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We start with some preliminaries about homology and cohomology classes determi-

ned by subvarieties of complex varieties. Unless otherwise is stated, we shall work with

(co)homology groups with integer coefficients.

1. Cycles and their classes

The cohomology groups form a graded ring, with the cup product ∪, and the homo-

logy groups form a module over the cohomology ring, by means of the cap product ∩.

When X is a nonsingular complex projective variety of dimension n, it is an oriented real

2n-manifold, and the group H2n(X) has a canonical generator [X]; the canonical map

H i(X) → H2n−i(X), taking α to α∩[X], often called the Poincaré duality map, is an

isomorphism.

We have pushforward maps

f∗ : Hi(X)→ Hi(Y )

and pullback maps

f∗ : H i(Y )→ H i(X)

for a continuous map f : X → Y . These are related by the projection formula

f∗(f∗(α)∩β) = α∩f∗(β)

for α ∈ H i(Y ) and β ∈ Hj(X). If X and Y are nonsingular and projective, and one

identifies homology with cohomology, one gets pushforward maps

f∗ H
i(X)→ H i+2d(Y ) ,

where d = dim(Y )− dim(X).

1



P. Pragacz, Selected Topics in Intersection Theory

A (closed) subvariety V of a projective variety X determines a class denoted [V ] in

H2r(X), where r is the dimension of V . This can be extended to arbitrary subschemes V

of pure dimension r, by setting

[V ] =
∑

mi[Vi]

if Vi are the irreducible components of V and mi is the multiplicity of Vi (i.e., the length

of the local ring of V at the generic point of Vi). If X is nonsingular, by Poincaré duality,

we have the class [V ] in H2c(X) = H2r(X), where c is the codimension of V in X.

If f X → Y is a morphism of projective varieties, and V is a subvariety of X, with

W = f(V ), then f∗[V ] = 0 if dim(W ) < dim(V ), and f∗[V ] = d·[W ] if the map from V to

W is generically d to 1; in particular, f∗[V ] = [W ] if f maps V birationally onto W . If f

is a smooth morphism from X to Y (such as the projection of a projective bundle), and

V is a subvariety of Y , then f∗[V ] = [f−1(V )].

Subvarieties V and W of a smooth projective variety X are said to meet transversally if

their intersection is a union of subvarieties Z1, . . . , Zp, with codim(Zi, X) = codim(V,X)+

codim(W,X) for each i, and the tangent space to Zi at a general point is the transversal

intersection of the tangent spaces to V and to W at that point. In this case

[V ]∪[W ] = [Z1] + · · ·+ [Zp] .

If c is any cohomology class on a projective variety X, the notation
∫
X c is often used to

denote the image of c∩[X] by the degree mapping (push-forward) H∗(X)→ H∗(pt) = Z.

The intersection number
∫
X [V ] ∪ [W ] of two subvarieties V and W of complementary

dimension is often denoted 〈V,W 〉.
If a projective X has a filtration

X = Xs ⊃ Xs−1 ⊃ · · · ⊃ X0 = ∅

by closed algebraic subsets, and each Xi rXi−1 is a disjoint union of varieties Ui,j each

isomorphic to an affine space Cn(i,j), then the classes [U i,j ] of their closures give a basis

for H∗(X) = ⊕Hi(X) over Z. (In particular, all odd groups H2i+1(X) must vanish.) These

conditions apply to Schubert varieties in flag manifolds, which are the closures of Schubert

cells.

It is also a general fact that if a connected algebraic group G acts on a variety X, the

corresponding action on the cohomology is trivial, so [g ·V ] = [V ] for a subvariety V and

an element g in G. If G acts transitively on X, one can use this to make g·V meet a given

subvariety W transversally.

A vector bundle E of rank d on a variety X has Chern classes ci(E) in H2i(X), with

c0(E) = 1 and ci(E) = 0 if i > d. If f Y → X is a morphism, then

ci(f∗E) = f∗(ci(E)) .
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These classes satisfy the Whitney formula: if E′ is a subbundle of E, with quotient bundle

E′′, then

ci(E) =
∑
j+h=i

cj(E′)∪ch(E′′) .

If X is nonsingular, and s is a section of E that is transversal to the zero section, then

cd(E) = [Z(s)], where Z(s) is the zero locus of s.

In topology, we use also Stiefel–Whitney classes and Pontrjagin classes, associated with

real vector bundles.

We end this section with a definition of the Schur determinant.

There is one for any sequence λ = (λ1, λ2, . . . , λn) of integers, and any sequence

c0, c1, . . . of commuting elements in a ring. This is often written as a formal series

c = c0 + c1 + . . . .

Usually λ is a partition, i.e.,

λ1  λ2  · · ·  λn  0 ,

but occasionally the general case is needed. Usually one also has c0 = 1. In any case, one

sets ch = 0 for h < 0. Define

∆λ(c) := det (cλi+j−i)1¬i,j¬n ,

i.e.,

∆λ(c) =

∣∣∣∣∣∣∣∣∣∣∣

cλ1 cλ1+1 . . . cλ1+n−1

cλ2−1 cλ2 . . . cλ2+n−2
...

...
...

...

cλn−n+1 . . . cλn−1 cλn

∣∣∣∣∣∣∣∣∣∣∣
For example, ∆(n)(c) = cn, and ∆(1,1)(c) = c1

2 − c0c2, ∆(2,1)(c) = c1c2 − c0c3, and

∆(1,1,1)(c) = c1
3 − 2c1c2 + c0c3. When c0 = 1, the determinant is unchanged if zeros

are added to the sequence λ. When cr is the rth complete symmetric polynomial in some

variables x1, . . . , xl, this is the Schur polynomial :

∆λ(c) = sλ(x1, . . . , xl) .

More generally, when cr is defined by

∑
r0

cr =

∏m
j=1(1 + qj)∏l
i=1(1− pi)

,

then ∆λ(c) is a symmetric polynomial known variously as a hook Schur polynomial,

supersymmetric Schur polynomial or bisymmetric polynomial.
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2. Real vector bundles

Let us now pass to topology. There is a natural formation of characteristic classes for

real vector bundles, the Stiefel–Whitney classes, such that the ith class is in H i(M,Z2)

for a vector bundle E on a differentiable manifold M . These classes were historically one

of the first characteristic classes, and have important applications, e.g., to the questions of

embeddings of manifolds. If we want to have a larger ring of coefficients, we can still make

a use of Chern classes and define the Pontrjagin classes. Let E be a real vector bundle on

a differentiable manifold M . In order to use Chern classes, we take the complexification

E ⊗R C, and set

pi(E) = (−1)ic2i(E ⊗C) ∈ H4i(M,Z) .

(Note that E ⊗RC ' E ⊗R C = (E ⊗RC)∗, which implies 2c2j+1(E ⊗RC) = 0; we thus

neglect the latter classes.) Write

p(E) = 1 + p1(E) + p2(E) + · · ·

Since E ⊗R C = E ⊕ E, we have

p(E) = c(E)c(E) .

We deduce from the corresponding properties of Chern classes: the naturality and the

Whitney sum formula of Pontrjagin classes.

We want now to discuss the following question: Decide if P4
C can be differentiably

imbedded in R9. We wish to approach this question using the Pontrjagin classes. We have

p(P4
C) = c(TP4

C)c(TP4
C) = (1 + h)5(1− h)5 = (1− h2)5 .

If P4
C can be differentiably imbedded in R9, then there is an exact sequence

0→ (TP4
C)R → TR9|P4C → N → 0 ,

where (TP4
C)R is the realization of the holomorphic tangent bundle (TP4

C) and N is the

normal bundle of (TP4
C) in R9.

We have, by additivity,

p(TR9|P4C) = p
(
(TP4

C)R
)
· p(N) .

But p(TR9|P4C) = 1 by naturality. Thus

p(N) = p(TP4
C)−1 =

1
(1− h2)5 = 1 + 5h2 + 15h4 .

Since N is a line bundle over R, the top component of p(N) should be in H2(P4
C,Z) – a

contradiction.

If P4
C can be imbedded in Rn then the normal bundle has rank at least 4. It follows

that P4
C cannot be imbedded in Rn where n ¬ 11.
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Here is another application of Pontrjagin classes.

In mathematics, cobordism is a fundamental equivalence relation on the class of com-

pact manifolds of the same dimension, set up using the concept of the boundary of a

manifold. Two manifolds are cobordant if their disjoint union is the boundary of a manifold

one dimension higher.

Suppose that M is a compact oriented manifold of dimension 4n. Consider the mono-

mials labelled by partitions λ = (λ1, . . . , λn) of n:

pλ(M) = pλ1(M) · · · pλn(M) .

The following result is due to Thom.

Theorem 1. Two compact, oriented manifolds M and N are cobordant if and only if

pλ(M) = pλ(N)

for any λ.

3. Degeneracy loci

The classical period, which was investigation of matrices of forms with rank conditions,

ended with Giambelli’s work in the early part of this century.

The modern period started in the 1950’s, when R. Thom considered a map ϕ F → E

of complex vector bundles, of ranks m and l, on a variety (then a differentiable manifold,

here a complex manifold) X. On open sets where the bundles are trivial, the map is given

by a matrix of complex-valued functions on the base. Set

Dr(ϕ) = {x ∈ X : rank
(
ϕ(x)

)
¬ r },

a subvariety (usually singular) of X. If the map ϕ is sufficiently generic, this should have

codimension c = (l−r)(m−r), and so should define a cohomology class [Dr(ϕ)] in H2c(X).

The case considered classically, in our first lecture, is that when X is projective space

PN , and E = ⊕li=1O(pi), F = ⊕mj=1O(−qj), where O(t) = O(1)⊗t, with O(1) the standard

line bundle on PN . An l×m matrix A determines a map ϕ (with A acting on the left on

columns), and the locus we called Vr is just Dr(ϕ). Since H2d(PN ) = Z · [L], where L is a

linear subspace of codimension d, knowing the cohomology class of Dr(ϕ) is the same as

knowing its degree.

Thom’s basic observation was:

“There must be a polynomial in the Chern classes of E and the Chern classes of F

that is equal to this class.”

The reason is simple. Consider a “universal” situation. Let Gd be the Grassmannian

of rank d subspaces of a large vector space. On Gm × Gl there are universal bundles E

and F of ranks l and m, and a bundle

H = Hom(F,E)→ Gm ×Gl ,
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with a universal map ϕ from F to E on H. (As is common, we omit notation for pullbacks

of bundles, here for the maps from H to Gm and H to Gl.) On H, all cohomology classes

are polynomials in these Chern classes, so the assertion is clear in this case. The given

situation on X is the pullback of the universal map, for some differentiable map from X to

H. And the classes and Chern classes pull back as needed, at least if the map is suitably

generic.

Thom stated the problem: Find such a polynomial.

Porteous gave the answer in 1962 (although it was published only in 1971): Define c

by the formula

c = c(E − F ) = c(E)/c(F ),

where c(E) = 1 + c1(E) + c2(E) + . . . denotes the total Chern class, and the division is

carried out formally. Then

[Dr(ϕ)] = ∆λ(c), where λ = ((l − r)m−r).

Equivalently, by looking at the dual map ϕ∗ E∗ → F ∗, one can write

[Dr(ϕ)] = ∆µ(c(F ∗)/c(E∗)),

with µ = ((m− r)l−r).
For a generalization, we need double Schubert polynomials. These double Schubert

polynomials are characterized (and can be calculated) by the following two properties:

(1) If w = w0 = nn− 1 . . . 2 1, i.e., w(i) = n+ 1− i for 1 ¬ i ¬ n, then

Sw = Sw(x1, . . . , xn, y1, . . . , yn) =
∏

i+j¬n
(xi − yj).

(2) If, for some i, w(i) > w(i+ 1), and v = w · si interchanges the values of w in positions

i and i+ 1, then

Sv = ∂iSw,

where ∂i is the divided difference operator defined on polynomials by the formula

∂i P =
P − si(P )
xi − xi+1

and si(P ) is obtained from P by interchanging xi and xi+1.

Note that the variables yj act as scalars in this operation. Since any permutation can

be obtained from w0 by a sequence of such interchanges, (1) and (2) determine all double

Schubert polynomials. It is a first fundamental fact about them that they are independent

of choices. It is also a fact that one can use any n for which w is in Sn to start this

procedure. (We work in S∞ =
⋃
Sn.)

Suppose we are given a map h : F → E of vector bundles on a nonsingular variety X,

and suppose each bundle comes with a partial flag of subbundles. Noting that giving a

6
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subbundle is equivalent to giving a quotient bundle, we may write this

F1 ⊂ F2 ⊂ · · · ⊂ Ft ⊂ F → E � Es � · · ·� E2 � E1.

Let w be a permutation such that w(i) < w(i + 1) if i is not the rank of any Ea, and

w−1(j) < w−1(j + 1) if j is not the rank of any Fb. Set

Ωw(h) =
{
x ∈ X : rank

(
Fb(x)→ Ea(x)

)
¬ #{i ¬ rank(Ea) : w(i) ¬ rk(Fb) ∀ a, b

}
.

Theorem. (Fulton 1992 ) If the map h is sufficiently generic, then Ωw has pure codimen-

sion l(w), and [Ωw] = Sw(x, y).

Here the x’s and y’s are the Chern roots of E and F , taken in increasing order by

ranks: x1, . . . , xa are the Chern roots for E1, if a = rk(E1), xa+1, . . . , xa′ are the Chern

roots for Ker(E2 → E1), etc. And y1, . . . , yb are the Chern roots for F1, yb+1, . . . , yb′ are

the Chern roots for F2/F1, etc. The fact that Sw is symmetric in the Chern roots of each

of these bundles means that it can be expressed in terms of their Chern classes, and it is

in this sense that the formula is to be interpreted.

The classical case of matrices of forms is recovered by taking

Ea = O(p1)⊕ · · · ⊕ O(pa) and Fb = O(−q1)⊕ · · · ⊕ O(−qb),

so the upper left a× b submatrix of A gives the bundle map from Fb to Ea.

Now let us give a sketch of the proof of the theorem. First, it suffices to do the case

where the bundles are completely filtered, and the bundle map is the identity:

F1 ⊂ · · · ⊂ Fn = F = E = En � En−1 � · · ·� E1.

To see this, given F → E, look at the map F ⊂ F ⊕ E � E, where the first map is the

graph of the map, and the second is the projection. Then pass to appropriate projective

bundles over X to fill in all the steps. (Here one uses the fact that the pullback maps for

projective bundles are injective on cohomology or Chow groups.)

Moreover, there is a universal case. Suppose we are given a vector bundle V of rank n

and a filtration F1 ⊂ · · · ⊂ Fn−1 ⊂ V on X. Let F = Fl(V ) → X be the flag bundle, on

which one has the tautological flag

0 = U0 ⊂ U1 ⊂ · · · ⊂ Un−1 ⊂ Un = V

of subbundles of (the pullback of) V . Let Qi = V/Un−i, so we have the situation

F1 ⊂ · · · ⊂ Fn−1 ⊂ V � Qn−1 � · · ·� Q1

on F . It suffices to prove the formula in this case, because the previous case is obtained

from this by a section s : X → F . On F we have, for any w in Sn, the universal subvariety

Ωw =
{
x ∈ F : rank(Fq(x)→ Qp(x)) ¬ #{i ¬ p : w(i) ¬ q}

}
.

7
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The given locus in X is s−1(Ωw). In fact, the question of whether a given situation is

“generic” enough is transferred to the question of whether this section s is in sufficiently

general position with respect to the universal subvariety Ωw of F .

The formula for the cohomology of a flag manifold generalizes to families. Let

xi = c1(Ker(Qi → Qi−1)) = c1(Un−i+1/Un−i) .

Then

H∗(F) = H∗(X)[x1, . . . , xn]/
(
e1(x)− c1(V ), . . . , en(x)− cn(V )

)
.

This is easily proved from the construction of F from X by a sequence of projective

bundles, using the standard presentation of the cohomology of a projective bundle over

the cohomology of the base. Note that the operators ∂i determine operators on this ring,

with elements in H∗(X) acting as scalars. Let yi = c1(Fi/Fi−1). Our goal is to prove that

[Ωw] = Sw(x, y) for all w. We need two lemmas:

Lemma. We have [Ωw0 ] =
∏
i+j¬n(xi − yj).

This locus is the analogue of a point in the case of the flag manifold. It is the image

of the tautological section from X to F , that takes a point x to the flag L• = F•(x). To

compute this, one realizes Ωw0 as the zero section of a vector bundle K of rank n(n−1)/2

on F :

K = Ker
(n−1⊕
i=1

Hom(Fi, Qn−i)→
n−2⊕
i=1

Hom(Fi, Qn−i−1)
)
,

where the map takes a collection of homomorphisms from Fi to Qn−i to the differences of

the two canonical maps

Fi ⊂ Fi+1 → Qn−i−1 and Fi → Qn−i � Qn−i−1.

It is not hard to verify that the canonical section of K, given by the maps

Fi ⊂ V � Qn−i ,

vanishes precisely (scheme-theoretically) on the locus Ωw0 , and that its top Chern class is

the indicated product.

Next we have to get from the class of this smallest locus to the classes of larger loci.

One cannot hope to do this by a morphism, but one can look for a correspondence. Let

F(n − i) be the partial flag bundle without the (n − i)th term, i.e., consisting of flags of

subspaces of all dimensions except n− i. On F(n− i) there is a universal flag

U1 ⊂ · · · ⊂ Un−i−1 ⊂ Un−i+1 ⊂ · · · ⊂ Un = V,

where we have used the same notation as for these bundles as for their pullbacks to F .

There is a canonical projection F → F(n− i), which is the P1-bundle P(Un−i+1/Un−i−1).

We have a commutative Cartesian diagram, where all maps are projections of P1-bundles:

8
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F ×F(n−i) F

p1

��

p2 // F

��
F // F(n− i)

Lemma. (1) The map

p1∗ ◦ p2
∗ : H2d(F)→ H2d+2(F)

is equal to ∂i.

(2) We have

p1∗ ◦ p2
∗[Ωw] = [Ωw·si ]

if w(i) > w(i+ 1).

Proof. Both parts of this lemma are rather easy. For the first, one just needs to know

about the structure of P1-bundles. If U is a bundle of rank 2 on a variety Y , O(1) is

the tautological quotient line bundle of U on P(U), p : P(U) → Y is the projection,

and x = c1(O(1)), then any cohomology class in H∗(P(U)) has a unique expression of

the form αx + β, with α and β in H∗(Y ). And p∗(αx + β) = α. Part (1) follows easily

from this. (Note that when U corresponds to Un−i+1/Un−i−1, then O(1) corresponds to

Un−i+1/Un−i, so x corresponds to xi, and ∂i(xi) = 1.)

Part (2) follows from the fact that, when w(i) > w(i+1), p1 maps p2
−1(Ωw) birationally

onto Ωw·si . This is a local question, so one is reduced to the case of the flag manifold itself.

This is a simple calculation, using the “row echelon” descriptions of Schubert cells. It is

also true that if w(i) < w(i + 1) then p1 maps p2
−1(Ωw) into Ωw, from which it follows

that p1∗ ◦ p2
∗[Ωw] = 0. 2

The theorem follows immediately from the two lemmas, together with the two proper-

ties that characterize Schubert polynomials.

4. Schubert calculus

Schubert calculus is a branch of algebraic geometry introduced in the nineteenth cen-

tury by Hermann Schubert, in order to solve various counting problems of of enumerative

geometry. It was a precursor of several more modern theories, for example characteri-

stic classes, and, in particular, its algorithmic aspects are still of current interest. The

objects introduced by Schubert are the Schubert cells, which are locally closed sets in a

Grassmannian defined by conditions of incidence of a linear subspace in projective space

with a given flag. Schubert classes are the classes of the closures of Schubert cells. The

intersection theory of these classes, which can be seen as the product structure in the co-

homology ring of the Grassmannian, in principle allows the prediction of the cases where

intersections of cells results in a finite set of points; which are potentially concrete answers

to enumerative questions. A supporting theoretical result is that the Schubert classes span

the whole cohomology ring of Grassmannian. In detailed calculations the combinatorial

aspects enter as soon as the cells have to be indexed. Lifted from the Grassmanian, which

is a homogeneous space, to the general linear group that acts on it, similar questions are

9
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involved in the Bruhat decomposition and classification of parabolic subgroups (by block

matrix). Putting Schubert’s system on a rigorous footing is Hilbert’s 15th problem.

We shall study 3 fundamental theorems: basis theorem, Pieri formula and determinan-

tal formula in the case the classical Grassmannian and the Lagrangian Grassmannian as

well.

Here is a very interesting open problem in Schubert calculus. Let F be the flag variety

of complete flags in Cn. This is an algebraic variety of dimension n(n − 1)/2 equipped

in a cellular decomposition consisting of n! algebraic Schubert cells. The closures of these

cells are Schubert varieties Xw indexed by permutations w ∈ Sn, and their classes form

an additive basis of the cohomology ring H∗(F,Z).

Problem: Give a combinatorial formula for the constants cuwv , appearing in the de-

composition of the product

[Xw] · [Xv] =
∑
u

cuwv[X
u]

of Schubert classes. Note that for a Grassmannian, a similar question is solved thanks to

the Littlewood–Richardson rule that was first discovered in representation theory.

Symmetric function play an important role in Schubert calculus. They also play a basic

role for degeneracy loci. Among the symmetric functions, these are the supersymmetric

functions which are especially important.

5. Supersymmetric functions

Let A = An = (a1, . . . , an) and B = Bm = (b1, . . . , bm) be two sequences of independent

variables. We say that F ∈ Z[A,B] is supersymmetric if F is symmetric in A and B
separately and F (a1 = t, b1 = −t) is independent on t (this variant of the independence

condition will be used just temporarily to make the life easier by avoiding problems with

signs). Here is a family of suppersymmetric polynomials which immediately comes to mind.

Define sr(A/B) as the coefficients of the series

n∏
i=1

(1− ai)−1
m∏
j=1

(1 + bj) =
∑

sr(A/B).

We see that sr(A/B) interpolate between sr(A) (complete homogeneous polynomials in A)

and er(B) (elementary symmetric polynomials in B), and they are supersymmetric. Also

supersymmetric is therefore any Schur determinant

sλ(A/B) := det
(
sλi+j−i(A/B)

)
1¬i,j¬l(λ) .

For example, s1(A/B) = s1(A) + e1(B), s2(A/B) = s2(A) + s1(A)e1(B) + e2(B), s3(A/B) =

s3(A)+s2(A)e1(B)+s1(A)e2(B)+e3(B) etc , and s21(A/B) = s2(A/B)s1(A/B)−s3(A/B).

Observe that, for a partition λ = (λ1, . . . , λn), sλ(A/0) is the classical Schur S-poly-

nomial denoted sλ(A) and originally defined by Jacobi in the form

10
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1
∆(A)

∣∣∣∣∣∣∣∣∣∣∣∣

aλ1+n−1
1 aλ2+n−2

1 . . . aλn1

aλ1+n−1
2 aλ2+n−2

2 . . . aλn2
...

...
...

aλ1+n−1
n aλ2+n−2

n . . . aλnn

∣∣∣∣∣∣∣∣∣∣∣∣
=
∑
w∈Sn

w
[aλ1+n−1

1 aλ2+n−2
2 . . . aλnn
∆(A)

]
,

where

∆(A) =
∏
i<j

(ai − aj)

and Sn acts on a1, . . . , an via permutations. This is perhaps a good moment to introduce

some notation which will make many formulas more concise. Given elements a1, . . . , an of

a commutative ring and α = (α1, . . . , αn) ∈ Nn, we set

aα := aα11 · . . . · a
αn
n .

For two sequences of integers α = (α1, . . . , αn) and β = (β1, . . . , βn), we define

α+ β := (α1 + β1, . . . , αn + βn) .

In particular, using this notation, the above formula becomes

sλ(A) =
∑
w

w
[aλ+ρ(n−1)

∆(A)

]
.

(Recall that one can always allow one or more zeros to occur at the end of a partition,

and identify sequences that differ only by such zeros.)

It turns out that the Z-module of supersymmetric polynomials is freely generated by

{sλ(A/B)}, where λ runs over the set of partitions whose diagrams Dλ are contained in

the (n,m)-hook:

Dn,m =

↑
n
↓

m
← →

Perhaps the best way to see this, is via the following expression which, we will soon see,

is equal to sλ(A/B). Supposing that Dλ ⊂ Dn,m, set

Fλ(A/B) :=
∑

w∈Sn×Sm
w


aν+ρ(n−1)bµ+ρ(m−1) ∏

(i,j)∈Dn,m
λ

(ai + bj)

∆(A) ∆(B)

 ,
11
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where ν, µ and Dn,m
λ are defined by the following picture displaying Dλ:

Dν

Dn,m
λ

Dµ̄

m

n

For example, for λ = (4, 1, 1) and m = n = 2, we have the picture:

and the above expression becomes

a3
1b

2
1(a1 + b1)(a1 + b2)(a2 + b1)

(a1 − a2)(b1 − b2)
+
a3

2b
2
1(a2 + b1)(a2 + b2)(a1 + b1)

(a2 − a1)(b1 − b2)

+
a3

1b
2
2(a1 + b2)(a1 + b1)(a2 + b2)

(a1 − a2)(b2 − b1)
+
a3

2b
2
2(a2 + b2)(a2 + b1)(a1 + b2)

(a2 − a1)(b2 − b1)
.

What one can say about this expression? Clearly Fλ is a polynomial which is homoge-

neous of degree |λ| and symmetric in A and B.

Exercise. Verify that the polynomial in the above example is supersymmetric.

Here is a general argument. Under the substitution a1 = −b1 = t, Fλ becomes a

polynomial in t and the degree of t in ∆(A)∆(B) is n+m− 2. Hence, if we show that the

degree of t in the numerators of all n!m! summands in Fλ cannot exceed n+m− 2, then

we know that Fλ(a1 = −b1 = t) doesn’t depend on t. Or, equivalently, it suffices to show

that for

N = aν+ρ(n−1)bµ+ρ(m−1)
∏

(i,j)∈Dn,m
λ

(ai + bj),

the degree of t in N(ai = −bj = t) does not exceed n+m−2 for i = 1, . . . , n, j = 1, . . . ,m.

Of course, if (i, j) ∈ Dn,m
λ (matrix coordinates), then after the substitution we get zero.

So suppose (i, j) /∈ Dn,m
λ . This clearly implies j > λi and i > λ̃j (in particular, νi = 0 and

µj = 0). The factors in N containing ai or bj are

(ai + b1), . . . , (ai + bλi), (a1 + bj), . . . , (aλ̃j + bj), an−ii , bm−jj

and the degree of t is therefore

λi + λ̃j + (n− i) + (m− j) ¬ n+m− 2.

12
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Note that if Dn,m
λ is the entire n×m rectangle, we have the following factorization

Fλ(A/B) = sν(A)sµ(B)
∏
i,j

(ai + bj).

Using an induction argument, one shows the following result.

Proposition. {Fλ(A/B)}, where λ runs over the set of partitions with Dλ ⊂ Dn,m, is a

basis of the Z-module of supersymmetric polynomials.

We give a sketch of the proof. First one observes that for the cases n = 0 or m = 0

starting the induction, the assertion is a simple consequence of the Jacobi presentation of a

Schur polynomial and the fact that multiplication by ∆(A) establishes an isomorphism of

the Z-modules of alternating and symmetric polynomials in A. Then one shows, using the

above factorization formula, that those Fλ, where Dn,m
λ is the full n ×m-rectangle, form

a basis of the Z-module of supersymmetric polynomials which vanish for an = bm = 0. To

perform the induction step from (n−1,m−1) to (n,m), one takes an arbitrary supersym-

metric polynomial P = P (An,Bm) and substitutes an = bm = 0 in P , thus obtaining a

polynomial P ′ = P ′(An−1,Bm−1) which is supersymmetric in An−1 and Bm−1. By noticing

that the polynomial P − P ′ is supersymmetric (in An and Bm) and vanishes under the

substitution an = bm = 0, one proves the induction assertion by using the induction

assumption and the above characterization of supersymmetric polynomials which vanish

for an = bm = 0.

Finally, we show that

Fλ(A/B) = sλ(A/B)

which is, of course, our main goal. To this end, we can assume that n >> 0 (in fact,

n  |λ| will do the job). Indeed, letting in either expression some last variables be zero,

we get the analogous polynomials associated with λ but depending only on the preceding

variables. By the proposition, there exist integers aσ such that

sλ(A/B) =
∑
σ

aσFσ(A/B),

where all partitions σ have n parts at most. Therefore, setting now all the y’s to be

zero, we do not lose any summand on the right-hand side. But then, invoking the Jacobi

presentation of sλ(A) again, we get aλ = 1 and aσ = 0 for all σ 6= λ.

We have paid so much attention to this formula because it is a key result in the theory

of supersymmetric polynomials. It implies immediately

s(mn)(A/B) =
∏
i,j

(ai + bj),

and, as we have already noticed, the following factorization formula: for any partition λ

with Dλ ⊂ Dn,m, if Dm,n
λ is the entire n×m-rectangle,

sλ(A/B) = sν(A)sµ(B)s(mn)(A/B).

13



P. Pragacz, Selected Topics in Intersection Theory

Exercise. Show that if Dλ 6⊂ Dn,m, then sλ(An/Bm) = 0.

Observe that the formula implies also, for any partition λ, the following duality formula

sλ(A/B) = s
λ̃
(B/A).

Moreover, it “incorporates” one of the central results on Schur S-functions, namely the

Littlewood–Richardson rule for multiplying two Schur functions.

Let us now come back to our initial condition of independence under the substitution

a1 = t = b1 imposed by geometry. This is obtained by a change of sign in the basic

generating function. Define sr(A− B) to be the coefficients of the power series

n∏
i=1

(1− ai)−1
m∏
j=1

(1− bj) =:
∑
r

sr(X − B),

and sλ(A− B) as the Schur determinant

sλ(A− B) := ∆λ(1 + s1(A− B) + s2(A− B) + . . .) = det
(
sλi+j−i(A− B)

)
.

Of course the family {sλ(A−B)}, where λ runs over partitions with Dλ ⊂ Dn,m, form

a basis of the Z-module of polynomials P symmetric separately in A and B and such that

the specialization P (a1 = t = b1) yields a polynomial independent of t. The polynomials

sλ(A− B) are often called Schur polynomials in a difference of alphabets.

Given two vector bundles E and F on a variety X, we define

sλ(E − F ) := ∆λ(s(E − F )) = ∆λ(s(E)/s(F ))

and ∆λ(E − F ) := ∆λ(c(E − F )) = ∆λ(c(E)/c(F )).

In other words, letting A, B be the sequences of Chern roots of E and F , we have sλ(E −
F ) = sλ(A− B). We also set

sλ(E) := ∆λ

(
s(E)

)
.

For given two partitions λ = (λ1, . . . , λp) and µ = (µ1, . . . , µr) we denote by λ, µ their

juxtaposition, which is the sequence (λ1, . . . , λp, µ1, . . . , µr). From the above we get, for

vector bundles E and F of respective ranks n and m, the following formulas:

cmn(E ⊗ F∨) = s(mn)(E − F ) = ∆(nm)(E − F );

the factorization formula: for a partition µ = (µ1, µ2, . . .) such that µ1 ¬ m and a partition

ν = (ν1, . . . , νn),

s((mn)+ν),µ(E − F ) = sν(E)sµ(−F )s(mn)(E − F )

= (−1)|µ|sν(E)sµ̃(F )s(mn)(E − F );

14
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and the duality formula: for any partition λ,

sλ(E − F ) = (−1)|λ|s
λ̃
(F − E) = ∆

λ̃
(E − F ).

The symmetric functions studied in this section are useful tools to study degeneracy

loci and Thom polynomials.

6. Arithmetic intersection theory

This is a mixture of algebraic geometry and complex analysis. We work with arithmetic

varieties and arithmetic Chow groups.

Arakelov geometry studies a scheme X over Z, by putting Hermitian metrics on ho-

lomorphic vector bundles over X(C), the complex points of X. This extra Hermitian

structure is applied as a substitute, for the failure of the scheme Spec(Z) to be a complete

variety.

An arithmetic cycle of codimension p is a pair (Z, g), where Z ∈ Zp(X) and g is

a Green current for Z, a higher dimensional generalization of a Green function on a

Riemann surface (used by Arakelov). Currents are operators on differential forms, induced

by integration. The arithmetic Chow group ĈH
p
(X) is the abelian group of arithmetic

cycles of codimension p, modulo some “trivial cycles”, mimicking rational equivalence and

suitable differentiation of currents.

Let E be a Hermitian vector bundle on X. One attaches to E characteristic classes

with values in arithmetic Chow groups. Among them are arithmetic Chern classes ĉi(E).

They satisfy naturality, but they fail to have the Whitney sum property (for short exact

sequences). One needs the secondary Chern class, defined by Bott and Chern to control

this failure.

This is an enormous machinery. Some explicit applications concern the height of projec-

tive varieties. Consider a system of diophantine equations with integral coefficients, which

defines an arithmetic variety X in projective space Pn
Z. The Faltings height h(X) of X is a

measure of the arithmetic complexity of the system of equations. It is an arithmetic analog

of the geometric notion of the degree of a projective variety. The height h(X) generalizes

the classical height of a rational point of projective space, used by Siegel, Northcott and

Weil to study the questions of diophantine approximation. If O(1) denotes the canonical

Hermitian line bundle on Pn, then we define

h(X) = d̂eg(ĉ1(O(1))dim(X)|X) .

We have

h(Pn) =
1
2

n∑
i=1

Hi ,

where

Hi = 1 +
1
2

+ · · ·+ 1
i

15
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is a harmonic number. Recently, the heights of some homogeneous spaces have been cal-

culated using Schubert calculus. We shall present these calculations.

7. Thom polynomials

A prototype of the formulas which we shall consider is the following classical result. Let

f : M → N be a holomorphic, surjective map of compact Riemann surfaces. For x ∈ M ,

we set

ex := number of branches of f at x.

Then the ramification divisor of f is equal to

∑
(ex − 1)x .

The Riemann–Hurwitz formula asserts that

∑
x∈M

(ex − 1) = 2g(M)− 2− deg(f)
(
2g(N)− 2

)
.

The right-hand side of the equation can be rewritten as

f∗c1(N)− c1(M) ,

and gives us the Thom polynomial of the singularity A1 of maps between curves.

Fixm,n, p ∈ N. Consider the space J p(Cm
0 ,C

n
0 ) of p-jets of analytic functions from Cm

to Cn which map 0 to 0. Consider the natural right-left action of the group Autpm×Autpn
on J p(Cm

0 ,C
n
0 ), where Autpn denotes the group of p-jets of automorphisms of (Cn, 0). By a

singularity class we shall mean a closed algebraic right-left invariant subset of J p(Cm
0 ,C

n
0 ).

Given complex analytic manifoldsMm andNn, a singularity class Σ ⊂ J p(Cm
0 ,C

n
0 ) defines

the subset Σ(M,N) ⊂ J p(M,N), where J p(M,N) is the space of p-jets from M to N .

Theorem. Let Σ ⊂ J p(Cm
0 ,C

n
0 ) be a singularity class. There exists a universal polynomial

T Σ over Z in m+n variables c1, . . . , cm, c
′
1, . . . , c

′
n which depends only on Σ, m and n such

that for any complex analytic manifolds Mm, Nn and for almost any map f : M → N ,

the class of

Σ(f) := f−1
p (Σ(M,N))

is equal to

T Σ(c1(M), . . . , cm(M), f∗c1(N), . . . , f∗cn(N)),

where fp : M → J p(M,N) is the p-jet extension of f .

This is a theorem due to Thom.

If a singularity class Σ is stable (e.g. closed under the contact equivalence, then T Σ

depends on the virtual vector bundle TM − f∗TN .

16
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Let f : M → N be a map of complex analytic manifolds. We shall work with the

tangent map

f∗ : TM → f∗TN

and also with cotangent one

f∗ : f∗T ∗N → T ∗M .

Given a partition λ, we define

sλ(f∗TN − TM)

to be the effect of the following specialization of Sλ(A−B): the indeterminates of A are set

equal to the Chern roots of f∗TN , and the indeterminates of B to the Chern roots of TM .

Given a singularity class Σ, the Poincaré dual of Σ(f), for almost any map f : M → N ,

will be written in the form ∑
λ

αλsλ(f∗TN − TM)

with integer coefficients αλ.

Accordingly, we shall write

T Σ =
∑
λ

αλSλ ,

where Sλ is identified with Sλ(A−B) for the universal Chern roots A and B.

For example, consider the singularity class Σ = Σi. So, m− i ¬ n, and we have

T Σi = S(in−m+i) ,

the Giambelli–Thom–Porteous formula.

A basic result on Schur function expansions of Thom polynomials of singularity classes

is

Theorem. Let Σ be a nontrivial stable singularity class. Then for any partition λ, the

coefficient αλ in the Schur function expansion of the Thom polynomial

T Σ =
∑

αλSλ

is nonnegative and
∑
λ αλ > 0.

The original proof used the classification space of singularities and the Fulton–Lazarsfeld

theorem.

Sketch of proof of the theorem First, using some Veronese map, we “materialize” all

singularity classes in sufficiently large Grassmannians.

We fix a singularity class Σ and take the Schur function expansion of T Σ. We take

sufficiently large Grassmannian containing Σ and such that specializing T Σ in the Chern

classes of the tautological (quotient) bundle Q, we do not lose any Schur summand.

We identify by the Giambelli formula a Schur polynomial of Q with the corresponding

Schubert cycle.

17
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To test a coefficient in the Schur function expansion of T Σ, we intersect [Σ] with

the corresponding dual Schubert cycle. Using the Bertini–Kleiman theorem we put the

cycles in a general position, so that we can reduce to set-theoretic intersection, which is

nonnegative. 2

Note. If αλ 6= 0, then we shall say that λ belongs to the indexing set of the Schur function

expansion of T Σ, or that the partition λ appears in the Schur function expansion of T Σ,

or just λ appears in T Σ.

We record now a variant valid for not necessary stable singularity classes.

Theorem. Let Σ be a nontrivial singularity class. Then for any partitions α, µ, the coef-

ficient αλ,µ in the Schur function expansion of the Thom polynomial

T Σ =
∑

αλ,µsλ(T ∗M)sµ(f∗TN)

is nonnegative, and
∑
λ,µ αλ,µ > 0.

(It is important that we use the cotangent bundle to the source M and the tangent

bundle to the target N .) The latter result implies the former.

More generally, it is natural to consider the P-ideal of a singularity class Σ, denoted

by PΣ. This is the subset in the polynomial ring Z[c1, . . . , cm, c
′
1 . . . , c

′
n], consisting of all

polynomials P which satisfy the following universality property. For any complex analytic

manifolds Mm, Nn and almost any map f : M → N ,

P (c1(M), . . . , cm(M), f∗c1(N), . . . , f∗cn(N))

is supported on Σ(f) that the class of a cycle on M in H(M) is in the image of H(Σ(f))→
H(M).)

For Σ = Σi, PΣ is simply the ideal of polynomials which – after specialization to the

Chern classes of M and N – support cycles in the locus D, where

dim Ker(f∗ : TM → f∗TN)  i .

for almost any map f : M → N . (This means that the class of a cycle on M in H(M) is

in the image of H(D)→ H(M).)

Note that in terms of the cotangent map, D is the locus where

rank
(
f∗ : f∗T ∗N → T ∗M

)
¬ m− i ,

for almost any map f : M → N .

Of course, the component of minimal degree of PΣ is generated over Z by T Σ. Use-

fulness of P-ideals come from the following observation. Suppose that Σ ⊂ Σ′, where Σ′

is another singularity class. Then T Σ belongs to PΣ′ . Thus if one knows the algebraic

structure of PΣ′ , one can use it to compute T Σ. In this way, the degeneracy loci of the

cotangent map appear to be useful objects to study Thom polynomials.

18
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Set P i := PΣi . We know the algebraic structure of P i, i.e., a certain finite set of

its algebraic generators and its Z-basis The arguments combine geometry of Grassmann

bundles with algebra of Schur functions.

Before proceeding further, let us state the following result which is rather useful to

compute the Schur function expansions of Thom polynomials.

Theorem. Suppose that a stable singularity class Σ is contained in Σi. Then all summands

in the Schur function expansion of T Σ are indexed by partitions containing (in−m+i).

Thus the partitions not containing this rectangle cannot appear in the Schur function

expansion of T Σ.

Let A and B be two alphabets such that

∑
ci =

∏
a∈A

(1 + a) and
∑

c′j =
∏
b∈B

(1 + b).

We have

Proposition. No nonzero Z[c1, . . . , cm]-linear combination of the Schur functions Sλ(A−
B)’s, where all λ’s do not contain (in−m+i)), belongs to P i.

The idea of the proof is to interpret P i as a “generalized resultant”, and use some

specialization trick.

Thus, in particular, no nonzero Z-linear combination of the sλ(A− B)’s, where all λ’s

do not contain (in−m+i), belongs to P i.

Also, we have

Proposition. Any Sλ(A− B), where λ contains (in−m+i) belongs to P i.

The idea of the proof is to use a desingularization of D in the product of two Grassmann

bundles, and apply appropriate pushforward formulas.

We are now ready to justify the theorem. Since Σ is contained in Σi, the Thom po-

lynomial T Σ belongs to P i. By the stability assumption, the Thom polynomial T Σ is a

(unique) Z-linear combination of the sλ(A − B)’s. The two propositions imply that only

Schur functions indexed by partitions containing the rectangle (in−m+i) appear in this

sum. 2

In the computations of Thom polynomials, it is convenient to “split” them into pieces

supported on the consecutive degeneracy loci of the cotangent map. Let T be the Thom

polynomial of a singularity class. By the h-part of T we mean the sum of all Schur functions

appearing in T (multiplied by their coefficients) such that the corresponding partitions

satisfy the following condition: λ contains the rectangle partition (hn−m+h), but it does

not contain the larger diagram ((h+1)n−m+h+1). The polynomial T is a sum of its h-parts,

h = 1, 2, . . ..

We shall mostly study Thom polynomials of singularities.

Let l  0 be a fixed integer and • ∈ N. Two stable germs κ1, κ2 : (C•, 0) → (C•+l, 0)

are said to be right-left equivalent if there exist germs of biholomorphisms ϕ of (C•, 0) and

ψ of (C•+l, 0) such that ψ ◦ κ1 ◦ ϕ−1 = κ2. A suspension of a germ is its trivial unfolding:
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(x, v) 7→ (κ(x), v). Consider the equivalence relation (on stable germs (C•, 0)→ (C•+l, 0))

generated by right-left equivalence and suspension. A singularity η is an equivalence class

of this relation.1

According to Mather’s classification, singularities are in one-to-one correspondence

with finite dimensional (local) C-algebras. We shall use the following notation of Mather:

– Ai will stand for the stable germs with local algebra C[[x]]/(xi+1), i  0;

– Ia,b (of Thom–Boardman type Σ2,0) for stable germs with local algebra

C[[x, y]]/(xy, xa + yb), b  a  2;

– IIIa,b (of Thom–Boardman type Σ2,0) for stable germs with local algebra

C[[x, y]]/(xy, xa, yb), b  a  2 (here l  1).

With a singularity η, there is associated Thom polynomial T η in the formal variables

c1, c2, . . . which after the substitution of ci to

ci(f∗TN − TM) = [c(f∗TN)/c(TM)]i ,

for a general map f : M → N between complex analytic manifolds, evaluates the Poincaré

dual of [η(f)], where η(f) is the cycle carried by the closure of the set

{x ∈M : the singularity of f at x is η} .

By codim(η), we mean the codimension of η(f) in X.

Codimensions of above singularities are as follows:

– Ai associated with maps (C•, 0)→ (C•+l, 0)), where i  0 and l  0 has codimension

(l + 1)i.

– Ia,b associated with maps (C•, 0) → (C•+l, 0)), where b  a  2 and l  0 has

codimension (l + 1)(a+ b− 1) + 1.

– IIIa,b associated with maps (C•, 0) → (C•+l, 0)), where b  a  2 and l  1 has

codimension (l + 1)(a+ b− 2) + 2.

Let κ : (Cn, 0)→ (Cn+l, 0) be a prototype of a singularity η. It is possible to choose a

maximal compact subgroup Gη of the right-left symmetry group

Autκ = {(ϕ,ψ) ∈ Autn ×Autn+l : ψ ◦ κ ◦ ϕ−1 = κ} ,

such that images of its projections to the factors Autn and Autn+l are linear 2. That is,

projecting on the source Cn and the target Cn+l, we obtain representations λ1(η) and

λ2(η). Let E′η and Eη denote the vector bundles associated with the universal principal

1 A singularity corresponds to a single R–L orbit.
2 By Autn we mean here the space of automorphisms of (Cn, 0).

20



P. Pragacz, Selected Topics in Intersection Theory

Gη-bundles EGη → BGη that correspond to λ1(η) and λ2(η), respectively. The total Chern

class, c(η) ∈ H∗(BGη), and the Euler class, e(η) ∈ H2 codim(η)(BGη), of η are defined by

c(η) :=
c(Eη)
c(E′η)

and e(η) := e(E′η) .

We end this section by recalling the method of restriction equations due to Rimányi et

al.

Theorem. Let η be a singularity. Suppose that the number of singularities of codimension

less than or equal to codim(η) is finite. Moreover, assume that the Euler classes of all

singularities of codimension smaller than codim(η) are not zero-divisors. Then we have

1. if ξ 6= η and codim(ξ) ¬ codim(η), then T η(c(ξ)) = 0;

2. T η(c(η)) = e(η).

This system of equations (taken for all such ξ’s) determines the Thom polynomial T η in

a unique way.

Solving of these equations is rather difficult. This method is well suited for compter

experiments, though the bounds of such computations are quite sharp.

For η = Ai, a suitable maximal compact subgroup can be chosen as GAi = U(1)×U(l).

The Chern class is

c(Ai) =
1 + (i+ 1)x

1 + x

l∏
j=1

(1 + yj) ,

where x and y1,. . . , yl are the Chern roots of the universal bundles on BU(1) and BU(l).

The Euler class is

e(Ai) = i! xi
l∏

j=1

(yj − ix) · · · (yj − 2x)(yj − x) .

In case of η = I2,2, we consider the extension of U(1) × U(1) by Z/2Z. Denoting this

group by H, a maximal compact subgroup is Gη = H × U(l) for all l  0. But to make

computations easier, we use the subgroup U(1)× U(1)× U(l) as Gη We have

c(I2,2) =
(1 + 2x1)(1 + 2x2)
(1 + x1)(1 + x2)

l∏
j=1

(1 + yj) .

Here x1, x2 and y1, . . . , yl are the Chern roots of the universal bundles on two copies of

BU(1) and on BU(l). The Euler class is

e(I2,2) = x1x2(2x1 − x2)(2x2 − x1)
l∏

j=1

(yj − a1)(yj − a2)(yj − a1 − a2) .
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Next, we consider η = III2,2. This time we use the maximal compact group Gη =

U(2)× U(l−1) for l  1. We have

c(III2,2) =
(1+2x1)(1+2x2)(1+x1+x2)

(1+x1)(1+x2)

l−1∏
j=1

(1 + yj) ,

where x1, x2 and y1, . . . , yl−1 denote the Chern roots of the universal bundles on BU(2)

and BU(l−1). The Euler class is

e(III2,2) = (x1x2)2(x1−2x2)(x2−2x1)
l−1∏
j=1

(x1−yj)
l−1∏
j=1

(x2−yj) .

For the singularity III2,3, we can use the action of the U(1) × U(1) × U(l − 1). We

have

c(III2,3) =
(1+2x1)(1+3x2)(1+x1+x2)

(1+x1)(1+x2)

l−1∏
j=1

(1 + yj) .

This time x1, x2 and y1, . . . , yl are the Chern roots of the universal bundles on two copies

of BU(1) and on BU(l − 1). The Euler class is

e(III2,3) =4x2
1x

3
2(x1 − x2)(x1 − 3x2)(x2 − 2x1)

×
l−1∏
j=1

(x1 − yj)(x2 − yj)(2x2 − yj) .

For the singularity III3,3, the maximal compact group is U(2)× U(l − 1). The Chern

class is

c(III3,3) =
(1 + 3x1)(1 + 3x2)(1 + x1 + x2)

(1 + x1)(1 + x2)

l−1∏
j=1

(1 + yj) ,

where x1, x2 and y1, . . . , yl−1 are the Chern roots of the universal bundles BU(2) and

BU(l − 1). The Euler class is

e(III3,3) =4x3
1x

3
2(3x1 − x2)(3x1 − 2x2)(3x2 − x1)(3x2 − 2x1)

×
l−1∏
j=1

(x1 − yj)(2x1 − yj)(x2 − yj)(2x2 − yj) .

We display now the Chern or/and Euler classes of some other singularities (we omit

to interpret the variables xi and yj). We have

c(Ia,b) =
(1 + a+b

nwd(a,b)x1)(1 + ab
nwd(a,b)x2)

(1 + a
nwd(a,b)x1)(1 + b

nwd(a,b)x2)

l−1∏
j=1

(1 + yj) ;

e(Ia,b) =
a!b!ab−1ba−1xa+b

nwd(a, b)a+b

l∏
j=1

(
a∏
i=1

(i
nwd(a, b)

b
x− yj)

b−1∏
i=1

(i
nwd(a, b)

a
x− yj)

)
;

c(IIIa,b) =
(1 + ax1)(1 + bx2)(1 + x1 + x2)

(1 + x1)(1 + x2)

l−1∏
j=1

(1 + yj) ;
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e(IIIa,b) = (a− 1)!(b− 1)!
b−1∏
i=1

(ax1 − ix2)
a−1∏
i=1

(bx2 − ix1)

×
l−1∏
j=1

(
a−1∏
i=1

(yj − ix1)
b−1∏
i=1

(yj − ix2)

)
.

We show now how to compute the Euler class of III2,3. Assume that l = 1 and consider

the germ g(x, y) = (x2, y3, xy). A prototype of III2,3 can be written as the unfolding

g +
8∑
i=1

uihi ,

where hi form a basis of the space

m3
x,y

mx,y · { ∂g∂x ,
∂g
∂y}+ C3 · I(g)

,

and where I(g) is the subspace generated by the component functions of g. We shall work

with the basis consisting of the following germs:

h1(x, y) = (x, 0, 0), h5(x, y) = (0, y, 0),

h2(x, y) = (y, 0, 0), h6(x, y) = (0, y2, 0),

h3(x, y) = (y2, 0, 0), h7(x, y) = (0, 0, x),

h4(x, y) = (0, x, 0), h8(x, y) = (0, 0, y).

Let ρhi denote the representation of the action of the group U(1) × U(1) on the space

generated by hi. Then, denoting the one-dimensional representations of the first and the

second copies of U(1) by λ and µ, we have

ρh1 = λ, ρh5 = µ2,

ρh2 = λ2 ⊗ µ−1, ρh6 = µ,

ρh3 = λ2 ⊗ µ−2, ρh7 = µ,

ρh4 = λ−1 ⊗ µ3, ρh8 = λ.

Therefore for l = 1, using the representation
⊕
ρhi , we can write the Euler class as

e(III2,3) = 4x2
1x

3
2(x1 − x2)(x1 − 3x2)(x2 − 2x1) ,

where x1 and x2 denote the Chern roots of the universal bundles on the two copies of

BU(1).

For l = 2, in addition to hi above, we need to consider the representations of the

action of the group U(l − 1) = U(1) on the spaces generated by (x, y) 7→ (0, 0, 0, x),

(x, y) 7→ (0, 0, 0, y) and (x, y) 7→ (0, 0, 0, y2). These can be written as ν⊗λ−1, ν⊗µ−1 and

23



P. Pragacz, Selected Topics in Intersection Theory

ν ⊗ µ−2, where ν denotes the one-dimensional representation of this copy of U(1). Hence,

in this case, the Euler class can be written as

e(III2,3) = 4x2
1x

3
2(x1 − x2)(x1 − 3x2)(x2 − 2x1)(x1 − y1)(x2 − y1)(2x2 − y1) ,

where xi are as above and y1 denotes the Chern root of the universal bundle on BU(1).

For l  1, we need to consider U(l− 1) instead of U(1), giving rise to y1, . . . , yl−1 (and

respectively to the product
∏l−1
j=1(x1−yj)(x2−yj)(2x2−yj)) instead of y1 (and respectively

of (x1 − y1)(x2 − y1)(2x2 − y1)).

We shall need the following alphabets:

Definition. We set

D = x1 + x2 + x1 + x2 ,

E = 2x1 + 2x2 ,

F = 2x1 + 3x2 + x1 + x2 ,

G = 3x1 + 3x2 + x1 + x2 ,

H = 2x1 + 4x2 + x1 + x2 .

Notation. In the rest of the paper we shall use the shifted parameter

r := l + 1 .

When we need to emphasize the dependence on r we shall write η(r) for the singularity

η : (C•, 0)→ (C•+r−1, 0), and denote the Thom polynomial of η(r) by T ηr , or Tr for short.

(In this notation, the result of Thom, T A1r = Sr, has a transparent form.)

We now specify, with the help of these alphabets, some equations characterizing Thom

polynomials Tr imposed by different singularities.

Note. The variables below will be specialized to the Chern roots of the cotangent bundles.

First, we give the vanishing equations coming from the Chern classes of singularities.

Let Bj denote an alphabet of cardinality j. We have the following equations:

Ai(r) : Tr(x−Br−1 − (i+ 1)x ) = 0 for i = 0, 1, 2, . . . ;

I2,2(r) : Tr (X2 − E− Br−1) = 0 ;

I2,3(r) : Tr
(

2x + 3x − 5x − 6x − Br−1

)
= 0 ;

III2,2(r) : Tr(X2 − D− Br−2) = 0 ;

III2,3(r) : Tr (X2 − F− Br−2) = 0 ;

III2,4(r) : Tr (X2 −H− Br−2) = 0 .
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Using the Chern classes displayed above, one can write down other vanishing equations.

We give now some normalizing equations coming from the Euler classes of singularities.

We have

Ai(r) : Tr(x−Br−1− (i+1)x ) = R(x+ 2x + 3x + · · ·+ ix ,Br−1+ (i+1)x ) ;

I2,2(r) : Tr(X2−E−Br−1) = x1x2(x1−2x2)(x2−2x1) R(X2+ x1+x2 ,Br−1) ;

I2,3(r) : Tr
(

2x + 3x − 5x − 6x − Br−1

)
= 2xR( 2x + 3x , 5x + 6x + Br−1)

×
r−1∏
j=1

(4x− bj)(6x− bj) ;

III2,2(r) : Tr(X2 − D− Br−2) = R(X2,D + Br−2) ;

III2,3(r) : Tr (X2 − F− Br−2) = 2x2(x1 − x2)R(X2,F + Br−2)
r−2∏
j=1

(2x2 − bj) ;

III3,3(r) : Tr (X2 −G− Br−2) = x1x2(3x1 − 2x2)(3x2 − 2x1)

×R(X2,G + Br−2)
r−2∏
j=1

(2x1 − bj)(2x2 − bj) .

Using the Euler classes displayed above, one can write down other normalizing equ-

ations.

The above data will be used in the lectures to compute the Thom polynomials of the

singularities: Ai, I22, etc.

The suitable parts of the following books and papers can serve as introductory texts

to the lectures.
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Piotr Pragacz

Piotr Pragacz jest matematykiem pracującym od 1981 roku w IM PAN w Warsza-

wie. W swych badaniach naukowych zajmuje się geometrią algebraiczną. Od 2000 ro-
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miejsc degeneracji morfizmów wiązek. Głównym jej wkładem było wprowadzenie i bada-

nie P-ideałów miejsc degeneracji. Tej tematyce poświęcona jest książka [Book] napisana

wspólnie z Williamem Fultonem. Spektrum zainteresowań matematycznych Piotra Praga-

cza obejmuje: geometrię algebraiczna ze szczególnym uwzględnieniem teorii przeciec: [15],

[21], [32], [Book], [50]; algebraiczną kombinatoryką ze szczególnym uwzględnieniem funkcji

symetrycznych: [13], [18], [34] oraz globalną teorię osobliwości ze szczególnym uwzględnie-

niem klas charakterystycznych rozmaitości osobliwych i wielomianów Thoma: [28], [38],

[48], [49], [56], [57]. Terminy: “The Lascoux–Pragacz ribbon identity” (za W. Chen, 2004)

oraz “The Sergeev–Pragacz formula” (za I. G. Macdonaldem w słynnej monografii Symme-

tric Functions and Hall Polynomials, 1995), weszły na stale do terminologii algebraicznej.

W 2000 roku Piotr Pragacz powołał do życia Seminarium Impanga, które stało się ogól-

nopolskim i międzynarodowym forum geometrii algebraicznej [O5]. Cytowana literatura:

http://www.impan.pl/~pragacz/publications.htm
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