{
|F| : F ⊂ {B(a, δ)}a∈A, A ⊂ ∪F}

is called the δ-covering number of the set A.
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For two entourages δ, ε ∈ UX and a point x ∈ X let

covεδ(x) = covδ(B(x, ε)).

For a cardinal κ by κ+ we denote the cardinal-successor of κ.
The covering numbers covεδ(x) will help us to define the following ten cardinals characteristics

of a preuniform space X:

Micro-cov(X) = min
ε∈UX

sup
δ∈UX

(
min
x∈X

covεδ(x)
)+
, Macro-cov(X) = min

δ∈UX
sup
ε∈UX

(
min
x∈X

covεδ(x)
)+
,

Micro-Cov(X) = min
ε∈UX

sup
δ∈UX

(
sup
x∈X

covεδ(x)
)+
, Macro-Cov(X) = min

δ∈UX
sup
ε∈UX

(
sup
x∈X

covεδ(x)
)+
,

Top-Cov(X) = min
ε∈UX

sup
δ∈UX

sup
x∈X

(
covεδ(x)

)+
, Born-Cov(X) = min

δ∈UX
sup
ε∈UX

sup
x∈X

(
covεδ(x)

)+
,

Bi-cov(X) = sup
δ,ε∈UX

(
min
x∈X

covεδ(x)
)+
, Bi-Cov(X) = sup

δ,ε∈UX

(
sup
x∈X

covεδ(x)
)+
,

For each preuniform space X these cardinal characteristics relate as follows:

Bi-Cov(X)

Micro-Cov(X)

nnnnnnnnnnnn
Macro-Cov(X)

QQQQQQQQQQQQ

Top-Cov(X) Born-Cov(X)

Micro-cov(X) Macro-cov(X)

Bi-cov(X)

PPPPPPPPPPPP

mmmmmmmmmmmm

As expected the C-covering numbers are invariant under C-equivalences.

Proposition 9.1. If two preuniform spaces X, Y are:

(1) Micro-equivalent, then Micro-Cov(X) = Micro-Cov(Y ), Micro-cov(X) = Micro-cov(Y )
and Top-Cov(X) = Top-Cov(Y );

(2) Macro-equivalent, then Macro-Cov(X) = Macro-Cov(Y ), Macro-cov(X) = Macro-cov(Y )
and Born-Cov(X) = Born-Cov(Y );

(3) Bi-equivalent, then Bi-Cov(X) = Bi-Cov(Y ) and Bi-cov(X) = Bi-cov(Y ).

Exercise 9.2. Show that the metric space X = 2ω × ω and its Top-uniformization XTop have
the following covering numbers:

(1) Micro-cov(X) = Top-Cov(X) = Micro-Cov(X) = ℵ0;
(2) Macro-cov(X) = Born-Cov(X) = Macro-Cov(X) = 2;
(3) Bi-cov(X) = Bi-Cov(X) = ℵ1;
(4) Micro-cov(XTop) = Top-Cov(XTop) = ℵ0, Macro-Cov(XTop) = ℵ1;
(5) Macro-cov(XTop) = Born-Cov(XTop) = Macro-Cov(XTop) = 2;
(6) Bi-cov(XTop) = Bi-Cov(XTop) = ℵ1.

Exercise 9.3. Show that the Cantor macro-cube X = 2<N and its Born-uniformization XBorn

have the following covering numbers:
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(1) Micro-cov(X) = Top-Cov(X) = Micro-Cov(X) = 2;
(2) Macro-cov(X) = Born-Cov(X) = Macro-Cov(X) = ℵ0;
(3) Bi-cov(X) = Bi-Cov(X) = ℵ0;
(4) Micro-cov(XBorn) = Top-Cov(XBorn) = Macro-Cov(XBorn) = 2,
(5) Macro-cov(XBorn) = Born-Cov(XBorn) = ℵ0 and Macro-Cov(XBorn) = ℵ1;
(6) Bi-cov(XBorn) = ℵ0 and Bi-Cov(XTop) = ℵ1.

Exercise 9.4. Given a sequence of non-zero cardinals (κn)n∈Z endowed with the discrete pre-
uniformities, calculate the covering numbers of the Tychonoff bi-product

X =
∏∐
n∈Z

κn =
∏
n∈−N

κn × κ0 ×
∏
n∈N

κn

and the covering numbers of its Top- and Born-uniformizations XTop and XBorn.

Definition 9.5. Let C ∈ {Top,Micro,Bi,Macro,Born}. A preuniform space (X,UX) is defined
to have C-bounded geometry if C-Cov(X) ≤ ℵ0.

Exercise 9.6. Prove that for each sequence (κn)n∈ω of finite cardinals their Tychonoff product∏
n∈ω κn and coproduct

∐n∈ω κn have Bi-bounded geometry.

Exercise 9.7. Prove that the preuniform space 2ω × ω × 2<N

(1) has Micro-bounded geometry;
(2) has Macro-bounded geometry;
(3) fails to have Bi-bounded geometry.

Exercise 9.8. Prove that a paracompact topological space X is locally compact if and only if
its Top-uniformization XTop has Top-bounded geometry.

10. Dimensions of preuniform spaces

Let (X,UX) be a preuniform space and ε ∈ UX be an entourage. By an ε-chain we understand
any sequence x0, . . . , xn ∈ X such that xi ∈ B(xi−1, ε) for all positive i ≤ n.

By a coloring of a set X we understand any function χ : X → Y . Given a coloring χ : X → Y ,
we define a subset A ⊂ X to be monochrome if χ(A) ⊂ {y} for some color y ∈ Y .

Definition 10.1. A preuniform space (X,UX) has

(1) Micro-dimension Micro-dim(X) ≤ n if for each ε ∈ UX there is δ ∈ UX and a coloring
χ : X → n+1 such that each monochome δ-chain x0, x1, . . . , xn lies in the ε-ball B(x0, ε);

(2) Macro-dimension Macro-dim(X) ≤ n if for each δ ∈ UX there is ε ∈ UX and a coloring
χ : X → n+1 such that each monochome δ-chain x0, x1, . . . , xn lies in the ε-ball B(x0, ε).

Let
Micro-dim(X) = min({∞} ∪ {n ∈ N : Micro-dim(X) ≤ n})

and
Macro-dim(X) = min({∞} ∪ {n ∈ N : Macro-dim(X) ≤ n}).

Next, we define the Bi-, Top-, and Born-dimensions of a preuniform space.

Definition 10.2. For a preuniform space X let

• Bi-dim(X) = max{Micro-dim(X),Macro-dim(X)};
• Top-dim(X) = Micro-dim(XTop) and
• Born-dim(X) = Macro-dim(XBorn).
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Exercise 10.3. Prove that for a paracompact topological space X Top-dim(X) is equal to the
usual covering topological dimension of X.

Proposition 10.4. Let C ∈ {Top,Micro,Bi,Macro,Born}. If two preuniform spaces X and Y
are C-equivalent, then C-dim(X) = C-dim(Y ).

Theorem 10.5. For each category C ∈ {Micro,Macro,Bi,Top} and a number n ∈ N we get

C- dim(Rn) = n and Born- dim(Rn) = 1.

11. Preuniform spaces of dimension zero

In this section we charactrize preuniform spaces of dimension zero in various categories. Fol-
lowing I.Protasov, we define a preuniform space (X,UX) to be cellular if each entourage U ∈ UX
is an equivalence relation, which means that U = U−1 and U ◦ U = U . It is clear that each
cellular preuniformity is Micro-uniformizable and Macro-uniformizable.

Theorem 11.1. For every category C ∈ {Micro,Bi,Macro} a preuniform space X is C-equivalent
to a cellular preuniform space if and only if X is C-uniformizable and has C-dim(X) = 0.

Metric counterparts of cellular preuniform spaces are ultrametric spaces. We recall that a
metric d on a set X is called an ultrametric if d(x, z) ≤ max{d(x, y), d(y, z)} for all x, y, z ∈ X.

Theorem 11.2. For every category C ∈ {Top,Micro,Bi,Macro} a preuniform space X is C-
equivalent to an ultrametric space if and only if X is C-metrizable and has C-dim(X) = 0.

12. The Born-classification of metric spaces

Theorem 12.1 (Classification and Characterization). A metric space X is Born-equivalent to:

(1) ∅ iff X = ∅;
(2) 1 = {0} iff X is bounded and not empty;
(3) N iff X is unbounded.

Theorem 12.2 (Born-dimension). For a metric space X

Born- dim(X) =

{
0 if X is bounded,

1 if X is unbounded.

Problem 12.3. Classify metric spaces up to the Born-isomorphism.

Unlike to the category Born, the problems of classification, characterization and dimension
in the remaining 4 categories are non-trivial. We shall study these problems for homogeneous
spaces.

13. Homogeneity

In this section we introduce several notions of homogeneity. We start with the isometric
homogeneity of metric spaces.

Definition 13.1. A metric space X is isometrically homogeneous if for any points x, y ∈ X
there is a bijective isometry f : X → X with f(x) = y.

The homogeneity in the category Top is well-known:
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Definition 13.2. A preuniform space X is Top-homogeneous if for any two points x, y ∈ X
there is a Top-equivalence Φ : X ⇒ X such that y ∈ Φ(x).

Next, we define the C-homogeneity for the categories C ∈ {Micro,Bi,Macro}.
For a multimap Φ : X ⇒ Y by

Φ2 : X2 → Y 2, Φ2 : (x, x′) 7→ Φ(x)× Φ(x′)

we denote the square of Φ2.

Definition 13.3. Let (X,UX) and (Y,UY ) be two preuniform spaces and s : UY → UX , S :
UX → UY be two functions. A multimap Φ : X ⇒ Y is called

• Micros-uniform if ∀ε ∈ UY Φ2 ◦ s(ε) ⊂ ε;
• MacroS-uniform if ∀δ ∈ UX Φ2(δ) ⊂ S(δ);
• BiSs -uniform if Φ is Micros-uniform and MacroS-uniform;
• a C-equivalence for C ∈ {Micros,MacroS,BiSs } if Φ(X) = Y , Φ−1(Y ) = X and both maps

Φ and Φ−1 are C-uniform.

The functions s and S in the above definition are called scale transforms.

Exercise 13.4. Show that a multimap Φ : X ⇒ Y between two preuniform spaces X, Y is

• Micro-uniform iff Φ is Micros-uniform for some scale transform s : UY → UX ;
• Micro-uniform iff Φ is MacroS-uniform for some scale transform S : UX → UY .

Definition 13.5. A preuniform space (X,UX) is defined to be

• Micro-homogeneous if there is a scale transform s : UX → UX such that such that for any
points x, y ∈ X there is a Micros-equivalence Φ : X ⇒ X with y ∈ Φ(x);
• Macro-homogeneous if there is a scale transform S : UX → UX such that such that for

any points x, y ∈ X there is a MacroS-equivalence Φ : X ⇒ X with y ∈ Φ(x);
• Bi-homogeneous if there are scale transforms s, S : UX → UX such that such that for any

points x, y ∈ X there is a BiSs -equivalence Φ : X ⇒ X with y ∈ Φ(x).

For a metric space those homogeneity properties relate as follows:

Macro-homogeneous

isometrically homogeneous // Bi-homogeneous

OO

��
Micro-homogeneous

��
Top-homogeneous

Exercise 13.6. Let C ∈ {Top,Micro,Bi,Macro}. Prove that a preuniform space is C-homogeneous
if and only if it is C-equivalent to a C-homogeneous preuniform space.

Exercise 13.7. Prove that each Micro-homogeneous compact metric space is Micro-equivalent
to an isometrically homogeneous compact metric space.

Exercise 13.8. Prove that the Hilbert cube [0, 1]ω is Top-homogeneous but not Micro-homogeneous.

Proposition 13.9. If a preuniform space X is
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(1) Micro-homogeneous, then Micro-cov(X) = Top-Cov(X) = Macro-Cov(X);
(2) Macro-homogeneous, then Macro-cov(X) = Born-Cov(X) = Macro-Cov(X);
(3) Bi-homogeneous, then Bi-cov(X) = Bi-Cov(X).

14. Classification of isometrically homogeneous ultrametric spaces

In the following theorem, for any sequence of non-zero cardinals (κn)n∈ω the Tychonoff product∏
n∈ω κn and Tychonoff coproduct

∐n∈ω κn are endowed with the ultrametrics

d((xn), (yn)) = max{0, 2−n : xn 6= yn}
and

D((xn), (yn)) = max{0, 2n : xn 6= yn},
respectively.

Theorem 14.1 (C-classification). Assume that C is a subcategory of PreU whose morphisms
contain all Lipschitz maps between ultrametric spaces.

Each isometrically homogeneous complete ultrametric space X is C-isomorphic to the space∏
n∈ω κn ×

∐n∈ω λn for suitable sequences of cardinals (κn)n∈ω and (λn)n∈ω.

15. Classification and Characterizations in Top

Observation 15.1. Two metric spaces X, Y are Top-equivalent iff X, Y are Top-isomorphic if
and only if X, Y are homeomorphic.

Below, the space ω of finite ordinals is considered as a metric space endowed with the discrete
{0, 1}-valued metric.

Theorem 15.2 (Top-Classification). Each infinite Top-homogeneous separable complete metric
space X of Top-dimX = 0 is Top-equivalent to one of the spaces: ω, 2ω, 2ω × ω, ωω.

The isometrically homogeneous spaces that appears in the Top-classification can be charac-
terized as follows:

Theorem 15.3 (Top-characterizations). A separable complete metric space X of Top-dimX = 0
is Top-equivalent to:

(1) ω iff X is discrete and infinite;
(2) 2ω iff X is compact without isolated points;
(3) 2ω × ω iff X is locally compact, non-compact, and has no isolated points;
(4) ωω iff X is nowhere locally compact.

Next we give three general criteria of Top-equivalence, Top-embedding and Top-surjection.

Theorem 15.4 (Top-isomorphism). Two complete metric spaces X, Y are Top-isomorphic if

(1) Top-dim(X) = Top-dim(Y ) = 0;
(2) Top-Cov(XTop) = Micro-cov(XTop) = Top-Cov(YTop) = Micro-cov(YTop);
(3) Bi-Cov(XTop) = Bi-cov(XTop) = Bi-Cov(YTop) = Bi-cov(YTop).

Theorem 15.5 (Top-embedding). A metric space X admits a Top-embedding into a complete
metric space Y if

(1) Top-dim(X) = 0;
(2) Top-Cov(XTop) ≤ Micro-cov(YTop);
(3) Bi-Cov(XTop) ≤ Bi-cov(YTop).
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Theorem 15.6 (Top-surjection). A complete metric space X admits a Top-surjection f : X → Y
onto a complete metric space Y if

(1) Top-dim(X) = 0;
(2) Micro-cov(XTop) ≥ Top-Cov(YTop);
(3) Bi-cov(XTop) ≥ Bi-Cov(YTop).

Exercise 15.7. Calculate the covering numbers of the model spaces: ω, 2ω, 2ω × ω, ωω.

16. Classification and Characterizations in Micro

Observation 16.1. Two metric spaces X, Y are Micro-equivalent iff X, Y are Micro-isomorphic
iff X, Y are uniformly homeomorphic.

Theorem 16.2 (Micro-Classification). Each infinite Micro-homogeneous separable complete met-
ric space X of Micro-dim(X) = 0 is Micro-equivalent to one of the spaces: ω, 2ω, 2ω × ω, ωω.

Theorem 16.3 (Micro-Characterization of 2ω). A preuniform space X is Micro-isomorphic to
the Cantor micro-cube 2ω if and only if:

(1) X is sequentially complete;
(2) X is Micro-metrizable;
(3) Micro-dim(X) = 0;
(4) ∀ε ∈ UX covε(X) < ℵ0;
(5) ∀ε ∈ UX ∃δ ∈ UX ∀x ∈ X covδ(B(x, ε)) ≥ 2.

Theorem 16.4 (Micro-Characterization of 2ω × ω). A preuniform space X is Micro-isomorphic
to 2ω × ω if and only if:

(1) X is sequentially complete;
(2) X is Micro-metrizable;
(3) Micro-dim(X) = 0;
(4) ∀ε ∈ UX covε(X) ≤ ℵ0;
(5) ∃ε ∈ UX covε(X) ≥ ℵ0;
(6) ∃ε ∈ UX ∀δ ∈ UX ∃m ∈ N ∀x ∈ X covδ(B(x, ε)) ≤ m;
(7) ∀ε ∈ UX ∃δ ∈ UX ∀x ∈ X covδ(B(x, ε)) ≥ 2.

Theorem 16.5 (Micro-Characterization of ωω). A metric space X is Micro-isomorphic to the
Baire micro-space ωω if and only if:

(1) X is sequentially complete;
(2) X is Micro-metrizable;
(3) Micro-dim(X) = 0;
(4) ∀ε ∈ UX covε(X) ≤ ℵ0;
(5) ∀ε ∈ UX ∃δ ∈ UX ∀x ∈ X covδ(B(x, ε)) ≥ ℵ0.

Next we give three general criteria of Micro-isomorphism, Micro-embedding and Micro-surjection.

Theorem 16.6 (Micro-isomorphism). Two complete metric spaces X, Y are Micro-isomorphic
if

(1) Micro-dim(X) = Micro-dim(Y ) = 0;
(2) Micro-Cov(X) = Micro-cov(X) = Micro-Cov(Y ) = Micro-cov(Y );
(3) Bi-Cov(XMicro) = Bi-cov(XMicro) = Bi-Cov(YMicro) = Bi-cov(YMicro).

Theorem 16.7 (Micro-embedding). A metric space X admits a Micro-embedding into a complete
metric space Y if
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(1) Micro-dim(X) = 0;
(2) Micro-Cov(X) ≤ Micro-cov(Y );
(3) Bi-Cov(XMicro) ≤ Bi-cov(YMicro).

Theorem 16.8 (Micro-surjection). A complete metric space X admits a Micro-surjection f :
X → Y onto a complete metric space Y if

(1) Micro-dim(X) = 0;
(2) Micro-cov(X) ≥ Micro-Cov(Y );
(3) Bi-cov(XMicro) ≥ Bi-Cov(YMicro).

17. Classification and Characterizations in Macro

Observation 17.1. Two metric spaces X, Y are Macro-equivalent if and only if they are coarsely
equivalent in the sense of J. Roe [Roe].

Theorem 17.2 (Macro-Classification). Each non-empty Macro-homogeneous separable metric
space X of Macro-dim(X) = 0 is Macro-equivalent to one of the spaces: 1, 2<N, ω<N.

Theorem 17.3 (Macro-Characterization of 2<N). A preuniform space X is Macro-equivalent to
the Cantor macro-cube 2<N if and only if:

(1) X is Macro-metrizable;
(2) Macro-dim(X) = 0;
(3) ∃δ ∈ UX ∀ε ∈ UX ∃m ∈ N ∀x ∈ X covδ(B(x, ε)) ≤ m;
(4) ∀δ ∈ UX ∃ε ∈ UX ∀x ∈ X covδ(B(x, ε)) ≥ 2;

Theorem 17.4 (Macro-Characterization of ω<N). A preuniform space X is Macro-equivalent to
the Baire macro-space ω<N if and only if:

(1) X is Macro-metrizable;
(2) Macro-dim(X) = 0;
(3) ∃δ ∈ UX ∀ε ∈ UX ∀x ∈ X covδ(B(x, ε)) ≤ ℵ0;
(4) ∀δ ∈ UX ∃ε ∈ UX ∀x ∈ X covδ(B(x, ε)) ≥ ℵ0.

Next we give three general criteria of Macro-equivalence, Macro-immersion and Macro-surjection.

Theorem 17.5 (Macro-equivalence). Two metric spaces X, Y are Macro-equivalent if

(1) Macro-dim(X) = Macro-dim(Y ) = 0;
(2) Macro-Cov(X) = Macro-cov(X) = Macro-Cov(Y ) = Macro-cov(Y ).

Theorem 17.6 (Macro-immersion). A metric space X admits a Macro-immersion into a metric
space Y if

(1) Macro-dim(X) = 0;
(2) Macro-Cov(X) ≤ Macro-cov(Y ).

Theorem 17.7 (Macro-surjection). A metric space X admits a Macro-surjection f : X → Y
onto a metric space Y if

(1) Macro-dim(X) = 0;
(2) Macro-cov(X) ≥ Macro-Cov(Y ).

Exercise 17.8. Calculate the covering numbers of the Baire bi-space X = ω<N and its Born-
uniformization XBorn.
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18. The Π-function of a preuniform space

By Theorem 17.3, the ultrametric spaces 2<N and 3<N are Macro-equivalent. However, they
are not Macro-isomorphic. To prove this fact, we introduce the notion of the Π-function πX of
a preuniform space X. This function is defined as follows.

Let (X,UX) be a preuniform space. For a point x ∈ X and an entourage ε ∈ U by C±ε (x) we
denote the (ε ∪ ε−1)-connected component of x. This is the set of all points y ∈ X that can be
linked with x by a chain x = x0, x1, . . . , xn = y such that (xi, xi−1) ∈ ε ∪ ε−1 for all i ≤ n.

Let Π be the set of prime numbers and πX : Π → ω ∪ {ω} be the function assigning to each
prime number p ∈ Π the cardinal number

πX(p) = sup{k ∈ ω : ∃ε ∈ UX ∀x ∈ X pk divides |C±ε (x)|}.
Here we assume that a cardinal n divides a cardinal m if m = n× k for some cardinal k.

Theorem 18.1. If two preuniform spaces X, Y are Macro-isomorphic, then πX = πY .

Observe that for any k ∈ N and the ultrametric spaces X = k<N we get

πX(p) =

{
ω if p = k

0, otherwise.

Proposition 18.2. For any function f : Π → ω + 1 the metric space X = Πf has Π-function
πX = f .

19. Classification and Characterizations in Bi

Theorem 19.1 (Bi-Classification). Each Bi-homogeneous separable complete metric space X of
Bi-dim(X) = 0 is Bi-equivalent to one of the spaces: ω, 2ω, 2ω × ω, ωω, ω × 2<N, 2ω × 2<N,

2ω×ω×2<N, ωω×2<N, ω<N, 2ω×ω<N, ωω×ω<N, or
∐f for a unique function f : Π→ ω∪{ω}.

Theorem 19.2 (Bi-Characterization of 2ω × 2<N). A preuniform space X is Bi-isomorphic to
the space 2ω × 2<N if and only if

(1) X is sequentially complete;
(2) X is Bi-metrizable;
(3) Bi-dim(X) = 0;
(4) ∀δ, ε ∈ UX ∃m ∈ N ∀x ∈ X covδ(B(x, ε)) ≤ m;
(5) ∀ε ∈ UX ∃δ ∈ UX ∀x ∈ X covδ(B(x, ε)) ≥ 2;
(6) ∀δ ∈ UX ∃ε ∈ UX ∀x ∈ X covδ(B(x, ε)) ≥ 2.

Theorem 19.3 (Bi-Characterization of ωω × ω<N). A preuniform space X is Bi-isomorphic to
the Baire bi-space ωω × ω<N if and only if

(1) X is sequentially complete;
(2) X is Bi-metrizable;
(3) Bi-dim(X) = 0;
(4) ∀δ, ε ∈ UX ∀x ∈ X covδ(B(x, ε)) ≤ ℵ0;
(5) ∀ε ∈ UX ∃δ ∈ UX ∀x ∈ X covδ(B(x, ε)) ≥ ℵ0;
(6) ∀δ ∈ UX ∃ε ∈ UX ∀x ∈ X covδ(B(x, ε)) ≥ ℵ0.

Next we give three general criteria for the existence of a Bi-isomorphism, Bi-embedding and
Bi-surjection.

Theorem 19.4 (Bi-isomorphism). Two complete metric spaces X, Y are Bi-isomorphic if
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(1) Bi-dim(X) = Bi-dim(Y ) = 0;
(2) Micro-Cov(X) = Micro-cov(X) = Micro-Cov(Y ) = Micro-cov(Y );
(3) Macro-Cov(X) = Macro-cov(X) = Macro-Cov(Y ) = Macro-cov(Y );
(4) Bi-Cov(X) = Bi-cov(X) = Bi-Cov(Y ) = Bi-cov(Y ) and
(5) min{Bi-cov(XMacro),Bi-cov(Y Macro)} ≥ ℵ1.

Theorem 19.5 (Bi-embedding). A metric space X admits a Bi-embedding into a complete metric
space Y if

(1) Bi-dim(X) = 0;
(2) Micro-Cov(X) ≤ Micro-cov(Y );
(3) Macro-Cov(X) ≤ Macro-cov(Y );
(4) Bi-Cov(X) ≤ Bi-cov(Y ).

Theorem 19.6 (Bi-surjection). A complete metric space X admits a Bi-surjection f : X → Y
onto a complete metric space Y if

(1) Bi-dim(X) = 0;
(2) Micro-cov(X) ≥ Micro-Cov(Y );
(3) Macro-cov(X) ≥ Macro-Cov(Y );
(4) Bi-cov(X) ≥ Bi-Cov(Y ).

20. Classification Summary

The number of equivalence classes of infinite isometrically homogeneous complete ultrametric
spaces in some subcategories of PreU:

Top(4)
Micro(4)oo Bi(11+c)oo // Macro(2) // Born(1)

21. Macro-classification of groups

Each group G will be considered as a preuniform space endowed with the preuniformity con-
sisting of entourages UF = {(x, y) ∈ G2 : x ∈ yF} where F = F−1 ⊂ G is a finite symmetric
subset containing the neutral element e of G.

In this section we consider the following (in general still open) problem.

Problem 21.1. Classify countable groups up to the Macro-equivalence or Macro-isomorphism.

We shall answer this problem the classes of locally finite and abelian groups. Let us recall
that a group G is locally finite if each finite subset of G lies in a finite subgroup of G.

Theorem 21.2 (Smith, 2006). A group G has Macro-dim(G) = 0 if and only if G is locally
finite.

Theorem 21.3. Two countable locally finite groups G,H are:

(1) Macro-equivalent;
(2) Macro-isomorphic if and only if πG = πH .

For an abelian group G by r0(G) we denote the free rank of G, which is equal to the maximal
cardinality of a linearly independent subset L ⊂ G. The latter means that for any pairwise
distinct points x1, . . . , xn ∈ L and integer numbers λ1, . . . , λn ∈ Z the equality

λ1x1 + · · ·+ λnxn = 0
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implies λ1 = · · · = λn = 0.
A preuniform space (X,UX) is called Macro-connected if there is an entourage ε ∈ UX such

that any two points x, y ∈ X can be linked by an ε-chain x = x0, x1, . . . , xn = y. In the opposite
case the space (X,UX) is called Macro-disconnected.

Theorem 21.4 (Banakh-Higes-Zarichnyi, 2010). For two countable abelian groups G,H the
following conditions are equivalent:

(1) G,H are Macro-equivalent;
(2) Macro-dim(G) = Macro-dim(H) and either both groups are Macro-connected or both are

Macro-disconnected.
(3) r0(G) = r0(H) and either both groups are finitely generated or both are infinitely gener-

ated.

22. Some Problems

Given a subcategory C of PreU, and two preuniform spaces X, Y , we write X ≤C Y if X
admits a C-immersion into Y .

Problem 22.1. Investigate the properties of the preorder ≤C.

Definition 22.2. A sequence (Nk)k∈ω of objects of C is called a C-number sequence if N0 = ∅
and for every k ∈ ω the following conditions hold:

(1) Nk ≤C Nk+1 and Nk+1 6≤C Nk;
(2) for each metric space X in C, X 6≤C Nk implies Nk+1 ≤C X.

Exercise 22.3. The sequence (k)k∈ω is a C-number sequence in each category
C ∈ {Top,Micro,Bi}.

Problem 22.4. Find a sequence of Macro-numbers.

Exercise 22.5. Show that no sequence of Born-numbers exists.

The proofs of the results announced in these lecture notes can be found in [BZ], [BHZ], [BDHM]
and [Ba].
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