Averaging for dissipative PDEs
Geometric methods for systems with fast oscillation of the vector field

Piotr Zgliczyński

Institute of Computer Science and Computational Mathematics,
Jagiellonian University, Kraków

February 4, 2015
1. Results
2. About the approach
The problem

Let \(z \in \mathbb{R}^n, f : \mathbb{R}^n \to \mathbb{R}^n \), for \(k = 1, \ldots, m \) \(u_k : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n \)
\(g_k : \mathbb{R} \to \mathbb{R} \), smooth. We consider

\[
\dot{z} = f(z) + \sum_{k=1}^{m} g_k(\omega_k t) u_k(t, z)
\]

where there exist bounded functions \(G_k \), such that \(G_k'(t) = g_k(t) \) for \(k = 1, \ldots, m \).

\[
\dot{z} = f(z).
\]

Question: Assume that we know a dynamics of (2) then what can be set about the dynamics of (1).

Partial answer for ODEs: Processes induced by time shift by (2) and (1) are \(C^k \)-close for any \(k \) on bounded sets and bounded times intervals

What about the dissipative PDEs?
Consider

\[z' = f(z) + \sum_{k=1}^{m} g_k(\omega_k t)u_k(t, z) \tag{3} \]

where \(f(0) = 0 \) and \(df(0) \) is hyperbolic and there exist bounded functions \(G_k \), such that \(G'_k(t) = g_k(t) \) for \(k = 1, \ldots, m \).

Assume uniform in time (may depend on \(z \)) bounds for \(\|u_k(t, z)\|, \|\partial u_k / \partial z(t, z)\|, \|\partial u_k / \partial t(t, z)\|, \|\partial^2 u_k / \partial t \partial z(t, z)\|, \|\partial^2 u_k / \partial z^2(t, z)\|. \)

Then there exists \(\bar{\omega} \), such that if \(\min |\omega_k| > \bar{\omega} \), then there exists \(r = O(1/\min |\omega_k|) \) such that in the set \(\mathbb{R} \times B(0, r) \) there exists unique full trajectory of (3), which is normally hyperbolic.

No smallness assumption on \(g_k u_k \), just rapid oscillations of the perturbation.

If (3) is \(T \)-periodic, then this orbits is also \(T \)-periodic.
Consider the viscous Burgers equation

\[u_t + u \cdot u_x - \nu u_{xx} = f(t, x), \quad \nu > 0 \]

(4)

with periodic boundary conditions \(x \in \mathbb{R}/2\pi \) and constraint

\[\int_0^{2\pi} u(t, x) \, dx = 2\pi c. \]

(5)

Assume that \(f \) is a finite trigonometric polynomial is bounded with bounded time derivatives of Fourier coefficients. Then there exists a full orbit of size \(O(1/c) \) (we fix \(f \) and \(\nu \)), which attracts all orbits.

Known result: Jauslin, Kreiss, Moser.
In the coordinate frame moving with the velocity c the Burgers equation have the same form, but the forcing becomes rapidly oscillating. After transformation:

$$v(t, x) = u(t, x + ct) - c$$ \hspace{1cm} (6)

our viscous Burgers equation becomes

$$v_t + v \cdot v_x - \nu v_{xx} = f(t, x + ct), \quad \int_0^{2\pi} v(t, x) \, dx = 0. \hspace{1cm} (7)$$

$$f(t, x) = \sum_{k \in \mathbb{Z}} a_k(t) e^{ikx}, \quad f(t, x + ct) = \sum_{k \in \mathbb{Z}} a_k(t) e^{ikct} e^{ikx}$$
Perodic boundary conditions $x \in \mathbb{T}^d = (\mathbb{R}/2\pi)^d$ with $d = 2, 3$ and constraint

$$\int_{\mathbb{T}^d} u(t, x) dx = c. \quad (8)$$

With forcing term $f(t, x)$ with zero mean.
Assume that f is a finite trygonometric polynomial, which is bounded with bounded time derivatives of Fourier coefficients and $k \cdot c$ for all modes in $k \cdot c \neq 0$ (generic condition on the velocity)
Then there exists a full orbit of size $O(1/\min(|k \cdot c|))$ (we fix f and ν). If $d = 2$, then it attracts all orbits.
Idea: we move to moving frame and we have equation with fast oscillation, just as in the previous case.
Consider
\[
\frac{du}{dt} = F(u) + \sum_j P_j(u, \nabla u) \sin(\omega_j t)
\] (9)

where \(F\) is for example Burgers or Navier-Stokes, Kuramoto-Sivashinsky vector field and \(P_j\) are arbitrary polynomials plus periodic boundary conditions.

Observe that we allow for expressions like \(P_j(\nabla u) = (\nabla u|\nabla u)^j\) for \(j \in \mathbb{N}\), so \(j\) can be as large as we want.

Theorem

When \(|\omega_j| \to \infty\), then the region \(U_\omega\) in which the forward solution is defined for all \(t \geq 0\) is increasing, so that \(\bigcup_\omega U_\omega = (\text{full phase space})\) and all these solutions are attracted to zero (or (periodic) orbit there is some (periodic) forcing)
\[
x' = -x + a \cos(\omega t)x^3, \quad x \in \mathbb{R}, \quad a \in \{0, 1\}
\]

for \(a = 0\) \(x_0 = 0\) is globally attracting solution, when \(a \neq 0\) then \(x_0\) is only locally attracting.

for \(a \neq 0\) some solutions go to infinity in finite time.

But for \(\omega \to \infty\) the basin of attraction of \(x_0\) increases to enclose the whole
Some details on Burgers equation -

The Burgers equation for Fourier modes $u(t, x) = \sum_{k \in \mathbb{Z}} z_k \exp(ikz)$ is

$$z_k' = -\lambda_k z_k - ikcz_k + N_k(z) + g_k(t)$$ \hspace{1cm} (11)

where $c = z_0 \in \mathbb{R}$, $\lambda_k = \nu k^2$

$$N_k(z) = \frac{-ik}{2} \sum_{k_1 \in \mathbb{Z} \setminus \{0,k\}} z_{k_1} z_{k-k_1}. \hspace{1cm} (12)$$

Therefore

$$\omega_k = -kc. \hspace{1cm} (13)$$

Observe that the transformation

$$x_k = z_k \exp(-i\omega_k t) \hspace{1cm} (14)$$

preserves the reality condition, i.e. if $\overline{z_{-k}} = z_k$, then $\overline{x_{-k}} = x_k$ and

$$N_k(\overline{z(x)}) = N_k(x). \hspace{1cm} (15)$$

Therefore we obtain equation

$$x_k' = -\lambda_k x_k + N_k(x) + g_k(t) \exp(ikc). \hspace{1cm} (16)$$